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Abstract: Peptide toxins generally have extreme pharmacological activities and provide a rich
source for the discovery of drug leads. However, determining the optimal activity of a new peptide
can be a long and expensive process. In this study, peptide toxins were retrieved from Uniprot;
three positive-unlabeled (PU) learning schemes, adaptive basis classifier, two-step method, and
PU bagging were adopted to develop models for predicting the biological function of new peptide
toxins. All three schemes were embedded with 14 machine learning classifiers. The prediction results
of the adaptive base classifier and the two-step method were highly consistent. The models with
top comprehensive performances were further optimized by feature selection and hyperparameter
tuning, and the models were validated by making predictions for 61 three-finger toxins or the external
HemoPI dataset. Biological functions that can be identified by these models include cardiotoxicity,
vasoactivity, lipid binding, hemolysis, neurotoxicity, postsynaptic neurotoxicity, hypotension, and
cytolysis, with relatively weak predictions for hemostasis and presynaptic neurotoxicity. These
models are discovery-prediction tools for active peptide toxins and are expected to accelerate the
development of peptide toxins as drugs.

Keywords: peptide toxin; active peptide; function prediction; PU learning; sequence-based

Key Contribution: Multiple models have been developed for function prediction of peptide toxins.
To the best of our knowledge, this is the first function prediction tool specially designed for peptide
toxins. The models are discovery-prediction tools for active peptide toxins, and they can be used to
screen for active peptides and/or to guide the bioactivity study of new peptide toxins.

1. Introduction

Peptide toxins are mostly found in the venoms of toxic organisms, such as cone snails,
sea anemones, snakes, spiders, scorpions, and centipedes [1]. Venoms provide a wide
variety of peptide toxins, and even within intraspecific venom, the composition may not
overlap [2–4]. Once their biological function is known, peptide toxins can be used in
different research areas; for example, vasoactive peptides can be used as biomarkers to
predict cancer risk [5], and neurotoxins may have potential applications in the treatment
of certain neurological disorders, e.g., presynaptic neurotoxins have been used to treat
migraine headache and cerebral palsy [6].

Peptide toxins are specific in their amino acid composition. They usually contain
several intramolecular disulfide bonds, which confer chemical, thermal, and biological
stability. To facilitate prey capture and help defend against potential threats, toxins often
interfere with the victim’s core physiological systems and signaling processes with excep-
tional specificity and high potency [2,7]. Thus, despite the obvious health concerns of being
exposed to toxins, peptide toxins provide a rich source of novel bioactive molecules.

Peptide toxins have abundant biological activities, mainly by binding to sodium (Na),
potassium (K) or calcium (Ca) ion channels and receptors in the nervous system with high
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selectivity. Many peptide toxins are used as sensitive pharmacological tools to unravel
disease pathways and to tease out the functional importance of different subtypes of ion
channels [7–13]. Due to the binding specificity for particular molecular targets and the
critical roles of ion channels, peptide toxins have the potential to be applied as lead struc-
tures for the development of drugs to treat a wide variety of diseases. Seven toxin-derived
products are approved by FDA [2], including angiotensin converting enzyme (ACE) in-
hibitor captopril from the venom of Bothrops jararaca for the treatment of hypertension [14],
antiplatelet drug eptifibatide for the treatment of acute coronary syndrome [15,16], zi-
conotide designed fromω-conotoxin MVIIA for pain treatment [17,18], and a Gila-monster
toxin derivative for treatment of type II diabetes (Byetta®, AstraZeneca, London, UK) [13].
Many additional toxins are being explored and developed into drugs for the treatment
of conditions such as cardiovascular disorders, chronic pain, inflammation, hypertension,
thrombosis, cancer and neurological disorders [13,19–23].

Considerable effort has been devoted to the study of the biological activity of pep-
tide toxins. However, a large number of natural peptide toxins remain unexplored. The
traditional functional studies of peptide toxins are time-consuming and costly. Machine
learning and deep learning technologies can analyze potential patterns and rapidly make
predictions from large amounts of biological data. Currently, these technologies have
been successfully applied to the discovery of bioactive peptides such as antimicrobial
peptides (AMPs) [24,25], anticancer peptides (ACPs) [26,27] and anti-inflammatory pep-
tides (AIPs) [28], most of which are synthetic peptides. The composition, physicochemical
properties and physiological activity of synthetic and peptide toxins are quite different. For
peptide toxins, Yang et al. [29] published a model to distinguish between presynaptic and
postsynaptic neurotoxins with true positive ratio at 0.91~1. ClanTox can be used to classify
short animal toxin and toxin-like protein [30]. However, the lack of tools for function
prediction of peptide toxins hinders drug discoveries from these toxins.

In this study, we developed a tool to predict the physiological characteristics of peptide
toxins by using sequence-based multi-task positive-unlabeled (PU) learning methods. A
total of 9294 peptide toxins from Uniprot database [31] were used to establish and validate
the models. Among the toxins, there are 61 three-finger toxins, which were extracted and
used as external validation. For each model, the peptides were binary categorized by
their activities. Since for a specific activity category the number of active peptides was
much less than the number of peptides with undetermined activity, we adopted three PU
learning schemes [32] to build reliable models for each activity category. This proved that
the adaptive basis classifier and two-step method were suitable for this study, while the
bagging method was not comparable with these two schemes. We compared 14 classifiers
for each scheme, and eight evaluation metrics were used for each model. After feature
selection, the optimal parameter combinations for the outstanding models were further
optimized using stratified tenfold cross-validation. Finally, one model from the adaptive
base classifier and the two-step approach was selected for each function prediction. The
models were validated by making predictions on external HemoPI datasets and three-
finger toxins. These models can be combined and used to screen active peptides and guide
bioactivity studies of new peptide toxins.

2. Results and Discussions
2.1. Data Distribution

A total of 10,205 peptide toxins, containing 10~100 amino acids, were retrieved from
Uniprot database. After removal of the signal peptide fragment, the duplicate sequence
was discarded, leaving 9294 peptides. Fifty-six physicochemical properties (47 peptide
descriptors and 9 global descriptors) were calculated for each peptide based on its mature
peptide sequence, and these physicochemical properties were normalized and used for
model construction and prediction.

To validate the final models, 61 three-finger toxin peptides, which performed a wide
variety of functions, including cytolysis, cardiotoxicity, neurotoxicity, and postsynaptic
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neurotoxicity, were extracted as the external validation set. For each specific physiological
function, the remaining 9233 peptide toxins were binary classified according to whether
they were active or not. Among these peptides, 7386 peptides (80% of 9233) were randomly
selected for model training and the remaining 1847 peptides for model testing.

The peptide toxins in the dataset mainly included 3302 neurotoxins, 106 cardiotoxins,
326 cytolytic peptides, 243 hemolytic peptides, 226 hemostatic peptides, 103 hypotensive
agents, 90 lipid-binding peptides, and 75 vasoactive peptides (Figure 1). Among the
neurotoxins, there were 734 postsynaptic neurotoxins and 307 presynaptic neurotoxins.
Some peptide toxins have been widely studied and contain multiple physiological activities.
However, many more of these toxins have undetermined biological activities, i.e., they may
be active or inactive.
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The three HemoPI datasets [33], HemoPI1-3, consist of experimentally validated
hemolytic peptides that are toxin-independent. These datasets had been preprocessed for
machine learning [25], and active and inactive peptides were clearly labeled. HemoPI1
contains 552 hemolytic peptides and 552 random non-hemolytic peptides. HemoPI2 con-
tains 552 highly active hemolytic peptides and 462 inactive hemolytic peptides. HemoPI3
contains 885 highly hemolytic and 738 poorly hemolytic peptides. These three datasets
were used to validate and improve the performance of the hemolysis model.

2.2. Algorithm Selection

Although conventional supervised binary classification algorithms have been widely
used in biological and pharmaceutical fields [33,34], they require fully labeled classes of data
(positive and negative samples) to train a classification model. In the Uniprot dataset, the
inactive peptides were not determined, so conventional schemes are not appropriate for this
study. The PU learning schemes enable the classifier to learn directly from a limited number of
positive samples and a large number of unlabeled samples, and have been successfully used
for biological sequence classification [35]. Therefore, three different PU learning schemes,
adapting base classifier [36], two-step [37] method, and PU bagging [38], were adopted in this
study. Since no single machine-learning method or class of methods always performs best [39],
14 classification algorithms were compared to efficiently identify the positive sample: logistic
regression (LR) [40], linear (LDA) and quadratic (QDA) discriminant analysis [41], support
vector machine classifier (SVC) with 3 kernels radial basis function (SVC_rbf), polynomial
(SVC_poly) and sigmoid (SVC_sig) [42], K-neighbors classifier (KNN) [43], Gaussian naïve
bayes (GNB) [44], decision trees classifier (DTC) [45], neural network multilayer perceptron
(MLP) [46], random forest classifier (RF) [47], AdaBoost classifier (Ada) [48], gradient boosting
classifier (GBC) [49] and LightGBM classifier (LGBM) [50].

The performance of each model was evaluated by true positive ratio (TPR), balanced ac-
curacy (bAcc), weighted precision (P), weighted recall (R), Matthew’s correlation coefficient
(MCC), F1 score (F1), area under the curve receiver operating characteristic (AUC-ROC)
and area under the precision and recall curve (AUPR). MCC and F1 are both popular
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metrics for imbalanced class problems. F1 is defined as the harmonic mean of precision
and recall, which can be interpreted as the weighted average of precision and recall. AUPR,
another performance metric for imbalanced data, places more emphasis on finding positive
samples. All evaluation metrics except MCC range from 0 to 1, and MCC is in the range of
−1 to 1. For each evaluation metric, the higher the value, the better the model performance.
A value of 0 for MCC and 0.5 for the other metrics indicates an average random prediction.

2.3. Adapting Base Classifier

The adapting base classifier adapts the base classifiers to focus on estimating and
correcting the proportion of positive and negative samples in the unlabeled dataset [32].
Based on the ‘selected completely at random’ assumption [36], the ratio of positive and
negative samples in the unlabeled dataset is estimated by dividing the score by a constant
correction factor, which is usually obtained from a separate validation set [32].

Based on this strategy, an optimal model was selected for each specific physiolog-
ical function prediction by comprehensively considering the eight evaluation metrics
(Figure 2a and Table S1). Prediction models for cardiotoxicity, neurotoxicity, postsynaptic
neurotoxicity, hemostasis, hypertension, and vasoactivity were obtained by training the
KNN classifier, for presynaptic neurotoxicity, cytolysis, and hemolysis by training the
LGBM classifier, and for lipid binding by training the SVC_poly classifier. The evaluation
metrics of hypotension, lipid binding, and vasoactivity prediction models are all above 0.8,
implying that they are reliable. Most of the evaluation metrics of other models were close
to or above 0.8. The lowest evaluation metrics were from the hemostasis and presynaptic
neurotoxicity prediction models with TPR, MCC, F1, and AUPR values around 0.6.
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Figure 2. The optimal models selected from the adapting base classifier and their evaluation metrics
on test/validation set. (a) The optimal models for the prediction of cardiotoxicity, neurotoxicity,
postsynaptic neurotoxicity, presynaptic neurotoxicity, cytolysis, hemostasis, hypotension, lipid bind-
ing, and vasoactivity. (b) The evaluation metrics of the optimal hemolysis model on test set and
the HemoPI datasets. The superscript a indicates that the model is built on the Uniprot dataset, the
superscript b indicates that outliers are removed from the datasets, and the superscript c indicates
that the model is built on the combination of the Uniprot and HemoPI2 datasets.

The R, P, and AUC-ROC values of the best hemolysis prediction model were close
to 1, the bAcc value was 0.8, and the MCC, F1, and AUPR values fell in the range of
0.6 to 0.8 (Figure 2b). The model was used to make predictions for the entire data set of the
three HemoPI. The results indicated that our hemolysis prediction model performed weakly,
with P, R, AUC-ROC, AUPR, and bAcc around 0.6 (slightly greater than 0.5), with MCC
slightly greater than 0.

The physiochemical properties of the Uniprot dataset and the three HemoPI datasets af-
ter normalization were compared to better understand the model and to find out the reasons
for its weak performance. The mean and standard errors for each property were calculated.
The distribution of physiochemical properties was similar for the three HemoPI datasets
(Figure 3). However, there were significant differences in the range of values for 24 out of the
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56 properties between the peptides from Uniprot and those from HemoPI datasets. Notably,
there was little overlap in the range of values for a variety of properties, including peptide
size-related properties such as length, MW, and uB_Builkiness, hydrophobicity-related
properties such as uH_Eisenberg, uH_GRAVY, uH_argos, uH_HoppWoods, uH_Janin,
and uH_KyteDoolittle, hydrophilicity-related properties such as charge_acid, and pharma-
cophoric features such as pepArc and pepcats. The meaning of the properties was listed
in List S1. These significant differences resulted in weak performance of the hemolysis
peptide prediction model on HemoPI peptides.
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peptide toxins from Uniprot and those from HemoPI1, HemoPI2 and HemoPI3. The X-axis labels the
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After removing outliers from the three HemoPI datasets using the average KNN of
PyOD [48], the lines on evaluation metrics were located outside any of the original evaluation
metric lines, which indicated that the predictive power of the hemolysis prediction model
was significantly enhanced (Figure 2b). From the radar diagram, it is easy to see that the
evaluation metric lines for HemoPI1, HemoPI2, and HemoPI3 are from the outside in order,
which means that the model has the best prediction for the HemoPI1 dataset, followed by
HemoPI2 and HemoPI3. The model predictions on HemoPI1 were evaluated by R, P, bAcc,
AUC-ROC, and AUPR of about 0.8, F1 of about 0.7, and MCC and TPR of about 0.6.

To extend the application of the hemolysis prediction model and to further validate the
methods, HemoPI2 was involved in the retraining of the hemolysis LGBM model. HemoPI1
and HemoPI3 datasets were used to validate the new models. The results showed that
the performance of the new model was further improved (Figure 2b). Almost all of the
evaluation metrics on the test set, HemoPI1 and HemoPI3 datasets were above 0.8, except
for MCC of HemoPI3 around 0.6. The evaluation metrics for HemoPI1 and HemoPI3 were
P: 0.94 and 0.80, bAcc: 0.94 and 0.80, MCC: 0.88 and 0.60, and AUC-ROC: 0.98 and 0.85,
respectively. Plisson et al. [25] published two independent HemoPI1 and HemoPI3 models,
and the corresponding evaluation metrics for HemoPI1 and HemoPI3 were P: 0.94 and 0.75,
Acc: 0.96 and 0.79, MCC: 0.91 and 0.57, and AUC-ROC: 0.96 and 0.78. Thus, our hemolysis
prediction model was reliable and robust, and it performed comparably well to published
ones. Overall, the adapting base classifier was suitable for this system.

2.4. Two-Step Method

The two-step method adopts two independent algorithms in turn; the first one identi-
fies reliable negatives from the unlabeled datasets based on the likelihood, and the second
one is trained to make predictions [32]. In this study, 14 classifiers were iteratively used
to identify reliable negative samples from unlabeled data and to train the classifier. After
training the classifiers, similarly, an optimal model was selected for each specific physio-
logical function prediction. It turned out that the KNN was a suitable classifier for each
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model establishment to identify reliable negatives in the first step. The optimal models
for cardiotoxicity, neurotoxicity, postsynaptic neurotoxicity, hemostasis, hypotension, and
vasoactivity prediction were developed by training the KNN classifier, for presynaptic
neurotoxicity, cytolysis, and hemolysis prediction by training the LGBM classifier, and for
lipid binding prediction by training the SVC_poly classifier.

Prediction models for cardiotoxicity, hypotension, lipid binding, and vasoactivity were
robust on the test set, with each evaluation metric near or above 0.8 (Figure 4a). The lowest
evaluation metric of the neurotoxicity prediction model, MCC, was above 0.6, indicating
that it was able to distinguish between active and inactive peptides in the test set. The
evaluation metrics of the prediction models for cytolysis and postsynaptic neurotoxicity
were greater than 0.8, except for TPR values at 0.6~0.7, which meant that 60~70% of active
peptides were found by these two models. The presynaptic neurotoxicity and hemostasis
prediction models, with MCC of about 0.5 and bAcc of 0.6–0.7, had a weak predictive
power, and their TPR values were less than 0.4, indicating that most of the active peptides
were not identified.
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For the hemolysis prediction model, all evaluation metrics were close to those of the
model based on the adapting base classifier, with MCC, F1, AUPR and bAcc ranging from
0.6 to 0.8 (Figure 4b). After removing outliers, these two models had comparable predictive
power for the HemoPI1 and HemoPI2 datasets, and they both had worse predictive power
for HemoPI3 (Figures 2b and 4b). On the HemoPI3 dataset, the model based on the two-
step method identified fewer positives (36%) compared to the 45% positives identified
by the model based on the adaptive base classifier. To improve the performance of the
model, the hemolysis model was re-trained after adding HemoPI2 into the training set. The
optimal model was still obtained by training the LGBM classifier. The performance of the
new model was improved, especially the TPR, by almost 20% on the test set. The model
predicted HemoPI1 with each evaluation metric above 0.9. For the HemoPI3 dataset, all
evaluation metrics were about 0.8, except for MCC at 0.57, which verified the reliability of
the model.

2.5. PU Bagging

In the PU bagging [32], unlabeled samples are grouped into several smaller subsamples
using bootstrap aggregation. The subsamples were treated as negatives and used for
building a model along with the positive samples. After a certain number of iterations,
the average score of each sample was calculated, and the sample was predicted to be
positive if the value reached a threshold. In this scheme, we performed 128 resamplings
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and model fittings for each model on each of the 14 classifiers (Table S4). None of the
models performed as well as the models from the other two schemes.

2.6. Feature Selection

To optimize the models, the informative and non-redundant features were selected
based on the Pearson product-moment correlation coefficients. We set the coefficient
threshold to 0.02, i.e., features with coefficient less than 0.02 were considered irrelevant to
the prediction target and discarded. Each model was re-trained using the refined features.
In general, no significant changes in model performance were observed before and after
feature selection for either the adaptive base classifier (Tables S1 and S3) based models or
the two-step method based models (Tables S5 and S6). Nevertheless, feature selection is
recommended because it saves computational resources. This result, in turn, confirmed
that features with coefficient less than 0.02 were irrelevant to the prediction target and
could be discarded. Although the performance of the model remained unchanged, feature
selection is recommended because it saves computational resources.

To further evaluate the performance of the models, we compared the prediction results of
the corresponding optimal models from the two schemes. The prediction results of the models
for the prediction of cytolysis, lipid binding, vasoactivity, and hypotension were highly consis-
tent. Among the peptides, unlabeled helokinestatin (Uniprot ID: P86446) was unanimously
recognized as a hypotensive agent, which was consistent with previous reports [51,52].

2.7. Hyperparameter Tuning

To obtain an optimal parameter combination, GridSearchCV was run to perform a
grid search with stratified tenfold cross-validation. Stratified tenfold cross-validation is a
variant of tenfold cross-validation where the folds are stratified, which means it splits the
dataset in a way that maintains the same class distribution in each subset. Feature selection
as mentioned above was performed in the parametric grid search process. In Table 1, we
gathered the best prediction models based on the adapting base classifier, their optimal
parameter combinations, and their evaluation metrics (Table 1). The predictive models
for cardiotoxicity, postsynaptic neurotoxicity, cytolysis, vasoactivity, and hypotension
performed well, with all evaluation metrics above 0.8, followed by the neurotoxicity, lipid
binding, and hemolysis prediction models with P between 0.74 and 0.77. The hemolysis
model was able to identify 99% of the hemolytic peptides in the HemoPI1 dataset and 87%
in the HemoPI3 dataset. The other two prediction models for hemostasis and presynaptic
neurotoxicity had weak predictive power with TPRs of 0.60 and 0.70, respectively.

Similarly, the optimal parameter combinations of the models based on the two-step
method were explored. Only the informative features, with Pearson product-moment
correlation coefficients above 0.02, were used to train the models. The first step of each
model construction used the KNN classifier to identify reliable negatives. The optimal
model and parameter combination adopted in the second step are shown in Table 2. The
prediction models for cardiotoxicity, postsynaptic neurotoxicity, cytolysis, vasoactivity,
hypotension, and lipid binding performed well on the test set, with all evaluation metrics
above 0.8, followed by neurotoxicity, hemolysis, and cytolysis, which were able to identify
85%, 82%, and 77% of the corresponding active peptides, respectively. The presynaptic
neurotoxicity and hemostasis prediction models performed worse than the corresponding
models based on the adaptive base classifier, with TPRs of 0.51 and 0.36 and AUPRs of
0.64 and 0.55, respectively. The hemolysis model made accurate and precise predictions
on HemoPI1 and HemoPI3, and identified 99% of the hemolytic peptides in the HemoPI1
dataset with a P value of 0.89 and 85% in the HemoPI3 dataset with a P value of 0.79.
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Table 1. Information on the top performing models from adapting base classifier after hyperparame-
ters tuning.

Activity Model Parameters TPR AUPR R bAcc F1 P MCC AUC-ROC

Cardiotoxicity KNN {‘n_neighbors’: 5, ‘p’: 1, ‘weights’:
‘distance’} 0.81 0.83 0.81 0.90 0.83 0.85 0.83 0.95

Neurotoxicity LGBM {‘max_depth’: 8, ‘num_leaves’: 40} 0.89 0.90 0.86 0.81 0.74 0.85 0.70 0.94
Postsynaptic LGBM {‘max_depth’: 8, ‘num_leaves’: 40} 0.91 0.82 0.91 0.86 0.90 0.98 0.85 0.97
Presynaptic LGBM {‘max_depth’: 8, ‘num_leaves’: 40} 0.70 0.66 0.71 0.85 0.65 0.61 0.64 0.95
Cytolysis LGBM {‘max_depth’: 7, ‘num_leaves’: 30} 0.80 0.87 0.80 0.90 0.85 0.90 0.84 0.97

Hemostasis KNN {‘n_neighbors’: 3, ‘p’: 4,
‘weights’: ‘distance’} 0.60 0.58 0.60 0.80 0.61 0.63 0.60 0.88

Vasoactivity KNN {‘n_neighbors’: 5, ‘p’: 2,
‘weights’: ‘distance’} 0.93 0.99 0.93 0.97 0.93 0.93 0.93 1.00

Hypotension KNN {‘n_neighbors’: 6, ‘p’: 1,
‘weights’: ‘distance’} 0.86 0.89 0.86 0.93 0.88 0.90 0.88 0.97

Lipid binding LGBM {‘max_depth’: 8, ‘num_leaves’: 20} 0.94 0.87 0.94 0.97 0.85 0.77 0.85 0.99
Hemolysis a LGBM {‘max_depth’: 7, ‘num_leaves’: 20} 0.82 0.84 0.82 0.90 0.78 0.74 0.76 0.98
HemoPI1 b 0.99 0.96 0.99 0.85 0.87 0.78 0.73 0.95
HemoPI3 b 0.87 0.88 0.87 0.78 0.82 0.77 0.57 0.84

Note: a The model was trained on the data from Uniprot and HemoPI2; b The external validation dataset was not
used to train the model, but only to validate the hemolysis model.

Table 2. Information on the two-step models after hyperparameters tuning.

Activity Model Parameters TPR AUPR R bAcc F1 P MCC AUC-ROC

Cardiotoxicity KNN {‘n_neighbors’: 2,
‘weights’: ‘uniform’} 0.81 0.87 1.00 0.90 0.85 1.00 0.85 0.95

Neurotoxicity LGBM {‘max_depth’: 8, ‘num_leaves’: 40} 0.85 0.90 0.86 0.86 0.81 0.86 0.70 0.94
Postsynaptic LGBM {‘max_depth’: 8, ‘num_leaves’: 40} 0.80 0.91 0.98 0.90 0.86 0.98 0.86 0.97
Presynaptic LGBM {‘max_depth’: 6, ‘num_leaves’: 40} 0.51 0.64 0.98 0.75 0.57 0.97 0.56 0.94
Cytolysis LGBM {‘max_depth’: 6, ‘num_leaves’: 30} 0.77 0.87 0.99 0.88 0.81 0.99 0.80 0.97

Hemostasis KNN {‘n_neighbors’: 4, ‘p’: 2,
‘weights’: ‘distance’} 0.36 0.55 0.98 0.68 0.48 0.98 0.50 0.87

Vasoactivity KNN {‘n_neighbors’: 8, ‘p’: 2,
‘weights’: ‘distance’} 0.87 1.00 1.00 0.93 0.93 1.00 0.93 1.00

Hypotension KNN {‘n_neighbors’: 1,
‘weights’: ‘uniform’} 0.86 0.86 1.00 0.93 0.86 1.00 0.86 0.93

Lipid binding SVM {‘C’: 100.0, ‘gamma’: 1.0,
‘kernel’: ‘rbf’} 0.94 0.92 1.00 0.97 0.90 1.00 0.90 0.99

Hemolysis a LGBM {‘max_depth’: 8, ‘num_leaves’: 40} 0.82 0.85 0.96 0.90 0.78 0.97 0.76 0.98
HemoPI1 b 0.99 0.98 0.87 0.87 0.88 0.89 0.75 0.98
HemoPI3 b 0.85 0.85 0.79 0.78 0.81 0.79 0.57 0.85

Note: a The model was trained on the data from Uniprot and HemoPI2; b The external validation data were not
used to train the model, but only to validate the hemolysis model.

2.8. Model Validation

To further assess the quality of the models, these models were used to make predictions
for 61 three-finger toxins (Table 3, Tables S9 and S10). These toxins include 7 cytolytic toxins,
7 cardiotoxins, 31 neurotoxins (30 of which are presynaptic neurotoxins), 2 hemolytic toxins,
and 21 peptides with no reported activity. Six of the cytolytic toxins are also cardiotoxins
and one is a neurotoxin. The prediction results showed that the adaptive base classifier-
based models identified 100% of the cytolytic toxins, cardiotoxins and neurotoxins, and
identified 22 of the 30 postsynaptic neurotoxins. In addition, the models identified several
active peptides from unlabeled peptides, including 3 cytolytic toxins, 19 neurotoxins,
7 postsynaptic neurotoxins, and 2 hemostatic agents. The models based on the two-step
method identified 6 cytolytic toxins, 7 cardiotoxins, 30 neurotoxins, and 22 postsynaptic
neurotoxins. Almost all of the unlabeled peptides were identified as inactive. The models
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also identified several active peptides from unlabeled peptides, including a cytolytic toxins,
18 neurotoxins, 7 postsynaptic toxins, a hypotensive agent, and a hemostatic agent. Among
these peptides, the unlabeled toxin MicTx3 was predicted to be a neurotoxin by both models,
which is consistent with its reported inhibition of nicotinic acetylcholine receptor (nAChR)
α7 activity [53], which is expressed in the brain, both presynaptically and postsynaptically.
Another unlabeled three-finger toxin MALT0044C, predicted to be a neurotoxin by the
adapting base classifier-based model and as a postsynaptic neurotoxin by both models, has
been reported to have neurotoxic activity [54,55]. Overall, the performance of the adaptive
base classifier-based models and the two-step-based models is comparable. These models
can be used in combination to further increase confidence in the prediction results.

Table 3. The prediction results of 61 three-finger toxins.

Adaptive Base Classifier Two-Step Method

TP FP FN TN TP FP FN TN

Cytolysis 7 3 0 51 6 1 1 53
Cardiotoxicity 7 0 0 54 7 0 0 54
Neurotoxicity 31 19 0 11 30 18 1 12
Presynaptic 0 0 0 61 0 0 0 61
Postsynaptic 22 7 8 24 22 7 8 24
Lipid binding 0 0 0 61 0 0 0 61
Vasoactivity 0 0 0 61 0 0 0 61
Hypotension 0 0 0 61 0 1 0 60
Hemolysis 0 0 2 59 0 0 2 59
Hemostasis 0 2 0 59 0 1 0 60

3. Conclusions

Peptide toxins generally have extreme pharmacological activities, providing a rich
source for the discovery of potential pharmaceuticals. Machine learning and deep learning
technologies have provided time-saving and cost-effective solutions for function prediction
of peptide toxins. In this study, we developed multiple models to predict the functions of
peptide toxins based on peptide physicochemical property descriptors, which were calcu-
lated based on primary sequence. These models were chosen by comparing the performance
of three PU learning schemes, each of which was sequentially embedded with 14 machine
learning classifiers. It turned out that both the adapting base classifier and the two-step
method are applicable to the function predictions of peptide toxins. The initial hemolysis
model from adapting base classifier was comparable to the published models in an inlier
peptide dataset. To expand the applicable scope of the model, HemoPI2 and the Uniprot
dataset were combined to re-train the model using both adapting base classifier and two-step
schemes, and the new models outperformed existing models. As with the hemolysis models,
the applicability of our models is limited by the distribution of the data they fitted, which
came from peptide toxins with less than 100 residues. Therefore, we strongly recommend
implementing outlier exclusion methods, such as average KNN, to remove outliers before
making predictions. Finally, reliable predictive models for cardiotoxicity, cytolysis, hypoten-
sion, lipid binding, neurotoxicity, postsynaptic neurotoxicity, vasoactivity, and hemolysis
were developed. The models for the prediction of hemostasis and presynaptic neurotoxicity
possessed weak predictive power. Model validation by an external validation set showed
that our models made robust predictions for 61 three-finger toxins. Two unlabeled peptides
were predicted to be neurotoxins and their activity was verified. Our models will be used
to screen for bioactive peptides, and to guide the bioactivity studies of new peptide toxins,
thereby accelerating the development of peptide toxins as drugs.

4. Methods

General workflow. The general workflow is shown in Figure 5. Firstly, peptide toxins
and hemolytic peptide datasets were collected from Uniprot database [31] and previous
research [25], respectively. Then, the data from Uniprot were cleaned and preprocessed.
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Peptide descriptors were generated for each peptide based on its primary sequences. After
normalization, 61 three-finger toxins were isolated as an external validation set, and the
remaining data were divided into a training set and a test set. Fourteen algorithms were then
embedded in three schemes for PU learning [32]. The performance of the models was further
improved by feature selection and optimizing parameters in turn. The hemolytic peptide
datasets were used to evaluate and improve the performance of the hemolysis model.
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All computational studies were developed in Jupyter notebooks using various Python
modules for data preprocessing and analysis, calculating peptide descriptors and machine
learning algorithms, which will be described in detail.

Datasets. The sequence and related information of a total of 10,205 peptide toxins,
containing 10~100 amino acids, were retrieved from Uniprot database [31]. Each sequence
was first cleaned by removing peptides with non-standard residues and cleaving the signal
peptide fragment. After removing duplicate sequences, 9294 samples were kept. Among
them, 61 three-finger toxins were isolated as the external validation set. The remaining
9233 samples were randomly stratified into two datasets, a training set, accounting for 80%,
for constructing the model and a test set, accounting for 20%, for evaluating the model.

HemoPI datasets. Three HemoPI datasets (HemoPI1, HemoPI2 and HemoPI3) con-
taining experimentally validated hemolytic peptides were downloaded from Github, pub-
lished by Fabien Plisson [25]. The datasets had been preprocessed for machine learning [25].
The datasets were used to validate and improve the performance of the hemolysis model.
HemoPI2 was also used in training some models.

Physicochemical properties. Based on the peptide primary sequence, 56 physico-
chemical properties (47 peptide and 9 global descriptors) for each peptide were calculated
using modlamp 4.3.0 [56]. The calculated properties were transformed to a range of
0~1 using MinMaxScaler of sklearn preprocessing module [57]. The data were then used as
the input for model construction.

PU schemes. Three PU schemes were used to develop the best models, adapting base
classifier [36], two-step method [37] and PU bagging [38]. For each model, the data were
split into a training set (80%, 7386 samples) and a validation set (20%, 1847 samples). The
positive samples of the training set were labeled as 1, and other unlabeled samples were
labeled as −1. For each scheme, 14 machine learning algorithms were compared: LR, LDA,
QDA, SVC_rbf, SVC_poly, SVC_sig, KNN, GNB, DTC, MLP, RF, Ada, GBC and LGBM.

The adapting base classifier focuses on estimating the proportion of positive and
negative samples in the unlabeled dataset. Based on the “selected completely at random”
assumption [36], the ratio of positive and negative samples in the unlabeled dataset was
estimated by dividing the score by a constant correction factor Px (y = 1), which was
calculated by Equation (1).

Px (y = 1) = (Px (S = 1))/(Px (S = 1/y = 1)) (1)
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where Px (S = 1) is the probability of sample x being labeled as positive by a base classifier.
Px (S = 1/y = 1) is the constant probability that a positive example is labeled. In our model,
this was calculated as the probability mean of 20% of the positive samples from the training
set. The classification results were obtained by an average of 24 iterations.

In the two-step scheme [37,58], the first step is to identify reliable negative samples
from unlabeled data for the first step. The second step is to train the classifier by supervised
learning algorithms using the filtered reliable negative and positive samples. We applied
14 machine learning algorithms independently for each step. The second step was iterated
10 times in order to accurately screen out more negative samples.

PU bagging is a popular bootstrap aggregating approach to increase classifier perfor-
mance [38]. To obtain the best model, we performed 128 resamplings and model fittings for
each model on each algorithm.

Performance evaluation. To measure the quality of the classifiers, the following
evaluation metrics were applied: true positive ratio (Equation (2)), balanced accuracy
(bAcc.) (Equation (3)), weighted precision (P) (Equation (4)), weighted recall (R) (Equation
(5)), Matthews correlation coefficient (MCC) (Equation (6)), F1 score (F1) (Equation (7)), area
under the curve receiver operating characteristic (AUC-ROC) and area under the precision
and recall curve (AUPR).

TPR = TP/(TP + FN) (2)

bAcc = 1/2 (TP/(TP + FN) + TN/(FP + TN)) (3)

P = (P/(P + N))(TP/(TP + FP)) + (N/(P + N))(TN/(TN + FN)) (4)

R = (P/(P + N))(TP/(TP + FN)) + (N/(P + N))(TN/(TN + FP)) (5)

MCC = (TP × TN − FP × FN)/((TP + FP)(TP + FN)(TN + FP)(TN + FN))1/2 (6)

F1 = 2PR/(P + R) (7)

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives
and false negatives, respectively; P and N are the number of positives and negatives.

Feature elimination. The Pearson product-moment correlation coefficient (Equation
(8)) was applied to extract features. The correlation of each feature against a particular
label was calculated. Features with correlation values greater than 0.02 were considered
informative and non-redundant, and other features were deleted.

Rij = Cij/(Cii·Cjj)1/2 (8)

where R is the correlation coefficient matrix, C is the covariance matrix, and i and j are
two features.

Hyperparameter tuning. A limited number of specific hyperparameters were pre-
defined. The hyperparameters are tuned automatically through a grid search with cross-
validation (GridSearchCV) of scikit-learn’s model_selection package [57]. Stratified tenfold
cross-validation was used. Through the cycle of hyperparameters, the optimal parameter
combination was obtained according to the AUPR value of the model.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/toxins14110811/s1, List S1: Physicochemical descriptors;
Table S1. The top models from adapting base classifier and their evaluation metrics for the test set of
each activity category; Table S2. The evaluation metrics of the top hemolysis models from adapting
base classifier on HemoPI dataset after removing the outliers; Table S3. The evaluation metrics of
the top models from adapting base classifier on the test set after feature selection; Table S4. The
evaluation metrics and the optimal hyperparameters of the top models from adapting base classifier;
Table S5. The top models from the two-step method and their evaluation metrics for the test set of
each activity category; Table S6. The evaluation metrics of the top models from the two-step method
on the test set after feature selection; Table S7. The evaluation metrics and the optimal hyperparame-
ters of the top models from the two-step method; Table S8. The top models from PU bagging and
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their evaluation metrics for the test set of each activity category; Table S9. The information of 61
three-finger toxins; Table S10. The prediction results of 61 three-finger toxins using top models based
on adaptive base classifier and two-step method.
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