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Abstract

Reliable measures of transmission intensities can be incorporated into metrics for monitor-

ing disease-control interventions. Genetic (molecular) measures like multiplicity of infection

(MOI) have several advantages compared with traditional measures, e.g., R0. Here, we

investigate the properties of a maximum-likelihood approach to estimate MOI and patho-

gen-lineage frequencies. By verifying regulatory conditions, we prove asymptotical unbi-

asedness, consistency and efficiency of the estimator. Finite sample properties concerning

bias and variance are evaluated over a comprehensive parameter range by a systematic

simulation study. Moreover, the estimator’s sensitivity to model violations is studied. The

estimator performs well for realistic sample sizes and parameter ranges. In particular, the

lineage-frequency estimates are almost unbiased independently of sample size. The MOI

estimate’s bias vanishes with increasing sample size, but might be substantial if sample size

is too small. The estimator’s variance matrix agrees well with the Cramér-Rao lower bound,

even for small sample size. The numerical and analytical results of this study can be used

for study design. This is exemplified by a malaria data set from Venezuela. It is shown how

the results can be used to determine the necessary sample size to achieve certain perfor-

mance goals. An implementation of the likelihood method and a simulation algorithm for

study design, implemented as an R script, is available as S1 File alongside a documentation

(S2 File) and example data (S3 File).

Introduction

The decline of malaria incidence in sub-Saharan Africa and elsewhere shifted the focus of

health authorities in many countries towards elimination. This renders the need to evaluate

the effectiveness of control programs to reduce transmission more urgent. Indeed, codifying a

set of metrics, suitable to easily and reliably measure the impact of new and existing control

interventions on malaria transmission, is highly desirable. Of particular interest are metrics,

capable to monitor changes in exposure and transmission intensity. A recent book chapter [1]

extensively reviewed 11 metrics of malaria transmission with regard to precision, accuracy,
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methods of collection and cost efficiency. While the entomological inoculation rate (EIR) and

the basic reproduction number R0 are still the gold standards to measure transmission in

malaria, molecular metrics such as multiplicity of infection (MOI) and molecular force of

infection (mFOI) emerged as most appropriate. The relevance of identifying suitable metrics

to quantify transmission is not restricted to malaria, but applies equally to other infectious dis-

eases. Notably, incidence of MOI or superparasitism per se is epidemiologically an important

metric of exposure in infectious diseases [2–11].

MOI refers to the number of super-infections of a disease, typically visible by the occur-

rence of multiple genetic variants (‘lineages’) within an infection. This is indicative of trans-

mission dynamics as it reflects the overlap of several genetic variants due to multiple

infectious contacts. Hence, MOI relates to intra-host dynamics [12], i.e., the dynamics of

interactions among different ‘lineages’ within infections, and its derived pathogenic and epi-

demiological consequences. The concept of MOI is closely related to that of complexity of

infection [13, 14].

Intra-host dynamics have been the subject of several theoretical and experimental investiga-

tions exploring a broad spectrum of scenarios over the last decades [12, 15–18]. Importantly,

intra-host dynamics affect the spread of parasite lineages with adaptive mutations conferring

resistance to antimicrobial agents or that allow the evasion of immune and/or vaccine-medi-

ated protection [19, 20]. Currently, this is of particular importance in malaria, as the spread of

artemisinin tolerance/resistance is threatening to challenge control efforts [21–23]. In sum-

mary, following or measuring MOI is essential whenever epidemiological inferences are influ-

enced by or theoretical models depend on intra-host dynamics.

Although for a given pathogen it is relatively easy to measure the number of distinctive

pathogenic lineages in models and experimental settings (e.g., [24]), it is not possible to define

a universal framework of MOI that is appropriate for the vast spectrum of genetic architectures

observed in pathogen organisms. For instance, viruses like HIV accumulate mutations at a rate

that allows for the use of phylogenetic base methods [25]. On the contrary, eukaryotic parasites

such as Plasmodium, Trypanosoma, Toxoplasma, and Schistosoma [26, 27] and bacteria such as

Mycobacterium [28] evolve at a rate at which it is possible to determine a stable number of

genetically distinct lineages during the course of an infection given a set of genetic markers.

Even when restricted to such pathogens, due to difficulties naturally arising from confounding

factors in ecological and epidemiological investigations [2, 3, 5, 28, 29], the concept of MOI is

enervated. Estimating MOI and frequency spectra was dominated by ad-hoc methods, which

are intuitive but typically introduce a bias, which cannot be quantified due to the lack of a sta-

tistical framework. E.g., in the context of malaria a patient’s MOI is estimated as the maximum

number of distinct alleles detected in a blood sample from one (e.g. [30, 31]), two (e.g. [32]) or

several marker loci (e.g. [33]). Being a lower bound for the number of parasite haplotypes in a

sample, this underestimates MOI (particularly if only a few markers are considered), with bias

depending on the haplotype-frequency spectrum. On the other hand, MOI might by overesti-

mated as a result of data artifacts (sequencing errors, wrong STR calls)—particularly with a

large number of genetic markers considered. MOI was also estimated as the cumulative num-

ber of lineages (alleles) identified across samples divided by the number of disease-positive

samples. This corresponds to the sum of the empirical prevalences of the respective lineages

(e.g. [34]). Some authors additionally reported MOI as the average number of observed alleles

separately for different marker loci (e.g. [35]). Alternatively, MOI was estimated as the average

number of alleles at several marker loci (e.g. [36]). Also the number of polymorphic SNPs was

used as an indirect measure for MOI by [37].

Other methods, try to estimate MOI using a statistical framework that does not simulta-

neously provide frequency estimates but rather suggest the use of ad-hoc frequency estimates
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(e.g. [13, 38]). Often haplotype (lineage) frequencies are estimated from single-infections

(those in which only one haplotype is found; e.g. [37]). This method is justified if MOI is low

with most infections being single infections. Increasing MOI raises uncertainty in each sample

because super-infections with the same haplotype cannot be distinguished from single infec-

tions. Hence, sample size is decreased as multiple infections become more likely, which are

excluded from the estimate. This approach is particularly unfortunate because samples con-

taining most information about MOI (multiple infections) are excluded. Similar problems

arise if single infections are employed for frequency estimation along those, in which only two

distinct haplotypes occur (e.g. [39]). Another ad-hoc approach to estimate allele frequencies,

which accounts for multiple infections by giving all alleles found at a marker in a multiple

infection the same weight, was employed by [40]. Although sample size is not artificially

reduced, this method does not properly consider the interaction of frequency spectra and

MOI. A further alternative is to employ only the predominant lineage (haplotype) in infections

for frequency estimation (cf. [34]).

Hence, a formal statistical framework that allows the estimation of the actual number of lin-

eages and other approximations to MOI that facilitates and/or considers confounding factors

is indispensable to avoid ad-hoc methods.

In the context of malaria (and related diseases) such a framework was introduced by [41]

and further developed by [42] and [43]. More precisely, a maximum-likelihood framework

was developed to estimate MOI and the frequency of pathogen ‘lineages’ from molecular data

obtained from a collection of blood samples of disease-positive patients.

Notably, several alternative methods, based on essentially the same statistical framework,

have been proposed. However, all have some limitations or use heuristic approximations.

Common to all is that they focus on specific applications and the mathematical properties

have not been studied in detail. The computer program MalHaploFreq by [44] uses a maxi-

mum-likelihood approach to estimate frequencies of haplotypes consisting of up to 3 SNPs,

without providing an estimate of MOI. The latter is also not provided by the Gibbs-sampling

method used in [45] to estimate haplotype frequencies, again designed for SNP data, but allow-

ing for more than 3 SNPs. The same is true for the Metropolis-Hastings algorithm used in

[46], which is not restricted to SNP data. The EM-algorithm adapted in [47] allows for many

SNPs but frequency estimates are based on an approximation considering only the most fre-

quent haplotypes. Heuristic estimates of MOI are required in the Metropolis Hastings algo-

rithm of [48] for frequency estimates not restricted to SNPs. The EM and MCMC algorithms

in [49], which are based on several approximations to make them numerically tractable, again

focus on SNP data but provide MOI estimates. The program COIL [13] uses a likelihood

approach for MOI estimation from SNP data. The algorithm however requires ad-hoc esti-

mates of marginal frequencies, SNPs to be uncorrelated, and assumes a maximum possible

MOI of 5. An Improvement, THE REAL McCOIL [14] adapts a Metropolis-Hastings algo-

rithm to estimate MOI and minor-allele frequencies at uncorrelated SNPs in two different

ways. The program estMOI [50] requires deep sequencing data. The formal statistical frame-

work in [42] uses an EM algorithm for SNP data.

Here, we will further investigate the framework of [41, 43] and the concept of MOI with

regard to the criteria pointed out by [1]. First, we will prove a number of regulatory conditions,

which imply asymptotic unbiasedness, strong consistency and efficiency of the maximum-like-

lihood estimate. In addition to these asymptotic properties we numerically investigate the esti-

mator’s finite sample properties by conducting a systematic simulation study to quantify the

estimator’s bias (accuracy) and variance (precision). Importantly, we also investigate the esti-

mator’s robustness to model violations.

Properties of a maximum-likelihood estimator for multiplicity of infection
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First, we summarize the methods and derive analytic results. Then, we will describe the sim-

ulation study and summarize its outcome. As an illustration we will take a closer look at a

malaria data set from Venezuela, previously published in [51].

An implementation of the likelihood method in R, which can be readily applied to molecu-

lar data, is available as supporting information, alongside a simulation algorithm for study

design to determine the necessary sample size to achieve given accuracy and precision goals of

the estimation (S1, S2 and S3 Files).

Materials and methods

Here, we briefly summarize the maximum-likelihood method to estimate the average MOI,

proposed by [41] and [43].

Model background

Assume n different ‘lineages’ A1, . . ., An of a pathogen, e.g., n alleles at a marker locus (or hap-

lotypes in a non-recombining region), which circulate in a given population and are found in

N blood samples of infected individuals—or more generally N clinical specimens. A blood

sample can contain multiple lineages reflecting super-infections. Regarding the lineages, it is

assumed that they are characterized by markers (SNPs or STRs), whose frequencies do not

change too rapidly in the population. Because the frequency spectrum of markers linked to

genes under selection might change rapidly or might be very skewed, we have neutral markers

in mind. The n lineages considered are those that contribute to infection, not new variants that

are generated by mutation inside hosts (and ‘fail’ to participate in transmission). The frequen-

cies of the n lineages are denoted by p = (p1, . . ., pn). The frequency vector p is an element of

the (n − 1)-dimensional simplex Sn : fðx1; . . . ; xnÞj
Xn

i¼1

x1 ¼ 1 and xi > 0 for all ig.

Infective events are assumed to be rare and independent, i.e., already infected persons are

not more or less likely to get infected (super-infected) than uninfected persons. With these

assumptions the number of infections per individual is Poisson distributed, or more precisely

conditionally Poisson (or positively Poisson) distributed since only infected individuals are

considered (Eq S30). The conditional Poisson distribution is characterized by a single parame-

ter λ. Jointly we denote the parameters by θ ¼ ðl; pÞ 2 Y≔Rþ � int Sn, where int Sn

denotes the interior of the (n − 1)-dimensional simplex. In other words the parameters satisfy

λ> 0,
Xn

i¼1

pi ¼ 1 and 0< pk< 1 for k = 1, . . ., n.

It is further assumed that at each infective event one lineage is drawn randomly from the

pathogen population (according to the lineages’ frequencies) to infect the individual. Hence, if

an individual is infected exactly m times (which is a conditional Poisson random number), m
lineages are drawn according to a multinomial distribution with parameters m and p1, . . ., pn.

This yields a vector (m1, . . ., mn), where mk is the number of times the individual was infected

with lineage Ak. Clearly, m1 + . . . + mn = m, because the individual is infected exactly m times.

Looking at a blood sample, only the absence and presence of lineages is observed, but it is

impossible to reconstruct the values mk or even m. Even if only one lineage is found, it is

unclear how many times the individual was infected with this lineage. Hence, looking at a

blood sample only a 0–1 vector i = (i1, . . ., in) is observed, indicative of the present lineages,

i.e., ik = 1 if mk> 0 and ik = 0 if mk = 0. The probability of observing an infection with

Properties of a maximum-likelihood estimator for multiplicity of infection
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configuration i is

Qi ¼
1

el � 1

Yn

j¼1

ðelpj � 1Þ
ij

ð1Þ

according to [43]. Notably, the probabilistic model defined by (1) is identifiable.

Remark 1 The probability functions (1) defined by any two values of θ 2 Θ are distinct.
The proof is presented in Appendix A in S4 File. It is important to point out that pk is the

relative frequency of lineage Ak in not its prevalence. The former refers to the relative abun-

dance of the lineage in the parasite population, the latter to the probability that the lineage is

present in an infection (within the population of disease-positive individuals).

Remark 2 Lineage Ak’s prevalence, i.e., the probability of observing Ak in a disease-positive
blood sample, is

qfkg≔ qk ¼
X

i2f0;1gnnf0g:
ik¼1

Qi ¼
elðelpk � 1Þ

elpkðel � 1Þ
: ð2Þ

A proof is provided in Appendix B in S4 File.

A data set obtained from N blood samples consists of N 0-1-vectors, indicating which line-

ages are detected. We denote the jth blood sample by xj ¼ ðx1j; . . . ; xnjÞ. Collectively, the data

is denoted by X. Further, Nk is the number of samples in which lineage Ak is detected, i.e.,

Nk ¼
XN

j¼1

xkj. Under the outlined model, the log-likelihood of observing data X is given by

L ¼ Lðl; pÞ ¼ Lðl; pjXÞ ¼ � N log ðel � 1Þ þ
Xn

k¼1

Nk log ðelpk � 1Þ ð3Þ

(cf. [43]). Obviously, (N, N1, . . ., Nk) form a sufficient statistic for the data X. The value Nk/N is

the observed prevalence of lineage k.

Maximum-likelihood estimate

The maximum-likelihood estimate (MLE) for (λ, p) exists and is uniquely defined except in

two irregular situations. In the first, only one lineage is found in each blood sample, i.e.,
Xn

k¼1

Nk ¼ N, i.e., there is no indication of super-infections. In the second, at least one lineage is

found in every blood sample, i.e., Nk = N for at least one k. We can state (cf. [43]):

Remark 3 Except in irregular situations, the MLE θ̂ ¼ ðl̂; p̂Þ is given by

p̂k ¼ �
1

l̂
log 1 �

Nk

N
ð1 � e� l̂Þ

� �

; ð4aÞ

where l̂ is found by iterating

ltþ1 ¼ lt �

lt þ
Xn

k¼1

log 1 �
Nk

N
ð1 � e� ltÞ

� �

1 �
Xn

k¼1

Nk

Nelt � Nkðelt � 1Þ

; ð4bÞ

which converges monotonically at quadratic rate from any initial value l1 � l̂. Hence, it is
guaranteed to find the MLE as long as the initial value λ1 is chosen to be sufficiently large.
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If N ¼
Xn

k¼1

Nk and Nk 6¼ N for all k, l̂ ¼ 0 and p̂k ¼
Nk
N . If Nk = N for at least one k, the MLE

does not exist (“l̂ ¼ 1”).

An implementation of the algorithm above is provided as an R script (S1 File) alongside a

documentation (S2 File).

Because the MLE does not exist if Nk = N or
Xn

k¼1

Nk ¼ N, for study design it is important to

minimize the probability of obtaining irregular data. Moreover, one might prefer conditioning

the likelihood on a regular data set for analytical investigations. In Appendix B in S4 File the

probability of observing irregular data is calculated to be

q≔
1

ð1 � e� lÞ
N 1 �

Yn

j¼1

ð1 � ð1 � e� lpjÞ
N
Þ

 !

þ
Xn

j¼1

Qej

 !N

�
Xn

j¼1

QN
ej

ð5Þ

(ej denote the standard base vectors). Clearly, this probability vanishes as N!1. However, if

N and λ are small and the lineage frequencies are very skewed, observing irregular data is

likely.

The problem of irregular data can be avoided by imposing restrictions on the parameter

space, except if only one lineage is observed in the data, i.e.,
Xn

k¼1

Nk ¼ N and Nj = N for some j.

The MLE can be adapted as follows.

Result 1 Assume the true parameter θ0 lies within the interior of the compact set
Ŷ ¼ ½lmin; lmax� � Sn. The maximum-likelihood estimate is given by Remark 3 if Nk 6¼ N for all

k,
Xn

k¼1

Nk > N and l̂ 2 ½lmin; lmax�. If l̂ < lmin or
Xn

k¼1

Nk ¼ N (but Nj 6¼ N for all j), the MLE is

given by θ̂ ¼ ðlmin; p̂Þ, where

p̂k ¼ �
1

lmin
log 1 �

Nklmin

b̂

 !

; ð6aÞ

where b̂ is found by iterating

btþ1 ¼ bt � bt

lmin þ
Xn

k¼1

log 1 �
Nklmin

bt

� �

Xn

k¼1

Nklmin

bt � Nklmin

; ð6bÞ

which is guaranteed to converge from any initial value β1 satisfying max
k¼1;...;n

Nklmin < b1 < b̂. If

l̂ > lmax or Nk = N for any k (but
Xn

k¼1

Nk > N), the MLE is given by θ̂ ¼ ðlmax; p̂Þ, where b̂ is

given by (6) with λmax replaced by λmin.

If only one lineage is present in the data, i.e.,
Xn

k¼1

Nk ¼ N and Nj = N for some j, the MLE is

not unique, more precisely any estimate (λ, ej) is equally likely.

A proof is found in Appendix B in S4 File.
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Results

Large-sample properties

Usually MLEs have attractive limiting properties under relatively weak conditions. To prove

these here it is more convenient to regard the admissible parameter space as a subset of Rn.

This is achieved by eliminating one of the redundant frequencies. We set pn ¼ 1 �
Xn� 1

k¼1

pk,

ϑ = (λ, p1, . . ., pn−1) and ~Y ¼ fðl; p1; . . . ; pn� 1Þ j lmin � l � lmax; 0 < pk 8 k and
Xn� 1

k¼1

pk < 1g.

Let ϑ̂ denote the corresponding MLE, which, of course, equals θ̂ with the last component

dropped. In the new parameter space the Fisher information matrix is derived as follows.

Result 2 The Fisher information matrix, INðϑÞ≔ � E @2L
@ϑ2, is given by

I1;1 ¼
� Nel

ðel � 1Þ
2
þ

Nel

el � 1

Xn

k¼1

p2
k

elpk � 1
; ð7aÞ

I1;kþ1 ¼ Ikþ1;1 ¼
Nl

1 � e� l

pk
elpk � 1

�
pn

elpn � 1

� �
for k ¼ 1; . . . ; n � 1 ; ð7bÞ

Ikþ1;kþ1 ¼
Nl

2

1 � e� l

1

elpk � 1
þ

1

elpn � 1

� �

for k ¼ 1; . . . ; n � 1 ; ð7cÞ

Ikþ1;jþ1 ¼
Nl

2

1 � e� l

1

elpn � 1
for k; j ¼ 1; . . . ; n � 1; k 6¼ j : ð7dÞ

The information matrix is derived in Appendix C in S4 File and two of its important properties

are proved (cf. Theorem 1 and Theorem 2 in S4 File), namely:

Remark 4 The Fisher information matrix is positive definite and satisfies

IN ¼ � E
@2L
@ϑ2
¼ E

@L
@ϑ

� �T

�
@L
@ϑ

� � !

: ð8Þ

Indeed for the MLE we can state the following result.

Result 3 The MLE specified in Result 1 is

(i) strongly consistent, i.e. θ̂ !a:s: θ0,

(ii) asymptotically unbiased, i.e., Eθ̂ ! θ0,

(iii) efficient, i.e., ðVar θ̂ÞV ! In�n,

(iv) asymptotically normally distributed, i.e., θ̂ � N ðθ0;VÞ,
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where the asymptotic covariance matrix V = (vij) is the Cramér-Rao lower bound given by

v11 ¼
ðel � 1Þ

2

Nel

C
el � 1 � C

; ð9aÞ

v1j ¼ vj1 ¼
ðel � 1Þ

2

lNel

elpj � 1 � pjC
el � 1 � C

; ð9bÞ

vii ¼
ðel � 1Þ

2

l
2Nel

elpi � 1

el � 1
þ
p2
i C � 2piðelpi � 1Þ þ

ðelpi � 1Þ
2

el � 1
el � 1 � C

0

B
B
@

1

C
C
A ; ð9cÞ

vij ¼
ðel � 1Þ

2

l
2Nel

pipjC � piðelpj � 1Þ � pjðelpi � 1Þ þ
ðelpi � 1Þðelpj � 1Þ

el � 1
el � 1 � C

;
ð9dÞ

for i, j = 2, . . .n + 1, i 6¼ j and

C ¼
Xn

k¼1

ðelpk � 1Þ ð9eÞ

Proof. First, the true parameter θ0 lies in the interior of Θ. Hence, a compact subset Ŷ ⊊ Y

exists, such that θ0 2 int Ŷ. By eliminating the redundant variable pn this is equivalent to

ϑ0 2 int Y
1
� Rn, where Y

1
� ~Y is compact. Second, the model is identifiable according to

Remark 1. Third, the first three derivatives of the log-likelihood function with respect to the

parameters exist and 1

N
@3L
@ϑ3 is uniformly bounded on Θ1 according to Remark 1. Fourth, the

Fisher information satisfies (8) and is positive definite. Hence, the regulatory conditions given

in [52] (Chapter 4, p.118) are satisfied. These imply strong consistency, asymptotical unbiased-

ness and efficiency of ϑ̂ and hence θ̂. The Cramér-Rao lower bound is derived in Appendix D

in S4 File.

The mean MOI is given by c ¼ l

1� e� l rather than by the Poisson parameterλ and might be

preferable. Since MLEs are transformation respecting, ĉ ¼ l̂

1� e� l̂
holds. Also the Cramér-Rao

bound needs some adjustment (see Appendix E in S4 File).

Remark 5 The Cramér-Rao bound ~V of the MLE ðĉ; p̂1; . . . ; p̂nÞ is given by

~v1;1 ¼
elðel � l � 1Þ

2

Nðel � 1Þ
2

C
el � 1 � C

; ð10aÞ

~v1;j ¼
el � l � 1

lN
elpj � 1 � pjC
el � 1 � C

; ð10bÞ

~vij ¼ vij ; ð10cÞ

where i, j = 2, . . .n + 1 and vij an C are given by (9c), (9d) and (9e).

Finite sample properties of the MOI estimate

The desirable properties of the MLE hold only in the large-sample limit given that the

parametric model (1) is correct. In practice, the MLE’s quality depends on (i) the model’s fit,
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(ii) the true parameters, and (iii) sample size. To investigate these dependencies, we conduct a

systematic numerical study. All numerical investigations were performed in R version 3.1.0

[53]. A detailed description is found in Appendix F in S4 File. The main R code for the simula-

tions is provided as supporting information (S1 File), adapted for users to run their own simu-

lations. All detailed results are provided as S5 File.

Mean and median bias. The MLE for MOI, ĉ ¼ l̂

1� e� l̂
is—as typically for MLEs—biased,

however as shown analytically bias vanishes as sample size N increases (Fig 1A–1D and S5

File). The maximum bias is about 4%. There is a tendency of overestimating the true parameter

in a non-linear fashion. As ψ increases, bias first decreases until ψ� 1.2, and then starts to

increase almost linearly (Fig 1 and S5 File). Overestimation occurs on average because ψ is

bounded from below by 1, whereas it has no upper bound. Estimates for ψ will be occasionally

much too large while they cannot be much too small. This is particularly likely for very small

and large ψ. For these reasons it seems better to use the median bias as a proxy for the esti-

mate’s accuracy (see below).

Bias vanishes quickly as N increases. A considerable reduction occurs when sample size is

increased from 40 to 50. For N = 100 bias is already low, but there is still a remarkable gain by

increasing sample size to 150–still a realistic sample size. Bias typically stays below� 0.5%

then and almost vanishes for small values of ψ. Increasing sample size to 200, yields an

improvement mainly for values beyond ψ� 1.7, which however is a rather extreme parameter

range in practice. Bias almost vanishes for N� 300, at least for moderate values of ψ (Fig 1 and

S5 File).

While the overall pattern described above is valid regardless of the lineage-frequency dis-

tribution, higher skewness leads to increased bias (compare Fig 1A with 1B)–particularly, if

one lineage is dominating whereas others have frequency of� 5%. The effect is not too strong

if N� 100, in which case bias stays below 5%. This is not surprising, because a highly fre-

quent lineage super-infects with high probability. In a sample this cannot be detected as a

super-infection, and thus leads to a small underestimation of ψ. However, sometimes low-fre-

quency lineages are over-represented (they will occur together with high-frequency lineages),

leading occasional to huge over-estimates. Consequently, rare outliers create bias. Since the

median is robust against outliers, skewed frequency distributions do not affect the median

bias.

Bias decreases with an increasing number of lineages (Fig 1 and S5 File) while the qualita-

tive pattern described above remains unchanged. The reason is that for larger n, super-infec-

tions are more accurately represented. Namely, for given n super-infections with n + 1 or

more lineages cannot be identified. Although this leads more likely to underestimates, occa-

sionally huge over-estimates occur. Over-represented super-infections are interpreted as large

MOI due to the underlying Poisson model. For these reasons and those mentioned above, for

very skewed frequency spectra (Fig 1 and S5 File), bias increases drastically, especially if sample

size is small. For small ψ bias increases up to 15%. For extremely large ψ bias becomes negative,

because samples indicative of super-infections with several lineages become rare, as the same

lineages are infecting multiple times.

Slight model violations do not change the overall pattern of bias much (cf. Fig 2A–2C). Bias

tends to increase faster with ψ but typically stays less than 2% for N� 150 and realistic values

of ψ. For the most extreme parameters bias stays below 15%. It tends to be a little higher for

the shifted binomial model (cf. Appendix F in S4 File) than for the other two alternatives,

which is not surprising since this model constitutes the largest model violation among them.

Assuming the uniform model—a radical model violation—changes the overall pattern (cf. Fig

2 and S5 File). As ψ increases, bias first increases (from typically 5%–10%) slightly and then
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becomes strongly negative—however for an extreme parameter range. Bias improves if sample

size increases, for more lineages (larger n), and more balanced lineage-frequency distributions.

Concluding, bias is moderate if sample size is sufficiently large N� 150, which seems to be

a reasonable compromise between feasibility and accuracy.

Bias, measured by the median, is usually by an order of magnitude smaller (compare Fig 1A

with 1E), for the reasons mentioned above. In fact it is almost absent, particularly if sample

Fig 1. Bias for the conditional Poisson model. (A)-(D) Shown is the bias of the MLE ĉ in percent as a function of the true

parameter ψ based on simulated data created by the conditional Poisson model. Each panel assumes different n and lineage

frequency distributions p shown at the top of each panel. Each line is for a different sample size N. (E) Shown is the median bias

rather than the mean bias. (F) Average estimates for the lineage frequencies p1 = 0.7, p2 = 0.15, p3 = 0.1 and p4 = 0.05 (marked by the

red-dotted horizonal lines) for different sample sizes. Since the lineage-frequency estimates are almost unbiased—independently of

the sample size—the lines corresponding to different N almost coincide. Hence, only the top lines (purple lines for N = 200) at p1 =

0.7, p2 = 0.15, p3 = 0.1 and p4 = 0.05 and the dotted red lines on top are visible.

https://doi.org/10.1371/journal.pone.0194148.g001
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size is sufficiently large (N� 100) and ψ� 1.7. Although the maximum median bias (for

small sample size, extremely skewed lineage frequencies, and extremely high MOI) is up to

15%, it is typically much lower. Hence, median bias can be regarded as being absent if sample

size is� 100.

It should be pointed out that bias is reported conditional on regular data here. The proba-

bility of irregular data satisfying
Xn

k¼1

Nk ¼ N increases as λ and N decrease. Such data result in

estimates of l̂ ¼ 0 or l̂ ¼ lmin, which are close to the true value. Therefore, if bias is not con-

ditioned on
Xn

k¼1

Nk > N, it almost vanishes for small λ, but depends on the choice of λmin. As

the asymptotic results on the estimator assume regular data, we decided to present bias only

conditional on regular data.

Variance. Variation of the estimator of ψ is best measured relative to the mean, i.e., by the

coefficient of variation (CV). For most parameter combinations, the CV increases with ψ in a

Holing-Type-II fashion (see Fig 3 in S5 File). This is particularly true for balanced lineage-fre-

quency distributions. The CV decreases with increasing sample size and typically stays below

20% for N = 40 and on the order of 5% for N = 400. The CV is smaller for a larger number of

lineages n. For skewed lineage-frequency distributions, the CV might be largest for intermedi-

ate ψ and small sample size N� 100 (cf. Fig 3D). Not surprisingly, these results are robust

against model violations; in fact the CVs cannot be distinguished visually. The observed

Fig 2. Dependence on true model. Shown is the bias as a function of the true parameter ψ, for n = 4 and a balanced lineage-

frequency distribution. The underlying true models are the shifted Poisson, shifted binomial, conditional binomial and uniform

models (cf. Appendix F in S4 File) in panels (A), (B), (C), (D), respectively.

https://doi.org/10.1371/journal.pone.0194148.g002
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pattern can be explained from the results concerning bias. If the true ψ is small, bias is created

mainly by rare large overestimates, while any underestimate will be close to the true value.

This hardly affects the (empirical) variance of ĉ, which is small by nature if the true value of ψ
is small. Thus, relative to the average estimate, which is an overestimate, variance is small. For

larger true values of ψ, variance increases naturally. Moreover, an underestimate ĉ will no lon-

ger be very close to the true value, which further contributes to an increased variance. Finally,

relative to the average ĉ, which now properly reflects the true value, the CV is large than for

small ψ. This effect does not result in a linear increase of the CV, because the average ĉ

increases disproportionately compared with its variance.

Fig 3. Measures of variation. (A)-(B) CV of ĉ in % (i.e. ×100) as a function of ψ for the conditional Poisson model.

The dashed line is the respective prediction based on the Cramér-Rao lower bound. Almost identical pictures are

obtained for the other models (conditional Poisson, shifted Poisson, conditional binomial and shifted binomial).

Panels are for different p (with different lineage numbers n). (C)-(D) CV for lineage frequencies. Shown is the

theoretical prediction which is almost indistinguishable from the curves obtained by simulation, for all models. Panels

are for different p (with different lineage numbers n). (E)-(F) Average Euclidian distance of the MLE p̂ and the true

parameter p. Shown are the curves obtained from the conditional Poisson model. Panels are for different p (with

different lineage numbers n).

https://doi.org/10.1371/journal.pone.0194148.g003
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To evaluate the estimator’s efficiency the CV can be compared to its theoretical prediction,

i.e., to the square root of the Cramèr-Rao lower bound (given by Eq 10a) divided by the true

value of ψ. For at least intermediate sample size N� 150, the CV is very close to its theoretical

prediction unless the lineage-frequencies are extremely skewed. In the latter case the CV is typ-

ically much smaller than its prediction for large ψ (see Fig 3D).

Notably, variance is rather large compared with bias. An approximate 95% confidence

interval for the estimator relative to its true value is obtained as the relative bias ±2×CV.

Concluding, the variation is typically almost identical to its theoretical minimum for n� 3,

N� 100 and balanced lineage-frequencies. For N� 150, realistic ψ and not too skewed p, the

CV is on the order of 5%.

Finite sample properties of the frequency estimates

Bias. The picture for the frequency estimates is much simpler than for the MOI parameter

(Fig 1F). They are (almost) unbiased, independently of the sample size (N), the number of line-

ages (n), skewness of the lineage-frequency distribution, and true underlying model (S5 File).

Whereas the MLE’s performance of the MOI parameter depends on all these (at least to some

extend), the frequency estimates are robust against these factors (S5 File).

Variance. There are several variance measures for frequency estimates p̂. The simplest

approach is to consider the variances of each lineage frequency separately. The advantage is

that the variances are comparable with the Cramér-Rao bounds, which perfectly matches the

empirical variance. However, as the number of lineages n increases, these measures become

tedious, especially since one is typically interested in functions or summaries of the distribu-

tion, rather than in the frequencies separately.

Like the bias, the variances of the estimates do not depend on the true underlying model.

Not surprisingly, the variance is typically small, particularly if the true frequencies are small.

Hence, it is more appropriate to consider the coefficient of variation, which implies only quan-

titative but no qualitative changes.

Since the variance is robust to model violations, so is the CV. Fig 3 shows the theoretical

prediction of the CV, i.e.,

ffiffiffiffiffi
~I � 1
k;k

p

pk
. The observed CV, i.e., square root of sample variance divided

by sample mean of p̂k, almost perfectly matches the theoretical prediction and it cannot be dis-

tinguished between the different underlying models. However, the CV depends on the number

of lineages (n), sample size (N), MOI (ψ) and skewness of the allele frequency distribution. The

CV decreases with increasing sample size and ψ. This is rather intuitive, since the data contains

increasingly more information. For large ψ, more super-infections occur, which contain more

information about the lineage frequencies, hence not only large N but also
Xn

k¼1

Nk imply more

information per lineage. The CV tends to increase with an increasing number of lineage (n)

and decreasing lineage-frequency. Again this is not surprising, because rare lineages hardly

occur in a data set and this lack of information results in an increased variance. The CV is

around 15% for balanced lineage frequencies. However, for n = 10 and lineage frequencies of

0.01, the CV increase to a substantial amount of 150% (S5 File). Nevertheless, for the major

lineage frequencies, the CV typically stays under 10% if N� 150.

Considering the CV is conservative, because one is typically interested in summary statistics

of the lineage frequencies such as heterozygosity (cf. [54]). Such statistics will be insensitive

against various factors, since small lineage frequencies—which have a large relative, but a very

small absolute error—hardly affect them. Variance measured by the average Euclidian distance

to the true parameter gives similar results (Fig 3E and 3F). The average distance is robust
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against model violations and decreases with increasing ψ and sample size N for the reasons

mentioned above. The average Euclidian distance also increases with an increasing number of

lineages. However, unlike the CV, it decreases for more skewed lineage-frequency distribu-

tions (Fig 3E and 3F), because the absolute error of minor lineages hardly affects the distance

measures.

Data application

The malaria dataset from [51] is examined more closely. From 97 malaria positive blood sam-

ples, 56 microsatellite loci were assayed, where 12 of the 56 marker loci can be considered

selectively neutral. Hence, these are appropriate for the ML methods (cf. [43]).

Four of the 12 selected marker loci violated the assumption
Xn

k¼1

Nk > N (irregular data). In

other words a third of the neutral markers did not provide sufficient information, a fact which

can be avoided in the future by using the results provided here. Namely, it is possible to calcu-

late a proxy of the necessary sample size to avoid irregular data sets.

First, note that typically some STR markers fail to amplify in a number of blood samples. It

is not obvious how to proceed with the resulting missing data. Namely, a sample with a miss-

ing value cannot be considered disease free, since only disease-positive samples are analyzed.

Moreover, it is not clear whether missing values are completely random or if there is a non-

ignorable dependence between missing values, markers and repeat length, e.g., certain markers

will amplify better than others or the probability for at least one lineage to amplify is higher if

several variants super-infect. Hence, missing data depends on many confounding factors,

which are difficult or impossible to determine. A pragmatic approach to handle missing data is

to treat each marker as a data set and ignore, for each marker, those sample with a missing

value. Consequently, this results in a different sample size for each marker.

Having decided on how to proceed with missing values, the MLEs for the lineage frequen-

cies can be used as an estimate of the true frequencies. This can also be done in case that
Xn

k¼1

Nk ¼ N (cf. Result 3). The median of the MLEs, λme = 0.7213, (derived from those 8 marker

loci to which the method is applicable) can be used as an estimate proxy for the true parameter.

This is justified because the median should be almost unbiased. Based on p̂ and λme the proba-

bilities of obtaining an irregular data set (Eq 5) is listed in Table 1. Clearly, these probabilities

are substantially large. Based on these estimates, the probability that at least four of the 12

markers yield irregular data is� 28% (if all 12 markers are independent, which is a valid

assumption for neutral markers). To reduce the probability of obtaining irregular data in every

marker (independently) below 5%, sample size needs to be increased to N = 300. The probabil-

ity that four or more markers yield irregular data is then� 3.4 × 10−6. However, the probability

to obtain at least one irregular data set is still� 13%. Increasing sample size to N = 400 reduced

this probability to less than 5%.

Table 1 also shows the square root of the Cramér-Rao lower bound. Notice, that this is the

lower bound for ψ. Hence, it should be compared with the respective median ψme = 1.037. The

corresponding coefficient of variation is about 5%. Finally, the bias of the MLEs of ψ can be

approximately obtained by looking up the bias for similar parameters from the simulation

study. The maximum estimate of the bias (1.4%) is obtained for marker J6. Mostly, bias is as

low as 0.5%.

Summarizing, a sample size of N = 97 is sufficient to obtain accurate and precise estimates,

as justified by the proxies of bias obtained from the simulation study and the Cramér-Rao

lower bounds based on Table 1. The quality of the estimates is also reflected by the fact that all
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8 ‘regular markers’ yield estimates which are not statistically significant in pairwise compari-

sons (cf. [43]). However, this sample size is insufficient to guarantee with high probability that

the data for each marker is regular. To guarantee regular data for 12 markers with at least 95%

probability a sample size of 400 is necessary. Such calculations can already be performed dur-

ing study design, if there are some vague ideas about the true parameters. Of note, it might be

difficult to collect N = 400 samples in a low transmission area like Venezuela. In this case, a

sample size of N = 100 should be sufficient, but many molecular markers should be assayed.

Discussion

A central goal of infectious-disease control programs is the reduction of the circulating patho-

gen’s population size. Understanding the genetic changes associated with diminishing popula-

tion size may provide valuable metrics to monitor success of control interventions. The reason

is that population-genetic parameters reflect transmission intensities more accurately than

incidence data—at least they will complement incidence data. Two quantities are starting to

be more recognized in this context in epidemiology [1, 55], molecular force of infection and

multiplicity of infection (MOI). The potential gain of incorporating such genetic/molecular

information to infer transmission compared to traditional measures, e.g., entomological inoc-

ulation rate (EIR) or basic reproduction numbers (R0), which are notoriously difficult to esti-

mate, is starting to be realized [1, 55].

The aim of this article was to obtain a better understanding for the approach of [41] and

[43] to estimate MOI and “lineage” frequency spectra in infections. A detailed description on

how MOI relates to quantities such as molecular force of infection, EIR or R0 can be found in

[1]. While MOI might be built into a metric for monitoring transmission, accurate estimates

of lineage-frequency spectra are desirable for monitoring the evolutionary dynamics of an

endemic disease and for calculating frequency-based statistics. The method explored here is

applies to diseases, for which infections are rare and independent events, and the course of the

disease is relatively short. More precisely, de novo mutations should accumulate rarely within

an infection. Hence, the method will not be applicable to pathogens like HIV, but to diseases

like malaria.

Table 1. Results for Venezuela data. Shown are sample size N, MLEs for p̂ and l̂, an estimate for the square root of the Cramér-Rao lower bound for ψ, the probabilities

of obtaining an irregular data set derived from (5) using the estimates p̂ and λme for the actual sample size N (q), sample size N = 300 (q300) and N = 400 (q400), respectively.

The estimate λme is the median of the 8 estimates for which l̂ > 0 (regular data). In pairwise comparisons these eight estimates were not found to be significantly different

at a 5% level based on pairwise likelihood-ratio tests provided in [43].

locus N p̂ l̂
ffiffiffiffiffiffiffi
CR
p

q q300 q400 bias

U5 7 (0.78, 0.09, 0.08, 0.01, 0.01, 0.01, 0.01, 0.01) 0.055 0.065 0.265 0.015 0.005 � 0.5%

K6 95 (0.785, 0.205, 0.01) 0.06 0.065 0.305 0.025 0.005 � 0.5%

L1 96 (0.53, 0.47) 0.085 0.055 0.175 0.005 0. � 0.8%

c4 74 (0.63, 0.36, 0.015) 0.055 0.065 0.275 0.005 0. � 0.5%

b3 88 (0.6, 0.26, 0.13, 0.01) 0.12 0.055 0.165 0 0. � 1%

fr13 97 (0.72, 0.27, 0.01) 0.1 0.06 0.235 0.01 0.005 � 0.5%

ps6 97 (0.64, 0.36) 0.09 0.055 0.195 0.005 0. � 0.8%

ps7 81 (0.6, 0.28, 0.11, 0.01) 0.045 0.055 0.195 0 0. � 0.5%

J3 96 (0.625, 0.28, 0.085, 0.01) 0 0.055 0.16 0.005 0. � 0.5%

J6 96 (0.845, 0.085, 0.075) 0 0.075 0.38 0.05 0.02 � 1.4%

U6 97 (0.65, 0.28, 0.07) 0 0.055 0.175 0.005 0. � 0.5%

L4 91 (0.69, 0.12, 0.09, 0.075, 0.01, 0.01) 0 0.055 0.195 0.005 0. � 0.8%

https://doi.org/10.1371/journal.pone.0194148.t001
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To further investigate the properties of the maximum-likelihood approach of [43], we con-

ducted a comprehensive numerical robustness study, which was complemented by additional

analytical findings. (An implementation of the method and the simulation algorithm that can

readily visualize the outcomes is available as S1 File). The study was designed under the criteria

outlined in [1]. Particularly, we wanted to quantify the quality of the MOI estimate and the

estimates for lineage frequencies in terms of bias and variance—with regard to different

parameters and model violations. The method’s advantage is its simplicity. Namely, to calcu-

late the estimates from N blood samples or clinical specimens, in which n lineages are detected,

it suffices to determine the numbers Nk of blood samples in which lineage k is found. The MLE

can be calculated from the numbers N1, . . ., Nn and N.

We proved usual attractive properties (asymptotic unbiasedness, strong consistency, effi-

ciency) for the MLE, which also has good finite sample properties. The MLE yields reliable

results if sample size is at least moderately large (N� 150). The method performs better if the

lineage-frequency spectrum is not too skewed, MOI (ψ) is small, and more lineages are circu-

lating (larger n) for the following reasons. If the same lineage is super-infecting multiple times,

information is lost, as it is indistinguishable whether this lineage was infecting just once or

more than once. This loss of information occurs with higher probability if the lineage-fre-

quency spectrum is skewed, MOI is high, or the number of different lineages is small. In other

words, not just sample size N, but also
Xn

k¼1

Nk is a measure of how much information is avail-

able. With balanced frequency spectra
Xn

k¼1

Nk will tend to be larger than for unbalanced ones,

resulting in more reliable estimates.

The MLE is only asymptotically unbiased. This is true particularly for the MLE for MOI

(as measured by the average bias), whereas the estimates for the lineage frequencies are

(almost) unbiased—even under model violations. The MOI parameter is biased, because it

has a lower but no upper bound and unlikely data lead to disproportionately large estimates.

However, the MOI estimate is almost unbiased, if bias is measured by the median. This is not

true with model violations, although the median bias is still smaller than the mean bias.

Therefore, the method appears nevertheless applicable if sample size is sufficiently large

(N� 150).

In general, the variance of the estimates is small—however it is large compared with bias.

Especially, the Cramér-Rao bounds are good predictors for the estimator’s variance, again

regardless of model violations. Particularly, if there is some prior idea of the true parameters’

ranges, these bounds are extremely helpful for effective study design (with respect to sample

size and properties of the genetic/molecular markers) to achieve a certain precision goal. Since

the estimator’s variance is close to the Cramér-Rao bounds, there is not much room for

improvement for the estimator. However, the estimator might be generalized to include infor-

mation from several genetic markers at the same time. A simple ad-hoc approach to reduce

variance would be to average several MOI estimates from different (uncorrelated) markers.

This and more sophisticated methods are subject to future work.

The fact that the lineage frequencies’ estimates are unbiased and the small variances seem

promising to use these estimates for genetic statistics. Note, however, that the coefficient of

variation might be rather large for minor lineages, which is not surprising since they are likely

either under- or over-represented. Hence, it might be problematic to use such estimates in

genetic statistics, which rely on minor allele frequencies. Statistics such as heterozygosity or

statistics that use ranked frequency spectra should nevertheless be rather robust.
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Unfortunately, the method will not always be applicable. It is required that the data contains

at least one detectable super-infection
Xn

k¼1

Nk > N and that no lineage is found in all samples

0< Nk< N for all k. Violations of these requirements cannot be easily resolved by just adding

pseudo-counts, because estimates would be very sensitive to the exact details of the adjustment.

Nevertheless, we calculated the probability to obtain a sample to which the method is inappli-

cable. These results can again be used for study design to guarantee with high probability that

the method will be applicable.

This issue was demonstrated with a malaria data set from Venezuela [51]. Particularly, the

MLE for MOI was obtained from several neutral microsatellite markers as well as their respec-

tive allele frequency spectra. The method was not applicable to some markers since super-

infections were not observed (irregular data sets). This is not surprising although sample size

is moderate (N = 97) considering that the samples were taken in an area of low transmission.

A sample size of at least N = 300 would have been necessary to guarantee regular data with

95% probability for each marker separately. To guarantee with 95% probability that no marker

yields irregular data, sample size needs to be at least N = 400. Such considerations should be

taken into account during study design.

A drawback of the maximum-likelihood-approach studied here is its dependence on the

Poisson assumption. This assumption can in principal be relaxed by assuming e.g. a negative

binomial distribution for the number of infectious events (infective contacts that cause an

infection), which was in fact done by [41]. A negative binomial distribution arises if the num-

ber of infections is distributed heterogeneously across the population. More precisely, if the

population consists of infinitely many patches, within which the number of infectious events

are Poisson distributed and the Poisson parameters across patches follow a Γ-distribution.

This is justified for malaria by the queuing model of [56]. However, even if the number of

infectious events is negatively-binomially and not Poisson distributed, as suggested by empiri-

cal evidence (e.g. [57]), taking into account the fact that not every infectious event is infective,

the number of infective events might be accurately approximated by a Poisson distribution. So

far, an analytical treatment as presented here and in [43] has not be established under the

assumption of a negative binomial distribution and is subject to future research.

Finally, it should be mentioned that an alternative to the frequentist method further investi-

gated here is provided by the Bayesian framework of [13, 14]. Agreement of both approaches

would underline the quality of both approaches. However, the comparison lies beyond the

scope of the present study.
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