Supplemental Information

Structures of Respiratory Supercomplex I+III₂

Reveal Functional and Conformational Crosstalk

James A. Letts, Karol Fiedorczuk, Gianluca Degliesposti, Mark Skehel, and Leonid A. Sazanov

SUPPLEMENTAL INFORMATION

Structures of Respiratory Supercomplex I+III₂ Reveal Functional and Conformational Crosstalk

James A. Letts, Karol Fiedorczuk, Gianluca Degliesposti, Mark Skehel and Leonid A. Sazanov

LIST OF SUPPLEMENTAL INFORMATION

Supplemental Figures

- Figure S1. Initial isolation and separation of SC I+III2, Related to Figure 1
- Figure S2. Effect of PO₄ buffer on isolated SC I+III₂ oxidoreductase activity, Related the Figure 2
- Figure S3. Inhibition of SC I+III2 activities by known CI and CIII2 inhibitors, Related to Figure 3
- Figure S4. Initial cryo-EM processing steps, Related to Figure 4
- Figure S5. Focused refinements, Related to STAR Methods
- Figure S6. Focus-Revert-Classify strategy to separate different classes of CI, Related to Figure 5
- **Figure S7.** Examples of match between local resolution and model ADPs for isolated CI and SC I+III₂, Related to Figure 7 and STAR Methods

Supplemental Tables

- Table S1. Mass Spectrometry identification for subunits of ovine SC I+III₂, CI and CIII₂, Related to Figure 1
- **Table S2.** Lipid content of isolated SC I+III₂ particles compared to mitochondrial membranes, Related to STAR methods
- Table S3. Kcat for CI and CIII2 within the SC and Rate Coupling, Related to Figures 2 and 3
- Table S4. Cryo-EM data collection, Related to Figure 4
- **Table S5.** SC I+III₂ closed model overview, Related to STAR Methods

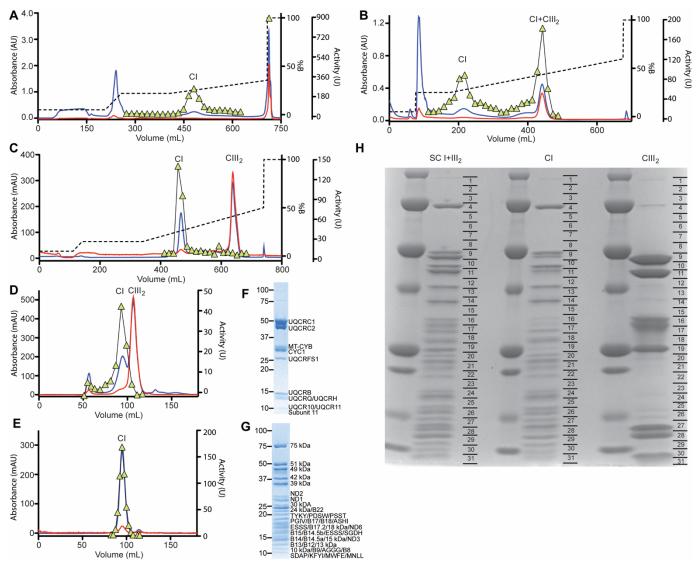
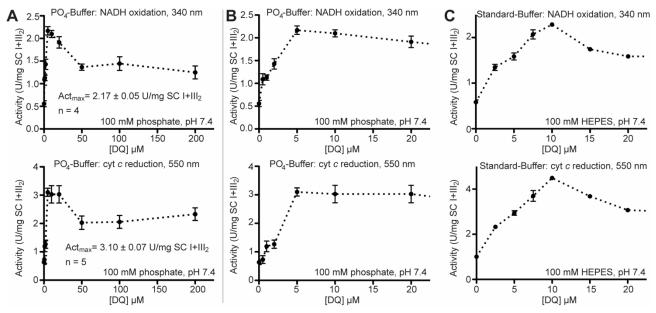
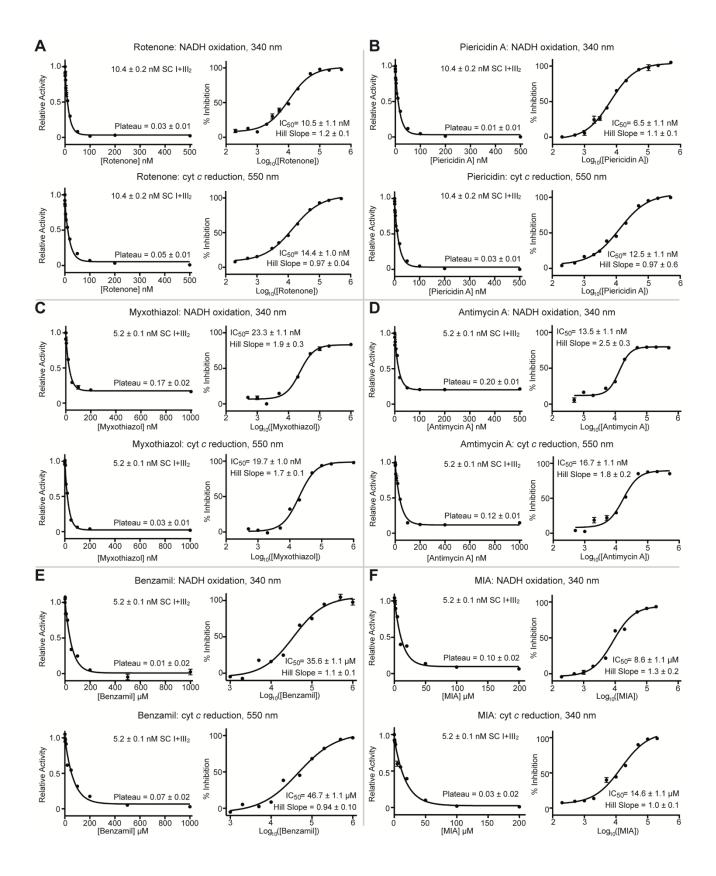
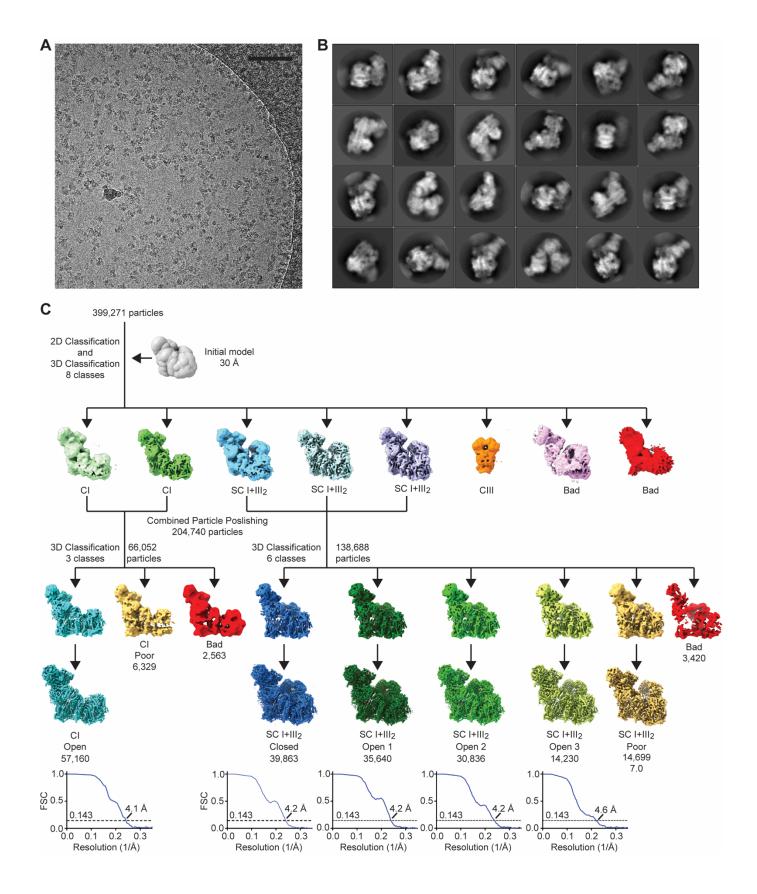


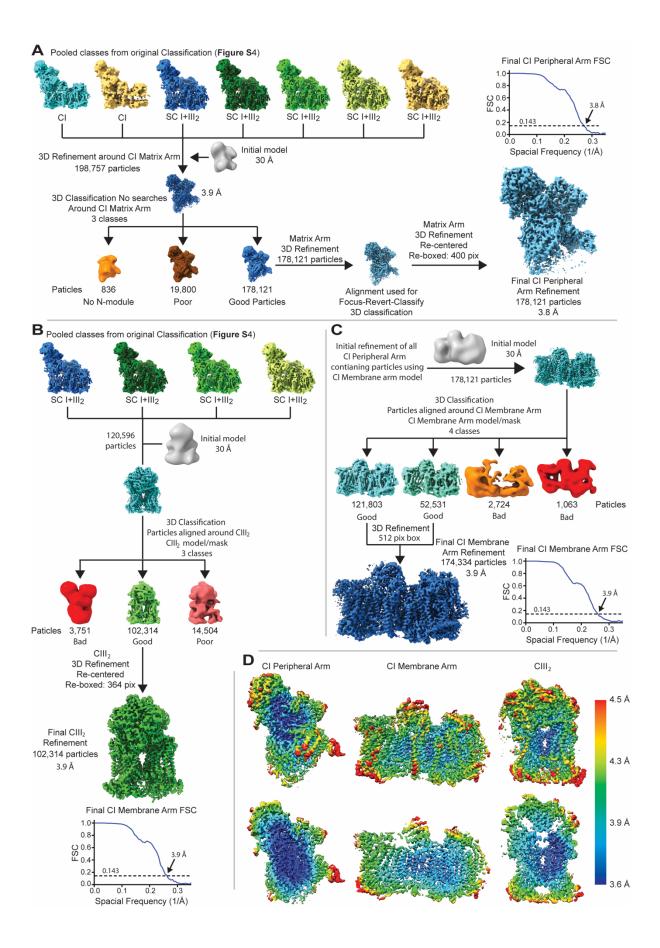
Figure S1. Initial isolation and separation of SC I+III₂, Related to Figure 1

(A) Q-Sepharose anion-exchange column chromatogram of LNMG-extracted washed mitochondrial membranes. In all panels the chromatograms show: A₂₈₀, blue line; A₄₂₀, red line; percent buffer B gradient (containing 1M NaCl), dashed black line; and Cl NADH:FeCy activity, lime green triangles. Unlike purifications in DDM, high Cl NADH:FeCy activity was seen in the high-salt wash. (B) Altering the gradient profile resulted in a second peak of NADH:FeCy activity associated with high A₄₂₀ signal, indicating the presence of heme groups. (C) Re-running the second peak from (B) over anion-exchange resulted in the separation of peaks containing NADH:FeCy activity and most of A₄₂₀ signal alone. (D) Running the second peak from (B) over size exclusion chromatography column also resulted in the separation of peaks containing NADH:FeCy activity and most of A₄₂₀ signal alone. (E) Running of peak containing NADH:FeCy activity from (C) resulted in highly enriched sample of Cl. (F) SDS-PAGE gel of A₄₂₀ containing peak from (C) with Clll₂ subunits identified by mass spectrometry (MS). (G) SDS-PAGE gel of NADH:FeCy activity containing peak from (E) with Cl subunits identified by MS. (H) SDS-PAGE showing SC I+III₂ sample in amphipol A8-35 (Figure 1C), isolated Cl (Figure S1E) and isolated Clll₂ (Figure S1C). Each lane was cut into 31 approximately even bands (indicated on right-hand side of each lane), which were each subjected to MS analysis for protein identification. The results of MS analysis are shown in Table S1 and the corresponding band for each subunit is indicated. The total amount of protein loaded in the gel was not controlled

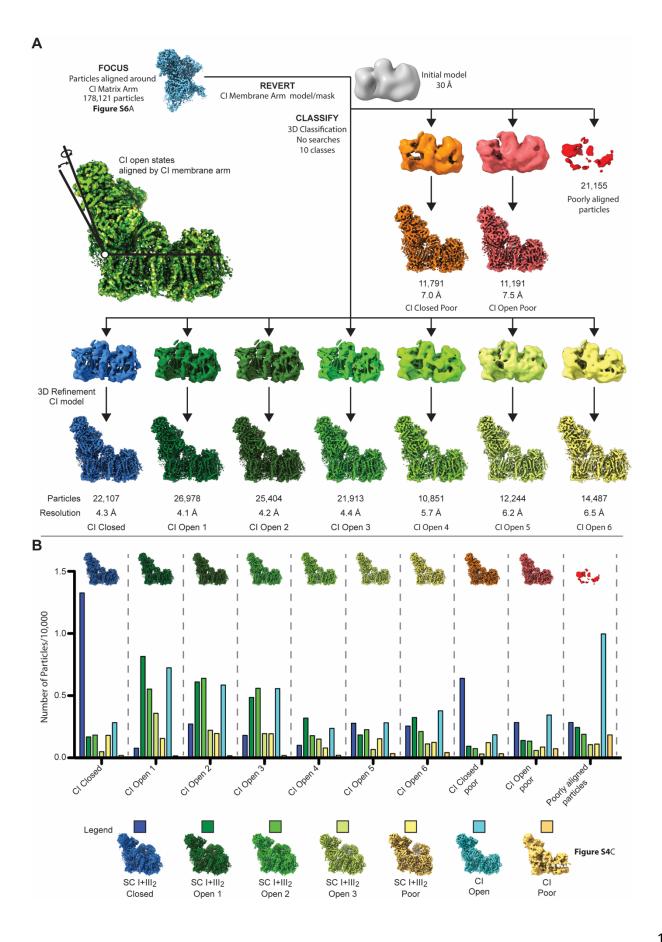




Figure S2. Effect of PO₄ buffer on isolated SC I+III₂ oxidoreductase activity, Related the Figure 2

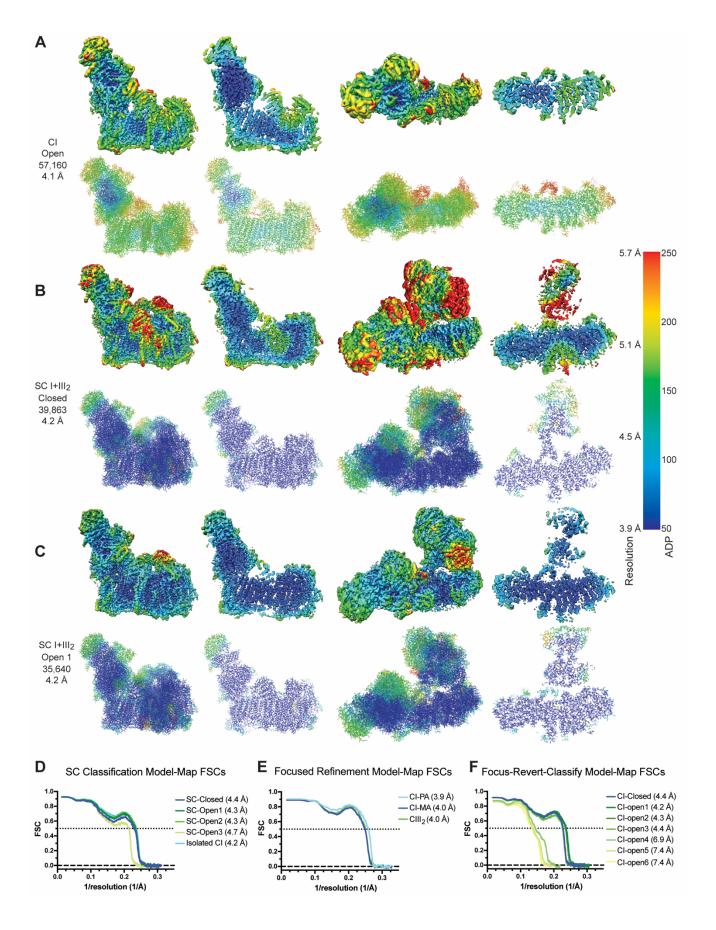
(A) [DQ]-activity curves monitoring NADH oxidation (top) and cyt c reduction (bottom) in 100 mM PO₄ buffer with 100 μ M NADH and 100 μ M cyt c. (B) Expansion of x-axis (0-20 μ M DQ) for [DQ]-activity curves from **Figure S2**A, NADH oxidation (top) and cyt c reduction (bottom). (C) Expansion of x-axis (0-20 μ M DQ) for [DQ]-activity curves from **Figure 2**D, NADH oxidation (top) and cyt c reduction (bottom). Activity is reported as Units (1 U = 1 μ mol substrate/min per mg of SC I+III₂). Data plotted as mean \pm SEM. Regardless of the broader high-activity range in the phosphate buffer, the overall cyt c reduction activity was lower compared to HEPES. This is likely due to the known strong dependence of the interaction between CIII₂ and cyt c on ionic strength. Therefore, HEPES buffer was used throughout for further activity measurements.


Figure S3. Inhibition of SC I+III2 activities by known CI and CIII2 inhibitors, Related to Figure 3

Relative inhibition vs. concentration (left) and percent inhibition vs. log₁₀([inhibitor]) (right) are shown for inhibition of both NADHoxidation (top) and cyt c-reduction (bottom) for each inhibitor. Inhibition was measured with either ~10 nM or ~5 nM SC I+III2 as indicated for each panel. (A) The CI inhibitor rotenone gave an IC₅₀ of 10.5 ± 1.1 nM for NADH oxidation and 14.4 ± 1.0 nM for cyt c reduction, with Hill coefficients of 1.2 ± 0.1 and 0.97 ± 0.04 respectively, consistent with the single known rotenone binding site. (B) The CI inhibitor piericidin A gave an IC₅₀ of 6.5 ± 1.1 nM for NADH oxidation and 12.5 ± 1.1 nM for cyt c reduction, with Hill coefficients of 1.1 ± 0.1 and 0.97 ± 0.6 respectively. (C) The CIII₂ Q_P-site inhibitor myxothiazol inhibited 97 % of the cyt c-reduction activity at 1 µM with an IC₅₀ of 19.7 ± 1.0 nM. However, myxothiazol only inhibited ~83 % of the NADH-oxidation activity, indicating that slow oxidation of NADH is possible under these conditions likely via exchange of DQH2 and DQ between the SC particles and bulk pool (Figure 3L). The IC₅₀ for the NADH-oxidation activity is consistent with that for the cyt c-reduction activity, at 23.3 ± 1.1 nM and both activities show consistent Hill coefficients of 1.9 ± 0.3 and 1.7±0.1, respectively. (D) The CIII₂ Q_N-site inhibitor antimycin A. Although strong inhibition is observed, neither the NADH-oxidation nor the cyt c-reduction activities show complete inhibition. Similar to myxothiazol, antimycin A inhibits ~80 % of the NADH-oxidation activity at 500 nM antimycin A, with IC50 of 13.5 ± 1.1 nM and a Hill coefficient of 2.5 ± 0.3. Antimycin A blocks less of the cyt c-reduction activity compared to myxothiazol, with ~88 % inhibition at 1 µM antimycin A, but the IC₅₀ of 16.7 ± 1.1 nM and Hill coefficient of 1.8 ± 0.2 are consistent with the inhibition of NADH-oxidation. Inhibition of CIII2 with antimycin A is known to result in increased ROS production at the QP site. Due to the large amount of SOD present in our reaction buffer (50 U/mL), it is unlikely that the source of residual cyt c reduction would be via direct reduction of cyt c by superoxide. More likely an electron from CoQH2 is able to transfer through CIII2, via UQCRFS1 and CYC1, to cyt c, reducing cyt c at the native CYC1 binding site. The CoQ* thus generated at the QP-site would be converted back to CoQ through reaction with O2. However, more experiments are needed to confirm this hypothesis. One limitation of our isolated system, due to the lack of sealed membrane, is the absence of any membrane potential ($\Delta \psi$) or proton gradient (ΔpH). Therefore, although we can measure the oxidase activity of CI we are unable to measure its coupled H*-pumping activity. This precludes direct demonstration that CI in the amphipol-stabilized SC I+III2 maintains strong coupling between electron transfer and H⁺-pumping. However, coupling can be indirectly measured using known amiloride Na⁺/H⁺-antiporter inhibitors that also inhibit CI. (E) The ameloride inhibitor benzamil gave an IC₅₀ for NADH-oxidation of 35.6 ± 1.1 μM and (F) the ameloride inhibitor MIA gave an IC₅₀ of 8.6 ± 1.1 µM. While these data are indicative of coupling in CI, they must be interpreted with caution as the binding site of the amilorides has not been definitively determined. Data are represented as mean ± SEM.


Figure S4. Initial cryo-EM processing steps, Related to Figure 4

(A) Representative micrograph of the 1,788 micrographs collected. Scale bar is 100 nm (B) Representative 2D class averages obtained from reference-free classification in Relion (Kimanius et al., 2016). (C) Initial classification and refinement procedures used in this study. The gold-standard FSC curves are shown below their respective final reconstructions.


Figure S5. Focused refinements, Related to STAR Methods

(A) All Cl-containing particles from the initial classifications (Figure S4) were pooled and aligned by the Cl peripheral arm. An additional round of 3D-classification around the Cl peripheral arm was performed to remove any remaining poorly aligning particles. The final set of 178,121 particles was then aligned, followed by re-centering and re-boxing of the particles focused on the Cl peripheral arm using REP (D'Imprima et al., 2017). The final 3D-reconstruction had a nominal resolution of 3.8 Å according to the gold-standard FSC method. (B) All good CIII₂ containing particles (SC) from the initial 3D-classifications (Figure S4C) were combined and aligned around CIII₂. An additional round of 3D classification was performed in order to remove any remaining poorly aligning particles. The final set of 102,314 particles was then aligned, followed by re-centering and re-boxing of the particles focused on CIII₂ peripheral arm using REP. All alignments were performed locally, so that overall orientation of CIII₂ vs SC was preserved. The final 3D-reconstruction had a nominal resolution of 3.9 Å according to the gold-standard FSC method. (C) The set of good CI peripheral arm containing particles were aligned by the CI membrane arm and then further classified to remove any remaining poorly aligning particles. The good CI membrane arm classes were combined into a final set containing 174,334 particles; re-centering failed to improve resolution or density features and hence was not performed for the final reconstruction. The final CI membrane arm reconstruction had a nominal resolution of 3.9 Å according to the gold-standard FSC method. (D) Local resolution maps of the CI peripheral arm (left), membrane arm (middle) and CIII₂ (right) showing side views (top) and slices into the protein cores (bottom).

Figure S6. Focus-Revert-Classify strategy to separate different classes of CI, Related to Figure 5

(A) Particles aligned by the CI peripheral arm (**Figure S5**A) were classified into 10 classes using a mask for the CI membrane arm without rotational or translational searches. This resulted in the separation of seven classes of CI, which differed mainly in the angle between the membrane arm and peripheral arms (inset). The nominal resolution of these classes ranged from 4.1-6.5 Å according to the gold-standard FSC method. (B) Comparison of the original SC and isolated CI classes (**Figure 4**C) to focus-revert-classify classes with a histogram of particle counts shared between the original classes (see legend schematic) and each focus-revert-classify CI class (top, colored as in A).

Figure S7. Examples of match between local resolution and model ADPs for isolated CI and SC I+III₂, Related to Figure 7 and STAR Methods

(A) Local resolution maps (top) and refined models (bottom) for isolated CI. Side view and slice through CI (left) and matrix view and slice through membrane domain (right) are shown. (B) As in (A) for the SC I+III₂ closed state structure. (C) As in (A) for the SC I+III₂ open 1 state structure. The maps are colored by local resolution and the models are shown as sticks and colored by ADP. (D) FSC curves between the models and final maps for the initial SC classification (see **Figure S4**). (E) FSC curves between the models and final maps for the focused refinements (see **Figure S5**). (F) FSC curves between the models and final maps for the focus-revert-classify (FRC) classes (see **Figure S6**). The resolution at FSC = 0.5 is shown for each curve in the legend as well as in **Table** 3. Models for the low-resolution (>5Å) FRC classes (CI-open4, CI-open6, and CI-open7) are all poly-alanine and were only fit into the maps as rigid bodies without additional refinement.

SUPPLEMENTARY TABLES

			fication f												
Subu	unit		ature ınit size		S	C I+III ₂				CI				CIII ₂	
Bovine name	Human name	#aa	MW (kDa)	# unique peptides	% coverage	% total spectrum	Slice with highest spectrum count	# unique peptides	% coverage	% total spectrum	Slice with highest spectrum count	# unique peptides	% coverage	% total spectrum	Slice with highest
core subunits	3														
ND1	ND1	318	35.9	6	15	0.04	18	4	11	0.04	18	За	11	0.008	18
ND2	ND2	347	39.1	2	8	0.007	18	4	19	0.02	17	3	12	0.01	17
ND3	ND3	115	13.1	1	13	0.03	27	1	13	0.02	27	1	13	0.003	27
ND4	ND4	459	52	6	18	0.04	14	6	17	0.05	14	2	6	0.006	14
ND4L	ND4L	98	10.8	_ b	-	-	-	-	-	-	-	-	-	-	-
ND5	ND5	606	68.4	17	31	0.19	11	13	28	0.26	11	12	19	0.08	12
ND6	ND6	175	19.1	3	18	0.02	25	2	5	0.02	25	1	5	0.009	25
75 kDa	NDUFS1	704	76.9	49	77	1.5	4	41	59	1.6	4	27	42	0.51	4
49 kDa	NDUFS2	430	49.1	23	51	0.32	10	20	45	0.52	10	19	37	0.13	10
30 kDa	NDUFS3	228	26.4	21	65	0.30	18	16	55	0.33	18	12	40	0.18	18
PSST	NDUFS7	179	20.1	8	36	0.26	22	7	36	0.27	22	4	18	0.07	21
TYKY	NDUFS8	176	20.2	11	51	0.12	21	7	42	0.11	21	7	42	0.05	21
51 kDa	NDUFV1	444	48.5	33	82	0.59	9	24	60	0.67	9	45	30	0.17	8
24 kDa	NDUFV2	217	23.8	15	68	0.14	19	13	58	0.17	20	11	56	0.098	20
Supernumera	ary Subunits														
MWFE	NDUFA1	70	8.2	3	36	0.007	30	2	34	0.002	30	-	-	-	-
B8	NDUFA2	98	10.9	7	43	0.11	29	7	43	0.14	29	6	43	0.08	29
B9	NDUFA3	83	9.2	5	87	0.07	30	2	22	0.06	30	2	22	0.03	29
B13	NDUFA5	115	13.1	7	72	0.09	28	4	31	0.06	29	4	31	0.06	28
B14	NDUFA6	127	14.9	7	39	0.06	27	8	51	0.10	27	4	33	0.05	27
B14.5a	NDUFA7	112	12.4	10	54	0.13	27	10	54	0.15	27	6	53	0.07	27
PGIV	NDUFA8	171	20	8	52	0.14	24	2	43	0.061	24	7	14	0.16	23
39 kDa	NDUFA9	344	39	23	59	0.48	14	24	59	0.64	14	21	56	0.22	14
42 kDa	NDUFA10	320	36.8	24	68	0.39	12	22	58	0.42	12	15	42	0.18	12
B14.7	NDUFA11	140	14.6	7	64	0.11	27	7	64	0.11	27	3	30	0.02	27
B17.2	NDUFA12	145	17.1	15	88	0.30	25	11	66	0.19	26	7	41	0.05	25
B16.6	NDUFA13	143	16.6	15	79	0.36	26	13	79	0.18	26	9	50	0.10	25
SDAP	NDUFAB1	88	10.1	4	36	0.01	30	2	24	0.003	30	_	_	_	_
MNLL	NDUFB1	57	6.9	1	30	0.002	31	1	30	0.001	31	_	_	_	_
AGGG	NDUFB2	72	8.5	2	8	0.003	29	2	8	0.003	29	1	7	0.001	Amc
B12	NDUFB3	97	11	4	45	0.06	28	3	28	0.02	29	3	28	0.02	28
B15	NDUFB4	128	15	11	70	0.11	26	11	70	0.08	27	7	51	0.05	26
SGDH	NDUFB5	143	16.7	10	37	0.17	25	9	37	0.21	25	6	26	0.07	25
B17	NDUFB6	127	15.4	7	51	0.17	24	7	45	0.07	24	3	29	0.01	24
B18	NDUFB7	136	16.3	11	72	0.07	24	10	60	0.07	24	9	59	0.05	23
ASHI	NDUFB8	158	18.8	9	60	0.17	24	7	53	0.23	23	5	44	0.03	23
B22	NDUFB9	178	21.6	8	56	0.07	20		28	0.1	21	4		0.01	20
								5			20		20		
PDSW	NDUFB10	175	20.8	11	59	0.19	21	11	54	0.19	(21)	9	53	0.13	21
ESSS	NDUFB11	125	14.4	8	52	0.20	24	6	45	0.15	24	3	23	0.03	24
KFYI	NDUFC1	49	5.8	1	20	0.006	30	1	20	0.001	29	1	20	0.004	31

B14.5b	NDUFC2	120	14.2	9	60	0.09	26	8	59	0.12	27	5	32	0.05	26
18 kDa (AQDQ)	NDUFS4	133	15.3	11	62	0.20	25	7	46	0.21	25	5	41	0.03	25
15 kDa (PFFD)	NDUFS5	105	12.4	6	47	0.05	27	6	44	0.06	27	3	14	0.007	26
13 kDa	NDUFS6	96	10.6	8	79	0.09	28	4	44	0.02	27	6	54	0.01	28
10 kDa	NDUFV3	75	8.4	1	23	0.002	29	1	23	0.007	29	1	23	0.002	28
CIII ₂															
Core 1	UQCRC1	446	49.3	27	59	1.0	9	18	46	0.34	9	28	57	1.6	9
Core 2	UQCRC2	439	46.6	31	61	0.69	11	23	59	0.39	11	34	91	1.2	11
Cyt b	MT-CYB	379	42.8	2	9	0.02	16	1	2	0.004	16	2	5	0.07	16
Cyt c1	CYC1	241	27.3	12	39	0.18	18	7	32	0.12	16	12	43	0.84	17
Rieske	UQCRFS1	196	21.6	14	30	0.25	19	10	29	0.09	19	15	35	0.42	20
14 kDa	UQCRB	110	13.4	11	57	0.22	27	9	57	0.13	27	11	57	0.53	27
QP-C	UQCRQ	81	9.6	7	84	0.05	28	1	16	0.03	Am ^c	9	78	0.25	28
11 kDa	UQCRH	78	9.2	4	38	0.008	28	-	-	-	-	4	48	0.02	28
8 kDa	Subunit 11	78	7.9				31				31				31
7.2 kDa	UQCR10	63	7.3	3	50	0.04	31	2	38	0.04	31	4	52	0.06	31
6.4 kDa	UQCR11	56	6.5	1	21	0.001	31	-	-	-	-	1	21	0.002	31

^aSubunits that are not expected in the sample are shown with data in grey, but in most cases are still detectable at lower levels. ^bA dash indicates that no peptides were detected for the subunit. ^cAmbiguous

SC I+III ₂ Preparation	[Protein] mg/mL (n = 3-6)	[SC I+III ₂] µM	[PO ₄] _{org} µM (n = 3-6)	[Lipid] µMª	nmole Lipid / mg Protein	Lipid molecules / SC I+III ₂
1	9.1 ± 0.3 ^b	6.3 ± 0.2	874 ± 85	728 ± 71	80 ± 8	116 ± 12
2	8.1 ± 0.4	5.6 ± 0.3	897 ± 55	748 ± 45	92 ± 7	133 ± 11
3	12.5 ± 0.3	8.6 ± 0.2	1298 ± 49	1082 ± 41	87 ± 4	126 ± 6
4	16.0 ± 0.2	11.0 ± 0.1	1537 ± 25	1281 ± 21	80 ± 2	116 ± 2
5	10.5 ± 0.6	7.2 ± 0.4	1023 ± 80	853 ± 67	81 ± 8	118 ± 12
				Average:	84 ± 6	122 ± 8
Suspended						
Mitochondrial Membranes	14.1 ± 0.6		2597 ± 198	2164 ± 165	153 ± 13	

Table S3. K _{cat} for CI and CIII₂ within the SC and Rate Coupling, Related to Figures 2 and 3									
		K _{cat} (s ⁻¹)							
Condition	NADH oxidized per Cl	Cyt c reduced per CIII ₂	CoQH ₂ oxidized per CIII ₂	Rate coupling ^a (cyt <i>c</i> reduced / NADH oxidized)					
No DQ	9.9 ± 0.2	17.9 ± 0.2	8.9 ± 0.1	1.80 ± 0.05					
10 μM DQ	53.4 ± 1.5	102 ± 2	50.8 ± 0.7	1.90 ± 0.06					
100 μM DQ	45.2 ± 1.2	80.3 ± 1.7	40.1 ± 0.8	1.78 ± 0.06					
100 μM DQ, 10 μM BSA	59.0 ± 1.5	70.6 ± 3.4	35.3 ± 1.7	1.20 ± 0.06					
100 μM DQ, Lipid-Detergent (LD) buffer	188 ± 3	226 ± 2	113 ± 1	1.21 ± 0.02					
Ratio of activity LD-buffer/10 µM DQ	3.52 ± 0.11	2.23 ± 0.04	1.11 ± 0.02 ^b						

Table S4. Cryo-EM data collection, Related to Figure 4						
Data Collection and processing						
Microscope	FEI Titan Krios (at eBIC, Diamond UK)					
Camera	FEI Falcon II					
Magnification	100,000x					
Voltage (kV)	300					
Electron exposure (e ⁻ /Å ²)	51					
Defocus range (µm)	~-1.5 to -3.0					
Pixel size (Å)	1.4					
Software	RELION 2.1					

 $^{^{}a}$ The expected ratio for perfect rate coupling is 2.0 cyt c reduced / NADH oxidized b This ratio was calculated between LD-buffer per c Q_P site and 10 μM DQ per CIII c 2 indicating that the increase in CIII c 2 activity in LD-buffer may result from increased access to the CIII c 2 active sites already present

Subunit Name Human / Bovine	Chain ID	#aa built / #aa total	Un-modelled residues	% atomic model	TMHs	Co-factors / Notes
CI core subunits		naa totai	Tooladoo	moder		
ND1	D1	318 / 318	-	100	8	-
ND2	D2	347 / 347	-	100	11	antiporter-like
ND3	D3	115 / 115	-	100	3	TMH1-TMH2 loop becomes ordered in open/closed transition
ND4	D4	459 / 459	-	100	14	antiporter-like
ND4L	4L	98 / 98	-	100	3	-
ND5	D5	606 / 606	-	100	16	antiporter-like
ND6	D6	175 / 175	-	100	5	TMH3 undergoes π -to- α helix conversion in open- closed transition
NDUFS1 / 75 kDa	S1	688 / 704	1-5, 694-704	97.7	-	N1b (2Fe[75]) N4 (4Fe[74]C) N5 (4Fe[75]H)
NDUFS2 / 49 kDa	S2	430 / 430	-	100	-	N1a (2Fe[24]) β1- β2 loop undergoes conformational change in open-closed transition
NDUFS3 / 30 kDa	S3	208 / 228	1-6, 215-228	91.2	-	-
NDUFS7 / PSST	S7	156 / 179	1-23	87.1	-	-
NDUFS8 / TYKY	S8	176 / 176	-	100	-	N6a (4Fe[TY]1)
NDUFV1 / 51 kDa	V1	429 / 444	1-9, 439-444	96.6	-	N6b (4Fe[TY]2)
NDUFV2 / 24 kDa	V2	212 / 217	1-4, 217	97.7	-	FMN N3 (4Fe[51])
CI Supernumerary S	ubunits					· •
NDUFA1 / MWFE	A1	70 / 70	-	100	1	-
NDUFA2 / B8	A2	82 / 98	1-12, 95-98	83.7	-	Thioredoxin fold
NDUFA3 / B9	A3	74 / 83	1-9	89.2	1	-
NDUFA5 / B13	A5	111 / 115	1-4	96.5	-	-
NDUFA6 / B14	A6	114 / 127	1-13	89.8	-	LYR protein
NDUFA7 / B14.5a	A7	96 / 112	73-88	85.7	-	-
NDUFA8 / PGIV	A8	171 / 171	-	100	-	-
NDUFA9 / 39 kDa	A9	298 / 344	187-194, 253- 277, 332-344	86.6	-	NADPH
NDUFA10 / 42 kDa	AJ	319 / 320	320	99.7	-	Nucleoside kinase family
NDUFA11 / B14.7	AK	140 / 140	-	100	4	-
NDUFA12 / B17.2	AL	123 / 145	1-22	84.8	-	-
NDUFA13 / B16.6	AM	139 / 143	1-4	97.2	1	Identical to GRIM-19
NDUFAB1 / SDAP	AA	80 / 88	1-4, 85-88	90.9	-	acyl carrier protein, phosphopantetheine acyl- chain
NDUFAB1 / SDAP	AB	87 / 88	1	98.9	-	acyl carrier protein, phosphopantetheine acyl- chain
NDUFB1 / MNLL	B1	52 / 57	1-5	91.2	1	-
NDUFB2 / AGGG	B2	64 / 72	1-4, 69-72	88.9	1	_

NOUFB4 / 1815	NDUFB3 / B12	В3	73 / 97	1-10, 84-97	75.3	1	
NDUFB5 / SGDH B5 139 / 143 1-4 97.2 1 - NDUFB6 / B17 B6 95 / 127 37-66, 126-127 74.8 1 - NDUFB7 / B18 B7 119 / 136 120-136 87.5 - Double Cxc CHC domain NDUFB8 / ASHI B8 157 / 158 1 99.4 1 - NDUFB8 / ASHI B8 157 / 158 1 99.4 1 - NDUFB9 / B22 B9 176 / 178 1,178 99.9 - LYR protein NDUFB10 / PDSW BJ 171 / 175 1-2, 174-175 97.7 - - - NDUFB11 / ESSS BK 102 / 125 1-21, 124-125 81.6 1 - NDUFC2 / B14.5 C2 119 / 120 1 99.2 2 - NDUFC2 / B14.5 C2 119 / 120 1 99.2 2 - NDUFS4 / 18 kDa (ADD) NDUFS5 / 15 kDa (PFD) S5 99 / 105 100-105 94.4 - Quadruple CXiC (PFD) NDUFS5 / 13 kDa S6 89 / 96 1-7 92.7 - Zn²* NDUFS6 / 13 kDa S6 89 / 96 1-7 92.7 - Zn²* NDUFS6 / 13 kDa S6 89 / 96 1-7 92.7 - Zn²* NDUFS6 / 13 kDa S6 89 / 96 1-7 92.7 - Zn²* NDUFS6 / 13 kDa S6 8117 / 8514 95.3 S5 S117 / 8514 S5.3 S117 / 8514 S117 / 8514 S5.3 S117 / 8514 S117 / 85				1-10, 04-97			-
NDUFB6 / B17				-		-	-
NDUFB/ ASH B8							-
NDUFB/1618 B7 119/136 120-136 87.5 - CHC domain						1	- Double Cx ₀ C
NDUFB9 B22 B9	NDUFB7 / B18	B7	119 / 136	120-136	87.5	-	
NDUFB10 PDSW BJ 171 175 1-2, 174-175 97.7 - - -	NDUFB8 / ASHI	B8	157 / 158	1	99.4	1	-
NDUFB11 ESSS	NDUFB9 / B22	B9	176 / 178	1, 178	98.9	-	LYR protein
NDUFC1 / KFYI	NDUFB10 / PDSW	BJ	171 / 175	1-2, 174-175	97.7	-	-
NDUFC2 / B14.5b	NDUFB11 / ESSS	BK	102 / 125	1-21, 124-125	81.6	1	-
NDUFS4 / 18 kDa	NDUFC1 / KFYI	C1	46 / 49	47-49	93.9	1	-
AODQ S4 126 / 133 1-7 94.7 - Candruple CX ₀ C CPFED S5 99 / 105 100-105 94.4 - Candruple CX ₀ C 2 CHCH domains NDUFS6 / 13 kDa S6 89 / 96 1-7 92.7 - Zn²² NDUFS6 / 13 kDa V3 41 / 75 1-34 54.7 - - -		C2	119 / 120	1	99.2	2	-
OPFID So So So So So So So	(AQDQ)	S4	126 / 133	1-7	94.7	-	-
NDUFV3 / 10 kDa		S5	99 / 105	100-105	94.4	-	Quadruple CX ₉ C 2 CHCH domains
CITotal 8117 / 8514 95.3 CIII Protomer 1 UQCRC1 / Core 1 a1 439 / 446 1, 223-228 98.4 - Peptidase M16 fold UQCRC2 / Core 2 a2 414 / 439 1-19, 228-333 94.3 - Peptidase M16 fold MT-CYB / Cyt b b1 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c1 240 / 241 241 99.6 1 Covalently bound c-type heme UQCRFS1 / Rieske f1 196 / 196 - 100 1 2Fe2S cluster UQCRB / 14 kDa d1 100 / 110 1-10 90.9 UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 - UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 - UQCRG / 7.2 kDa i1 55 / 63 1-4, 60-63 87.3 1 - Doly-Ala UQCR 1 / 7.2 kDa i1 55 / 63 1-4, 60-63 87.3 1 - Peptidase M16 fold UQCRC2 / Core 2 a4 413 / 439 1-19, 228-334 94.1 - Peptidase M16 fold UQCRC2 / Core 2 a4 413 / 439 1-19, 228-334 94.1 - Peptidase M16 fold MT-CYB / Cyt c1 c2 239 / 241 1, 240 99.2 1 Covalently bound c-type hemes CYC1 / Cyt c1 c2 239 / 241 1, 240 99.2 1 Covalently bound c-type heme UQCRFS1 / Rieske f2 195 / 196 1 99.5 1 2Fe2S cluster UQCRG / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRG / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRG / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRG / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRG / QP-C q2 75 / 81 1-12, 78 83.3 - C poly-Ala UQCRFS1 / Rieske A2 78 0.0 - poly-Ala UQCRFS1 / Rieske A2 57 / Rieske A2 57 / Rieske A2 57 / Rieske A2 78 0.0 - poly-Ala UQCRFS1 / Rieske A2 57	NDUFS6 / 13 kDa	S6	89 / 96	1-7	92.7	-	Zn ²⁺
UQCRC1 / Core 1	NDUFV3 / 10 kDa	V3	41 / 75	1-34	54.7	-	-
UQCRC1 / Core 1 a1 439 / 446 1, 223-228 98.4 - Peptidase M16 fold UQCRC2 / Core 2 a2 414 / 439 1-19, 228-333 94.3 - Peptidase M16 fold MT-CYB / Cyt b b1 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c1 240 / 241 241 99.6 1 Covalently bound c-type heme UQCRFS1 / Rieske f1 196 / 196 - 100 1 2Fe2S cluster UQCRB / 14 kDa d1 100 / 110 1-10 90.9 UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 UQCRQH / 11 kDa h1 65 / 78 1-12, 78 83.3 DOING / 14 / 15 / 16 / 15 / 16 / 16 / 16 / 16 / 16	CI Total		8117 / 8514		95.3		
UQCRC2 / Core 2 a2 414 / 439 1-19, 228-333 94.3 - Peptidase M16 fold MT-CYB / Cyt b b1 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c1 240 / 241 241 99.6 1 Covalently bound c-type heme UQCRFS1 / Rieske f1 196 / 196 - 100 1 2Fe2S cluster UQCRB / 14 kDa d1 100 / 110 1-10 90.9 - - UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 - UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 - UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 - UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 - UQCRG / N & Da x1 78 0.0 - poly-Ala UQCRFS / N & Boa x1 78 0.0 - Peptidase M16 fold UQCRC / Core 1<	CIII Protomer 1						
MT-CYB / Cyt b b1 378 / 379 1 99.7 8 Two b-type hemes covalently bound c-type heme CYC1 / Cyt c1 c1 240 / 241 241 99.6 1 covalently bound c-type heme UQCRFS1 / Rieske f1 196 / 196 - 100 1 2Fe2S cluster UQCRB / 14 kDa d1 100 / 110 1-10 90.9 - - UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 - UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 - UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 - UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 - UQCRQ / QP-C kDa x1 78 0.0 - poly-Ala - UQCRS / N & kDa x1 78 0.0 - Peptidase M16 fold - UQCRC / Core 1 a3 444 / 446 1, 446 99.6 - Peptidase	UQCRC1 / Core 1	a1	439 / 446	1, 223-228	98.4	-	Peptidase M16 fold
CYC1 / Cyt c1 c1 240 / 241 241 99.6 1 covalently bound c-type heme UQCRFS1 / Rieske f1 196 / 196 - 100 1 2Fe2S cluster UQCRB / 14 kDa d1 100 / 110 1-10 90.9 - - UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 - UQCRQH / 11 kDa h1 65 / 78 1-12, 78 83.3 - - UQCRFS1N / 8 kDa x1 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i1 55 / 63 1-4, 60-63 87.3 1 - CIII Protomer 2 UQCRC1 / Core 1 a3 444 / 446 1, 446 99.6 - Peptidase M16 fold UQCRC2 / Core 2 a4 413 / 439 1-19, 228-334 94.1 - Peptidase M16 fold MT-CYB / Cyt b b2 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c	UQCRC2 / Core 2	a2	414 / 439	1-19, 228-333	94.3	-	Peptidase M16 fold
UQCRFS1 / Rieske f1 196 / 196 - 100 1 2Fe2S cluster UQCRB / 14 kDa d1 100 / 110 1-10 90.9 UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 UQCRQ / QP-C q1 75 / 8 83.3 UQCRS1N / 8 kDa x1 78 0.0 - poly-Ala UQCR 10 / 7.2 kDa i1 55 / 63 1-4, 60-63 87.3 1 CIII Protomer 2 UQCRC1 / Core 1 a3 444 / 446 1, 446 99.6 - Peptidase M16 fold UQCRC2 / Core 2 a4 413 / 439 1-19, 228-334 94.1 - Peptidase M16 fold MT-CYB / Cyt b b2 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c2 239 / 241 1, 240 99.2 1 Covalently bound c-type heme UQCRFS1 / Rieske f2 195 / 196 1 99.5 1 2Fe2S cluster UQCRB / 14 kDa d2 101 / 110 1-8, 110 91.8 UQCRQ / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRQ / QP-C q2 75 / 81 1-12, 78 83.3 UQCRFS1 / 8 kDa x2 78 0.0 - poly-Ala UQCRFS1 / 8 kDa x2 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1	MT-CYB / Cyt b	b1	378 / 379	1	99.7	8	Two b-type hemes
UQCRB / 14 kDa d1 100 / 110 1-10 90.9 UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 UQCRQ / QP-C Q1 78 83.3 OVA / QCRFS1N / 8 kDa x1 78 0.0 - OVA / QCRC / QCR / QCRC / QCRC / QCRC / QCRC / QCRC / QCRC	CYC1 / Cyt c1	c1	240 / 241	241	99.6	1	= -
UQCRQ / QP-C q1 73 / 81 74-81 90.1 1 - UQCRQH / 11 kDa h1 65 / 78 1-12, 78 83.3 - - UQCRF51N / 8 kDa x1 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i1 55 / 63 1-4, 60-63 87.3 1 - CIII Protomer 2 UQCRC1 / Core 1 a3 444 / 446 1, 446 99.6 - Peptidase M16 fold UQCRC2 / Core 2 a4 413 / 439 1-19, 228-334 94.1 - Peptidase M16 fold MT-CYB / Cyt b b2 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c2 239 / 241 1, 240 99.2 1 Covalently bound c-type hemes CYC1 / Cyt c1 c2 239 / 241 1, 240 99.5 1 2Fe2S cluster UQCRFS1 / Rieske f2 195 / 196 1 99.5 1 2Fe2S cluster	UQCRFS1 / Rieske	f1	196 / 196	-	100	1	2Fe2S cluster
UQCRQH / 11 kDa h1 65 / 78 1-12, 78 83.3 Doly-Ala UQCRS1N / 8 kDa x1 78 0.0 - Doly-Ala UQCR10 / 7.2 kDa i1 55 / 63 1-4, 60-63 87.3 1 Doly-Ala CIII Protomer 2 UQCRC1 / Core 1 a3 444 / 446 1, 446 99.6 - Peptidase M16 fold UQCRC2 / Core 2 a4 413 / 439 1-19, 228-334 94.1 - Peptidase M16 fold MT-CYB / Cyt b b2 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c2 239 / 241 1, 240 99.2 1 Covalently bound c-type heme UQCRFS1 / Rieske f2 195 / 196 1 99.5 1 2Fe2S cluster UQCRB / 14 kDa d2 101 / 110 1-8, 110 91.8 UQCRQ / QP-C q2 75 / 81 1, 77-81 92.6 1 UQCRQ / QP-C q2 75 / 81 1-12, 78 83.3 UQCRGFS1N / 8 kDa x2 78 0.0 - poly-Ala UQCRT0 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1	UQCRB / 14 kDa	d1	100 / 110	1-10	90.9	-	-
UQCRFS1N / 8 kDa x1 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i1 55 / 63 1-4, 60-63 87.3 1 - CIII Protomer 2 UQCRC1 / Core 1 a3 444 / 446 1, 446 99.6 - Peptidase M16 fold UQCRC2 / Core 2 a4 413 / 439 1-19, 228-334 94.1 - Peptidase M16 fold MT-CYB / Cyt b b2 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c2 239 / 241 1, 240 99.2 1 Covalently bound c-type hemes CYC1 / Cyt c1 c2 239 / 241 1, 240 99.5 1 2Fe2S cluster UQCRFS1 / Rieske f2 195 / 196 1 99.5 1 2Fe2S cluster UQCRB / 14 kDa d2 101 / 110 1-8, 110 91.8 - - UQCRQ / QP-C q2 75 / 81 1, 77-81 92.6 1	UQCRQ / QP-C	q1	73 / 81	74-81	90.1	1	-
UQCR10 / 7.2 kDa i1 55 / 63 1-4, 60-63 87.3 1 - CIII Protomer 2 UQCRC1 / Core 1 a3 444 / 446 1, 446 99.6 - Peptidase M16 fold UQCRC2 / Core 2 a4 413 / 439 1-19, 228-334 94.1 - Peptidase M16 fold MT-CYB / Cyt b b2 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c2 239 / 241 1, 240 99.2 1 Covalently bound c-type heme UQCRFS1 / Rieske f2 195 / 196 1 99.5 1 2Fe2S cluster UQCRB / 14 kDa d2 101 / 110 1-8, 110 91.8 - - UQCRQ / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRQH / 11 kDa h2 65 / 78 1-12, 78 83.3 - - UQCRFS1N / 8 kDa x2 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i2 57 / 63	UQCRQH / 11 kDa	h1	65 / 78	1-12, 78	83.3	-	-
CIII Protomer 2 UQCRC1 / Core 1 a3 444 / 446 1, 446 99.6 - Peptidase M16 fold UQCRC2 / Core 2 a4 413 / 439 1-19, 228-334 94.1 - Peptidase M16 fold MT-CYB / Cyt b b2 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c2 239 / 241 1, 240 99.2 1 covalently bound c-type heme UQCRFS1 / Rieske f2 195 / 196 1 99.5 1 2Fe2S cluster UQCRB / 14 kDa d2 101 / 110 1-8, 110 91.8 - - UQCRQ / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRQH / 11 kDa h2 65 / 78 1-12, 78 83.3 - - UQCRFS1N / 8 kDa x2 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1 -	UQCRFS1N / 8 kDa	x1	78		0.0	-	poly-Ala
UQCRC1 / Core 1 a3 444 / 446 1, 446 99.6 - Peptidase M16 fold UQCRC2 / Core 2 a4 413 / 439 1-19, 228-334 94.1 - Peptidase M16 fold MT-CYB / Cyt b b2 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c2 239 / 241 1, 240 99.2 1 covalently bound c-type heme UQCRFS1 / Rieske f2 195 / 196 1 99.5 1 2Fe2S cluster UQCRB / 14 kDa d2 101 / 110 1-8, 110 91.8 - - UQCRQ / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRQH / 11 kDa h2 65 / 78 1-12, 78 83.3 - - UQCRFS1N / 8 kDa x2 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1 -	UQCR10 / 7.2 kDa	i1	55 / 63	1-4, 60-63	87.3	1	-
UQCRC2 / Core 2 a4 413 / 439 1-19, 228-334 94.1 - Peptidase M16 fold MT-CYB / Cyt b b2 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c2 239 / 241 1, 240 99.2 1 covalently bound c-type heme UQCRFS1 / Rieske f2 195 / 196 1 99.5 1 2Fe2S cluster UQCRB / 14 kDa d2 101 / 110 1-8, 110 91.8 - - UQCRQ / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRQH / 11 kDa h2 65 / 78 1-12, 78 83.3 - - UQCRFS1N / 8 kDa x2 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1 -	CIII Protomer 2						
MT-CYB / Cyt b b2 378 / 379 1 99.7 8 Two b-type hemes CYC1 / Cyt c1 c2 239 / 241 1, 240 99.2 1 covalently bound c-type heme UQCRFS1 / Rieske f2 195 / 196 1 99.5 1 2Fe2S cluster UQCRB / 14 kDa d2 101 / 110 1-8, 110 91.8 - - UQCRQ / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRQH / 11 kDa h2 65 / 78 1-12, 78 83.3 - - UQCRFS1N / 8 kDa x2 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1 -	UQCRC1 / Core 1	a3	444 / 446	1, 446	99.6	-	Peptidase M16 fold
CYC1 / Cyt c1 c2 239 / 241 1, 240 99.2 1 covalently bound c-type heme heme UQCRFS1 / Rieske f2 195 / 196 1 99.5 1 2Fe2S cluster UQCRB / 14 kDa d2 101 / 110 1-8, 110 91.8 - - UQCRQ / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRQH / 11 kDa h2 65 / 78 1-12, 78 83.3 - - UQCRFS1N / 8 kDa x2 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1 -	UQCRC2 / Core 2	a4	413 / 439	1-19, 228-334	94.1	-	Peptidase M16 fold
UQCRFS1 / Rieske f2 195 / 196 1 99.5 1 2Fe2S cluster UQCRB / 14 kDa d2 101 / 110 1-8, 110 91.8 - UQCRQ / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRQH / 11 kDa h2 65 / 78 1-12, 78 83.3 - UQCRFS1N / 8 kDa x2 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1 -	MT-CYB / Cyt b	b2	378 / 379	1	99.7	8	= -
UQCRB / 14 kDa d2 101 / 110 1-8, 110 91.8 - - UQCRQ / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRQH / 11 kDa h2 65 / 78 1-12, 78 83.3 - - UQCRFS1N / 8 kDa x2 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1 -	CYC1 / Cyt c1	c2	239 / 241	1, 240	99.2	1	
UQCRQ / QP-C q2 75 / 81 1, 77-81 92.6 1 - UQCRQH / 11 kDa h2 65 / 78 1-12, 78 83.3 - - UQCRFS1N / 8 kDa x2 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1 -	UQCRFS1 / Rieske	f2	195 / 196	1	99.5	1	2Fe2S cluster
UQCRQH / 11 kDa h2 65 / 78 1-12, 78 83.3 - - UQCRFS1N / 8 kDa x2 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1 -	UQCRB / 14 kDa	d2	101 / 110	1-8, 110	91.8	-	-
UQCRFS1N / 8 kDa x2 78 0.0 - poly-Ala UQCR10 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1 -	UQCRQ / QP-C	q2	75 / 81	1, 77-81	92.6	1	-
UQCR10 / 7.2 kDa i2 57 / 63 1-2, 59-63 90.5 1 -	UQCRQH / 11 kDa	h2	65 / 78	1-12, 78	83.3	-	-
	UQCRFS1N / 8 kDa	x2	78		0.0	-	poly-Ala
CIII ₂ Total 3927 / 4222 93.0	UQCR10 / 7.2 kDa	i2	57 / 63	1-2, 59-63	90.5	1	-
	CIII ₂ Total		3927 / 4222		93.0		