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New insights into functional 
regulation in MS-based drug 
profiling
Ana Sofia Carvalho1, Henrik Molina2 & Rune Matthiesen1

We present a novel data analysis strategy which combined with subcellular fractionation and liquid 
chromatography–mass spectrometry (LC-MS) based proteomics provides a simple and effective 
workflow for global drug profiling. Five subcellular fractions were obtained by differential centrifugation 
followed by high resolution LC-MS and complete functional regulation analysis. The methodology 
combines functional regulation and enrichment analysis into a single visual summary. The workflow 
enables improved insight into perturbations caused by drugs. We provide a statistical argument to 
demonstrate that even crude subcellular fractions leads to improved functional characterization. We 
demonstrate this data analysis strategy on data obtained in a MS-based global drug profiling study. 
However, this strategy can also be performed on other types of large scale biological data.

Currently employed approaches for global drug profiling include methods based on epigenomics by next generation 
sequencing1, transcriptomics using either microarrays or next generation sequencing2 and mass spectrometry for 
profiling proteins3 and metabolites4. Global proteome MS-based drug profiling was originally grounded on 2D gel elec-
trophoresis for separation and quantitation followed by mass spectrometry based identification5. With the latest gener-
ation of sensitive and high resolution accurate mass spectrometers, new methods are emerging which can be divided 
into two main methodologies: (1) pre-fractionation of peptides and/or (2) pre-fractionation of proteins previous to 
LC-MS. Multi-dimensional liquid chromatography6,7 and isoelectric focusing8 are examples of peptide pre-fractionation 
methods. One-dimensional SDS-polyacrylamide gel electrophoresis9,10, size exclusion chromatography11 and to a less 
extent subcellular fractionation5,10 have been used to resolve protein mixtures prior to LC-MS analysis.

State-of-art LC-MS instruments produce large quantities of spectral data. Further, relative quantitative data 
can be obtained based on label free or stable isotope labelling methods. Interpretation of LC-MS spectra across 
samples in bottom-up proteomics leads to two types of quantitative matrices, irrespectively of the strategy or 
labelling methods used for data collection. One matrix contains quantitative information on the peptide level 
across samples and the other contains protein quantitation information. A key challenge is to extract biological 
relevant information from the two matrices. A common strategy can be outlined as following: (1) replace missing 
values (e.g. using the average or the median values within a sample group), (2) log transform the quantitative data, 
(3) normalize the data across samples, 4) apply statistical analysis (such as ANOVA to compare multiple sample 
groups followed by a post hoc test, Significance Analysis of Microarrays (SAM) and t test to compare two sample 
groups, and (5) define groups of significant regulated proteins which are subjected to functional enrichment anal-
ysis. In general significant regulated proteins are defined by applying filters to log ratios and P values followed by 
functional enrichment analysis using tools such as bioinformatics server DAVID12 (i.e. Individual Entity Analysis, 
see Fig. 1A). However, such methods are sensitive to the applied P value and log ratio thresholds. Consequently, 
several alternative approaches have been proposed in which the statistical analysis is performed on quantitative 
data for each functional group (Entity Set Analysis, see Fig. 1B). Different statistical methods for functional analysis 
of large scale biological data based on the statistical strategies, outlined in Fig. 1A,B, have been reviewed by Nam 
et al.13. Traditionally these statistical methods were developed for technologies that collect gene data such as e.g. 
microarray platforms. Nevertheless, this methodology can be explored successfully for proteins and in theory for 
metabolites as well. We consequently have renamed these methodologies by replacing “gene” with “entity” (Fig. 1).

We applied a novel concept, designated “Complete Functional Regulation Analysis”, which results from com-
bining “Entity Set Analysis” and “Complete Entity Analysis” (Fig. 1). “Complete Entity Analysis” has to the best of 
our knowledge not been previously described. “Complete Entity Analysis” is useful for the characterization of the 
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overall identified or detected entities in a given sample using a specific method. We provide a detailed theoretical 
basis for calculating the P value for “Complete Entity Analysis” in the methods section “Complete Functional 
Regulation Analysis”. The concept of “Complete Entity Analysis” can in principle be accomplished by “Individual 
Entity Analysis” using standard software, such as the online tool DAVID14, by excluding any pre-filtering steps. 
The upper limit of entities that can be submitted to DAVID is 3000, though. DAVID is therefore not compatible 
with the analysis performed here on all identified proteins in different subcellular fractions. The P values calculated 
by “Complete Entity Analysis” are used as a measure of how well specific functional categories are detected in a 
given sample. We here demonstrate that a standard subcellular fractionation method15, combined with LC-MS 
followed by a novel “Complete Functional Regulation Analysis” provides an effective and powerful technology for 
gaining functional insight into drug effects. “Complete Functional Regulation Analysis” condenses the statistical 
significant results into a single heatmap for each type of functional annotation (e.g. cellular component, biological 
process, molecular function, KEGG, etc).

Results
For proof of concept of “Complete Functional Regulation Analysis” we have prepared five subcellular fractions using 
previously described standard methodologies15 (Fig. 2) for both untreated and glucosamine treated cancer cells.

Previously, we have characterized the response of a cancer cell line to glucosamine treatment. Therein we analyzed 
distinctively the MS data from the MiCrossomal and CyTosolic (MCCT), Soluble Nuclear (sN) and MiTochondrial 
(MT) crude fractions (Fig. 2). Additionally, MS data for the Insoluble Nuclear (iN) and MiCrossomal (MC) crude 
fractions were obtained for the analysis presented herein, using fractions obtained simultaneously with our previous 
study. Thus, the total data set consists of 30 LC-MS runs: 3 (replicas) x 5 (subcellular fractions) x 2 (control and 
treated). The subcellular fractions are designated MCCT/MCCTT, sN/sNT, MT/MTT, MC/MCT and iN/iNT, where 
the absence or presence of ending “T” indicate control or treated, respectively. The fractions MCCT, MT and sN 
were previously validated by Western blot which confirmed that the expected proteins were indeed enriched5. The 
fractions MCCT, MT and sN were also found, based on the identified proteins, to mainly contain cytosolic, mito-
chondrial and nuclear proteins, respectively. For quantification intensity Based Absolute Quantitation16 (iBAQ) were 
estimated. To further characterize the five subcellular fractions we additionally calculated the mean log2(iBAQ+1) 
values for each of the five subcellular fractions over six major subcellular compartments (Fig. 3).

For cytosol annotated proteins the log2 difference in mean log2 iBAQ values between MCCT/MC and sN is 
approximately two which correspond to a fourfold difference on average. For nucleus annotated proteins, the mean 
log2 iBAQ abundance values are higher for iN and sN as expected. We also observed that the sN fraction has a 
relative high content of proteins annotated to endoplasmic reticulum and Golgi apparatus but not to autophagic 
vacuoles. The iN fraction on the other hand showed higher mean log2 iBAQ abundance values for nucleus anno-
tated proteins compared to the sN fraction. Furthermore, the iN fraction displayed less cross contamination from 

Figure 1. Overview of basic types of functional analysis. (A) Individual Entity Analysis (IEA) uses firstly a 
statistical test to define a set of up- and/or down-regulated entities (differentially expressed entities, DEEs). In 
the second step a hyper geometric or Fisher Exact test is used to test for over or under representation of entities 
for each functional set. (B) Entity Set Analysis (ESA) for each functional set a sub expression data matrix for 
only the entities in the set is created. Next a statistical test applied to the sub-matrix enquires if the functional set 
is significantly regulated across sample groups. (C) Complete Entity Analysis (CEA) extracts entities identified 
(positive expression detected) across samples. For each sample type a Hypergeometric test or Fischer Exact 
test is used to test for over or under representation of entities for each functional set. (D) Complete functional 
regulation analysis performs the analysis in B and C to generate a visual display that illustrates and summarize 
information from both types of methods.
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Figure 2. Overview of global MS-based drug profiling using five subcellular fractions and complete 
regulative functional analysis. The strategy constitutes a novel MS-based drug profiling and data analysis 
workflow.
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Figure 3. Mean log2 iBAQ values for each of the five subcellular fractions. 
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endoplasmic reticulum and Golgi apparatus compared to the sN fraction. The MC fraction was found to have high 
mean log2 iBAQ abundance values for the cytosol, endoplasmic reticulum, Golgi apparatus and autophagic vacuole.

Following we have applied the above discussed “Complete Functional Regulation Analysis” on the quantitative 
data obtained by LC-MS label free quantitation to the samples described in Fig. 2. As mentioned above, applying 
filters to log ratios and P values followed by Individual Entity Analysis (IEA) leads to results which are sensitive 
to the applied P value and log ratio thresholds.

Therefore, as an alternative strategy proteins for each functional category can be selected, extracted and the 
quantitative values for each specific subset of proteins tested for significant regulation by calculating a paired t 
test or permutation tests (ESA). This leads to fewer statistical tests and subsequently less correction for multiple 
testing but on the other hand does not capture the enrichment of the functional category. For example, a signif-
icant regulated functional category with only two proteins out of ten identified possess less impact compared to 
a significant regulated functional category with eight out of ten proteins identified. In a similar way a significant 
regulated functional category with eight out of two hundred proteins does not have the same importance as a 
significant regulated category with eight out of ten proteins identified. The hypergeometric density function, e.g. 
using R’s dhyper function or one-tailed Fisher’s exact test, can capture the significance of enrichment of a functional 
category and takes as input four parameters which are: 1) the number of proteins identified in a functional category, 
2) the total number of background proteins in the category, 3) the total number of background proteins outside 
the category and 4) the total number of identified proteins. We therefore define complete functional enrichment 
analysis by combining significance testing of regulation within a specific functional category (ESA) with testing 
for overall functional enrichment (CEA, see methods section for details). Additionally, a small enriched functional 
category does not have as much impact as a large functional category. For example, consider two proteins out of 
three in contrast to eleven out of twelve. We therefore also report the maximum number of proteins across all 
replicas. This combined statistical analysis is then summarized in a single heatmap. The final heatmap displays the 
P values for entity regulation (ESA), the P values for functional enrichment of all detected proteins in each sample 
group (CEA), the maximum number of proteins identified across all replicas and the log ratios. The heatmaps in 
Figs 4–6A display log ratio encoded P values (P >  =  0.95 is significantly upregulated and P <  =  − 0.95 is signifi-
cantly down regulated molecular functions). The P value is based on a paired t test that compares expression values 
for all proteins in a specific functional category before and after treatment. The P values are subsequently corrected 
for multiple testing by FDR and log ratio encoded (see experimental section for details). The integer values in the 
heatmaps indicate the maximum number of identified proteins for a specific category across all replicas. Stars 
indicate protein categories that are functional enriched as estimated by the hypergeometric distribution17, 18 (see 
also methods section).

The resulting heatmap provides a rather informative and concise functional summary of the data. It there-
fore serves as a starting point to formulate novel hypothesis for further experimental validation. We previously 
demonstrated cell cycle arrest and to some extent apoptosis upon glucosamine treatment of KMH2 cells5. This is 
well reflected in the significant regulated functional categories e.g. up regulation of “NELF complex” in cytoplas-
mic and nuclear fractions (causing down-regulation of transcription), general up-regulation of “aggresome” and 
“inclusion body” (Fig. 4).

However, most of the significant functional categories identified were not detected by the standard functional 
analysis applied in our previous study where we first identified significant up and down regulated proteins from 
each fraction followed by functional enrichment analysis5. For example, the significant regulation of the functional 
categories “damaged DNA binding” (Fig. 5), “mismatch repair” (Fig. 6), “negative regulation of DNA recombina-
tion” (Fig. 6) and functional categories related to “membrane trafficking” (Figs 5–6) were not previously identified 
as significant regulated.

These newly discovered significant regulated functional categories could potentially be involved in the observed 
glucosamine protection against bortezomib that we have previously reported5. With this newly proposed analysis 
we additionally demonstrated that the outcome of subcellular fractionation results in higher number of significant 
regulated functional groups compared to the case where all peptides are analyzed globally as one group (Fig. 7).

Merging peptide quantitative data from all subcellular fractions corresponds to what would have been obtained 
if only peptide fractionation methods were used before LC-MS analysis. It is evident that there are in general 
small or no overlap between significant regulated functional categories of cellular component from the different 
subcellular fractions (Figs 4–6B).

To test the robustness of this observation different threshold values for the minimum number of proteins per 
functional category and the FDR threshold for protein identification were adjusted. More strict as well as less strict 
criteria resulted in a similar overlap in significant regulated functional categories.

The functional category “mismatch repair” is down regulated in MCCTT and MCT fractions whereas it is 
significantly up regulated in the MTT fraction (Fig. 6A). These observations can be attributed to the fact that 
subsets of functional gene ontology groups are compartmentalized. If all peptide data is merged in one large and 
complex mixture, functional regulation occurring in specific cell compartments would in some cases be averaged 
out. Comparisons of significant regulated functional categories obtained from all merged data versus all subcellular 
fractions by Venn diagrams reveals that the methodology based on subcellular fractions identifies a significant 
number of additional functional regulated categories (Fig. 7).

Discussion
The above mentioned discoveries provides a good argument for performing subcellular fractionation of protein 
mixtures in global drug profiling studies with or without subsequent peptide fractionation before LC-MS. It 
further questions the meaning of quantitative single shotgun proteomics on a whole cell lysate basis. It is well 
established that cells possess mechanisms to locally regulate protein levels by protein trafficking19 and by local 
translation of mRNAs20, a highly dynamic cellular process. Furthermore, Boisvert et al.21 recently demonstrated 
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that large multiprotein complexes that are assembled in one cellular compartment and function in another, are 
degraded significantly faster in the assembly compartment than in the functional compartment. Mixing proteins 
from different cellular compartments will obscure the detection of functional pathways that are regulated at a 
subcellular level. Moreover, even if mass spectrometry based proteomics reach sensitivity levels sufficient to profile 
the full proteome of a cell in a single LC-MS analysis the biological inference will suffer from lack of the proteome 
dynamics at the organelle level.

We used here as proof of concept subcellular fractionation combined with MS-based label free quantitative 
proteomics and functional regulation analysis. The method enabled deep proteome coverage, identifying 18889 
human protein isoforms which can be collapsed into 6279 unique coding genes. A total of 123836 peptides with 
unique amino-acid sequence were identified at 1% FDR. Supplementary Table S1 compares these values with a 
deep profiling approach by Nagaraj et al. using both protein and peptide fractionation11. Nagaraj et al. obtained 
a deeper profiling by using 72–126 fractions compared to our five subcellular fractions. Our proposed method 
demonstrates only slightly lower coverage (Supplementary Table S1). Furthermore, the strategy by Nagaraj et al. 
is not compatible with the functional regulation analysis since the fractions created do not reflect subcellular 
compartments. Nevertheless, the comparison demonstrates that further work is needed to optimize the proteome 
coverage by subcellular fractionation preferably by a minimal number of fractions. For example, 72 fractions over 
time and different drug concentrations will be timely and costly. Moreover, the five subcellular fractions resulted 
in large overlap in identified proteins (Fig. 8).

Four different FDR thresholds for protein identifications were applied to test if these overlaps were a result of 
low level cross contamination. Yet, the overlap patterns were evident for all FDR thresholds applied (Fig. 8). This 
result confirms previous findings using three human cell lines where 40% of 4000 genes/proteins were found to 
localize to multiple cellular compartments22. Despite the large overlap in protein content in different subcellular 
compartments subcellular proteomics were shown to provide more significant regulated functional categories 
compared to simulated single shotgun proteomics. Moreover, regulation of proteins, participating in multiprotein 
complexes, common among cellular compartments might constitute distinct processes. Our results presented in 
Figs 4–7 supports local regulation of at least a subset of cellular processes. Therefore deep insight into cellular 

Figure 4. Functional regulation analysis filtered for minimum 10 proteins per category. (A) The lower 
heatmap panel indicates significant up- or down- regulated cellular component from gene ontology categories. 
P values are log ratio encoded (see methods sections for details). The upper panel indicates the log ratios where 
color code for log ratio 1 indicates a log ratio >  =  1 and for − 1 indicates log ratio <  =  − 1. The numbers in each 
cell indicate the maximum number of proteins identified across all replicas for a specific protein category and 
subcellular fraction.*) indicates that the functional enrichment analysis is significant (P value < 0.05 after FDR 
correction for multiple testing). (B) Venn diagram of the overlap of significant regulated cellular component 
categories. Overlaps with no numbers indicate zero overlap.
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mechanisms in different biological sets such as cancer, infection or response to drugs requires multidimensional 
approaches (spatial and temporal proteomics) complemented by new computational biological tools23.

In conclusion, subcellular fractionation combined with state of art LC-MS and complete functional regula-
tion analysis provides a more detailed insight into functional regulation compared to using current established 
methodologies. Furthermore, subcellular localization does not in general share significant functional regulation 
with other subcellular localizations. Moreover, our results indicate that quantification by iBAQ24 results in more 
significant regulated functional categories compared to using spectral counting (result not shown). The proteome 
coverage by using five subcellular fractions, as outlined here, profiles 31% fewer protein encoding genes compare 
to previous described deep LC-MS profiling but using only five versus 72 fractions25. We envisage that further 
improvements can be achieved by minimizing the identified protein overlap between subcellular fractions and 
by improving duty cycle and sensitivity of future MS instruments. Chromatographic separation can be further 
optimized to obtain deeper protein coverage of each of the subcellular fractions25. Efforts on optimizing and com-
paring subcellular fractionation methods combined with LC-MS are required. Finally, the criteria for defining an 
optimal subcellular fractionation method will depend on the cell type and the aim of the study. The data analysis 
strategy demonstrated here could also be used for such comparative studies with the aim to optimize subcellular 
fractionation for a specific cell type and biological study.

Methods
Cell lines and culture conditions. The human Hodgkin Lymphoma derived cell line KMH2 was obtained 
from the German Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell 
Cultures. KMH2 was cultured in Gibco RPMI medium 1640 GlutaMAX™  (Gibco, Invitrogen) supplemented 
with 10% heat-inactivated FBS (Gibco, Invitrogen) in a humid environment of 5% CO2 at 37 °C. For Glucosamine 
(GlcN) treatment cells were cultured for 24 h and replated at 5 ×  105 cells/ml with or without GlcN at 20 mM for 
24 h.

Subcellular Fractionation. Cells were disrupted in ice-cold cell homogenization medium (10 mM Tris, 
pH 6.7, 150 M MgCl2, 10 mM KCl) by passing through a 20G syringe. Cell breakage was examined under a 
phase-contrast microscope. After addition of ice-cold cell homogenization medium containing 1 M sucrose (final 

Figure 5. Functional regulation analysis. (A) The lower heatmap panel indicates significant up- or down- 
regulated molecular function from gene ontology categories. P values are log ratio encoded (see methods 
sections for details). The upper panel indicates the log ratios where color code for log ratio 1 indicates a log 
ratio >  =  1 and for − 1 indicates log ratio <  =  − 1. The numbers in each cell indicates the maximum number 
of proteins identified across all replicas for a specific protein category and subcellular fraction. *) indicate that 
the functional enrichment analysis is significant (P value < 0.05 after FDR correction for multiple testing). (B) 
Venn diagram of the overlap of significant regulated molecular function categories. Overlaps with no numbers 
indicate zero overlap.
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0.25 M) to the disrupted cells, nuclei were pellet by centrifuging 5 min at 1000×  g, 4 °C. To obtain mitochon-
dria the remaining supernatant was centrifuged 10 min at 5000×  g, 4 °C and the pellet resuspended in ice-cold 
sucrose/Mg2+ medium (10 mM Tris, pH 6.7, 150 mM MgCl2, 0.25 M sucrose). Mitochondria were pellet by recen-
trifuging the suspension at 5000×  g, 10 min, 4 °C. The supernatant was designated MCCT fraction and was fur-
ther fractionated by ultracentrifugation 60 min at 100000×  g, 4 °C. The pellet was used to prepare the microsomal 
fraction (MC) and the supernatant the cytosolic fraction (CT). MCCT fraction was analyzed without further 
processing. All samples were stored at − 80 °C until use. For further electrophoresis and MS/MS analysis, nuclei 
pellet was lysed using RIPA lysis buffer at 4 °C for 20 min on ice and the nuclear lysate centrifuged for 20 min at 
15000×  g, 4 °C. The supernatant constituted the soluble nuclear fraction (sN) and the pellet the insoluble nuclear 
fraction (iN) which was resuspend in RIPA buffer, incubated 30 minutes on ice, vortexed every 5 min and finally 
centrifuged 20 minutes, at 15000g, 4 °C. Mitochondria were lysed using RIPA lysis buffer at 4 °C for 20 min and 
the lysate cleared by centrifuging 20 min at 15000×  g, 4 °C, constituting the mitochondrial fraction (MT). The 
microsomal fraction (MC) was prepared by lysis of the pellet obtained by ultracentrifugation and prepared as 
described above for the mitochondrial fraction. We used in this study as a proof of concept the five subcellular 
fractions iN, sN, MC, MT and MCCT. Alternatively, the CT fraction instead of the MCCT fraction and a high salt 
buffer to prepare the iN fraction could be attempted.

Figure 6. Functional regulation analysis. (A) The lower heatmap panel indicates significant up- or down- 
regulated biological process from gene ontology categories. P values are log ratio encoded (see methods sections 
for details). The upper panel indicates the log ratios where color code for log ratio 1 indicates a log ratio >  =  1 
and for − 1 indicates log ratio <  =  − 1. (B) Venn diagram of the overlap of significant regulated biological 
process categories. Overlaps with no numbers indicate zero overlap.

Figure 7. Venn diagrams comparing significant regulated gene ontology categories for all data versus 
total significant regulated categories for all subcellular fractions. The Venn comparisons were made for (A) 
biological process (BP), (B) molecular function (MF) and (C) cellular component (CC).
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Peptide sample preparation. Protein solution containing SDS and DTT were loaded into filtering col-
umns and washed exhaustively with 8M urea in HEPES buffer26. Proteins were reduced with DTT and alkylated 
with IAA. Protein digestion was performed by overnight digestion with trypsin sequencing grade (Promega).

Mass spectrometry. Generated peptides as described above were desalted and concentrated27 prior to 
analysis by nano LC-MS/MS using an Q-Exactive (Thermo, San Jose, CA, USA) mass spectrometer coupled to 
a Dionex NCP3200RS HPLC setup (Thermo, Sunnyvale, CA, USA). A 75 μ m ID, 15 cm in length home build 
reversed phase column (Reprosil-pur 3um C18-AQ, Ammerbuch-Entringen, Germany) was used to separate 
peptides. The analytical gradient was generated at 200 nL/min increasing from 5% Buffer B (0.1% formic acid 
in acetonitrile)/95% Buffer A (0.1% formic acid) to 35% Buffer B/65% Buffer A over 110 minutes followed by an 
increase to 90% Buffer B/10% Buffer A in 10 minutes.

MS survey scans were scanned from m/z 350 to m/z 1400 at 70.000 resolution (AGC: 1e6 and Maximum IT: 
120 ms). An upper limit of 20 most abundant ions was subjected to MS/MS and measured at a resolution of 35.000 
(AGC: 5e4 and Maximum IT: 120 ms) with lowest mass set to m/z 100.

Preprocessing of MS data. Q-Exactive data were calibrated using polycyclodi-methylsiloxane (PCMs—
outgassed material from semiconductors) present in the ambient air and Bis(2-Ethylhexyl)(Phthalate) (DEHP—
from plastic)28,29 by modular VEMS30. Modular VEMS further allows alternative parent ion annotations for each 
MS/MS spectrum which is needed if two peptide elution profiles overlap in the m/z and retention time dimen-
sion. By allowing alternative parent ion annotation for each MS/MS spectrum, provides a storage space efficient 
data format. Furthermore these alternative parent ion annotations were taken into account during the database 
dependent search.
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Figure 8. Overlap in identified proteins from the five subcellular fractions before and after exposure to 
GlcN. “In” indicates proteins identified in the five treated subcellular fractions but not in any of the five untreated 
subcellular fractions. “Out” indicates proteins identified only in the five untreated fractions but not in any of the 
five treated subcellular fractions. FDR indicate the false discovery threshold used for protein identification.
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MS database dependent search. A customized sequence database was established, which includes all 
common contaminants31, genomic variation described by Liu et al.32 and permutated protein sequences keeping 
Arg and Lys in place.

All data were searched with VEMS33. Mass accuracy was set to 5 ppm for peptides and 10 mDa for peptide frag-
ments. Gaussian weight for fragment ions was set to 5 and the six most intense fragment ions per 100 Da was used 
for scoring fragment ions. Four missed cleavages were specified and the database UniProtKB/TrEMBL (Release 
2015_02) were used including permutated protein sequences, leaving Lys and Arg in place, together with common 
contaminants such as human keratins, bovine serum proteins and proteases31. The total number of protein entries 
searched was 136314. Fixed modification of carbamidomethyl cysteine was included in the search parameters. 
A list of 12 variable modifications (Supplementary Table S3) was considered for all data searched against the full 
protein database. Protein N-terminal Met-loss is not specified for VEMS searches since VEMS by default checks 
N-terminal Met-loss. The false discovery rate (FDR) for protein identification was set to 1% for peptide and pro-
tein identifications unless otherwise specified. No restriction was applied for minimal peptide length. Identified 
proteins were divided into evidence groups as defined by Matthiesen et al.34.

Our data were also analyzed using a proteogenomics35 strategy by first constructing a protein sequence database 
which contains genomic variations observed in a recent whole-exome sequencing (WES) publication targeting 
the Hodgkin lymphoma cell line KMH232. We identified 113 mutated proteins by global MS based profiling out 
of 376 non redundant genes found to have mutations, insertion or deletions by WES (Supplementary Table S2). 
A subset of these was identified with peptides that covered the WES observed mutation, insertion or deletion 
(Supplementary Fig. S1).

Quantitative proteome analysis. Proteins were quantified by spectral counting36 and mziXIC30 followed 
by iBAQ16,24 estimation. We present only the result from the iBAQ quantitation. The quantitative values were 
added one and log two transformed. A paired t test was used to test for significant regulation of proteins for 
each functional category. We used functional categories rather than individual proteins to test for significant 
regulation. This results in fewer hypothesis tests and consequently less correction of p values. Correction for 
multiple testing was done by the FDR method37 and no imputation for missing values was used. P values were log 
ratio encoded for heatmap visualization. P values for up regulated functional categories were transformed as 1-p 
whereas p values for down regulated functional categories were transformed as p-1.

Complete functional regulation analysis. For simplicity we have used the gene ontology functional 
categories obtained from UniProt (Release 2015_02): 1) cellular component, 2) biological process and 3) molec-
ular function. We used R hyper geometric functions to estimate significance enrichment of identified proteins 
by “Complete Entity Analysis”. IEA is frequently used to test for significant enrichment or depletion among reg-
ulated genes or proteins. CEA on the other hand is a useful alternative for proteomics studies where sub cellular 
compartments frequently are biochemically enriched. CEA can for example test significantly enriched entities 
among the mass spectrometry identified proteins from a subcellular fraction. We have previously provided a more 
detailed discussion on enrichment analysis based on the hyper geometric function38. Briefly, the hyper geometric 
function’s probability mass function (Eq. 1) is the exact null distribution39.
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In equation 1, K is the number of success states in the population. K translates to the number of proteins assigned 
to a given GO annotation in the sequence database used for searching MSMS data. There is a subtle difference 
here from IEA since the proteins identified or genes on an array are often used as a reference list for IEA. However, 
for CEA the most reasonable choice as a reference list are the proteins (entities) in the sequence database used 
for searching the MSMS data. n is the number of draws and k is the number of observed successes. n translates 
to the total number of proteins identified in a specific subcellular fraction. k translates to proteins assigned to a 
given GO annotation among the proteins identified in a specific subcellular fraction. N is the population size. N 
translates to the total number of entities in the reference list that is the total number of proteins in the sequence 
database used for searching the MSMS data. Again note the subtle difference in the definition of the reference list 
between IEA and CEA.

For the presented analysis a one-sided test was calculated by the cumulative density function of the hyper 
geometric function (Eq. 2). However, other statistical tests have been proposed and a two sided test for both 
depletion and enrichment could also have been calculated (see Hackenberg et al.38 for more detailed discussion). 
The cumulative density function of the hyper geometric function can conveniently be calculated by R’s dhyper 
function. The cumulative density function of the hyper geometric function in Equation 2 calculates the probability 
of obtaining between 0 and x proteins in a specific GO category by chance. We define P values for enrichment as 
the probability to obtain more than x proteins assigned to a specific GO annotation by chance as 1-CDFx

40.
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We observed that CEA frequently found GO categories with many entities significant. However, if the signif-
icant GO categories found by CEA were filtered by significant regulated GO annotations by “Entity Set Analysis” 
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an informative list of GO categories would be extracted. A paired t test using iBAQ or log transformed spectral 
counts as input were used for “Entity Set Analysis”. We have previously published more extensive approaches using 
large database of functional categories and combination of categories18. Furthermore, functional analysis can be 
extended to include not only qualitative analysis but also quantitative analysis17. Heatmaps were generated by using 
the R package “heatmap.3”. Venn diagrams were created using R package “VennDiagram”. Chord diagrams were 
created with the R package “circlize”.
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