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ABSTRACT

Transposable element (TE)-derived genes are in-
creasingly recognized as major sources conferring
essential traits in agriculturally important crops but
underlying evolutionary mechanisms remain ob-
scure. We updated previous annotations and con-
structed 18,744 FAR-RED IMPAIRED RESPONSE1
(FAR1) genes, a transcription factor family derived
from Mutator-like elements (MULEs), from 80 plant
species, including 15,546 genes omitted in previ-
ous annotations. In-depth sequence comparison of
the updated gene repertoire revealed that FAR1
genes underwent continuous structural divergence
via frameshift and nonsense mutations that caused
premature translation termination or specific do-
main truncations. CRISPR/Cas9-based genome edit-
ing and transcriptome analysis determined a novel
gene involved in fertility-regulating transcription of
rice pollen, denoting the functional capacity of our
re-annotated gene models especially in monocots
which had the highest copy numbers. Genomic ev-
idence showed that the functional gene adapted by
obtaining a shortened form through a frameshift mu-
tation caused by a tandem duplication of a 79-bp
sequence resulting in premature translation termi-
nation. Our findings provide improved resources for
comprehensive studies of FAR1 genes with bene-
ficial agricultural traits and unveil novel evolution-
ary mechanisms generating structural divergence
and subsequent adaptation of TE-derived genes in
plants.

INTRODUCTION

Transposable elements (TEs) are a major driving force of
genome evolution, affecting genome size and structure as
well as gene regulation (1). TEs often generate novel genes
that generally consist of protein-coding sequences flanked
by repeat sequences (2,3), such as DAYSLEEPER [encod-
ing an hAT transposase with terminal inverted repeats and
important for angiosperm development (4)] and the L gene
[with flanking long terminal repeats provides resistance in
peppers against Tobamovirus species (5)]. Most TE-derived
genes form multi-copy gene families by TE-mediated dupli-
cation and subsequently adapt through various evolution-
ary processes, followed by acquisition of diversified func-
tions (5–8). These novel genes are increasingly recognized
as important sources of beneficial agricultural traits and
adaptive functions in plants in response to changing envi-
ronments (8,9). However, detailed adaptation mechanisms
of these gene families are yet to be understood.

The FAR-RED IMPAIRED RESPONSE1 (FAR1)
gene family, including FAR-RED ELONGATED
HYPOCOTYLS3 (FHY3), FAR1-related sequences
(FRS) and FAR1-related sequence-related factors (FRF),
is a group of major Mutator-like element (MULE)-derived
genes in plants thought to have evolved to adapt to
changing light conditions (8,10,11). FAR1 genes generally
have an N-terminal FAR1 DNA-binding domain, central
MULE transposase domain, and C-terminal SWIM
zinc-binding domain (11). Most commonly studied in
Arabidopsis, FAR1 is known to activate FAR-RED-
ELONGATED HYPOCOTYL1 (FHY1) and FHY1-like
(FHL), which subsequently induce light-controlled physio-
logical processes of agricultural interest (8,12). In addition
to Arabidopsis, other major agricultural crops, such as
rice and wheat, contain multiple copies of FAR1 genes;
however, very little information regarding the functions of
FAR1 genes in these species has been reported (13). More-
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over, publicly available annotations with gene omissions
limit a comprehensive understanding of the FAR1 gene
family in plants, including important agricultural crops.

In this study, we performed annotation updates and con-
solidated 18,744 re-annotated FAR1 genes from 80 plant
genomes. This updated gene repertoire comprised 15,546
genes previously omitted from annotations, especially from
the Poaceae family of monocots, which includes many im-
portant crops such as wheat and rice. Comparative analyses
of the top three gene structures of identified FAR1 genes re-
vealed that premature translation termination caused by re-
current frameshift and nonsense mutations primarily led to
the emergence of diversified gene structures. We identified
a novel functional gene, encoding a fertility-related tran-
scriptional regulator of pollen in Oryza sativa ssp. japon-
ica, through knockout experiments using CRISPR/Cas9
and transcriptomic approaches. Further genomic investiga-
tion revealed that the functional gene emerged and adapted
through a frameshift mutation generated by a tandem dupli-
cation of a 79-bp sequence specific to O. sativa ssp. japonica
that led to premature translation termination. The updated
FAR1 repertoire represents an important genetic source of
acquired traits in plants and illustrates a dynamic adapta-
tion mechanism for widespread structural and functional
divergence that is mediated by a prominent TE-derived gene
family. Moreover, our annotations provide a valuable ge-
nomic resource for future studies of beneficial agriculture
traits, particularly regarding the genetic events that led to
their emergence and phylogenetic distribution.

MATERIALS AND METHODS

Genomic resources and FAR1 gene family annotation

To annotate FAR1 family genes within the plant king-
dom, 80 plant species, including 5 lower plants, 3 gym-
nosperms, 1 basal angiosperm, 35 monocots and 36 eudi-
cots, were chosen for analyses (Supplementary Table S1).
Of the total genes, those from 49 species were integrated
from a previous study (14). Re-annotation of FAR1 genes
in the remaining 31 species was performed in the same man-
ner using TGFam-Finder v1.01 (14), publicly available ge-
nomic resources, and RNA-seq data described in Supple-
mentary Table S1. TSV files obtained by performing Inter-
proScan v5.22–61.0 (15) (-f tsv -appl Pfam) were used for
‘TSV FOR DOMAIN IDENTIFICATION’, and the tar-
get domain ID was set as PF03101 (FAR1) from the PFAM
database (16).

Domain structures of FAR1 genes

Functional annotation of updated FAR1 gene models was
completed with InterproScan v5.22–61.0 (15) (-f tsv -appl
Pfam). SWIM zinc-finger domains in 18,744 protein se-
quences were identified by HMMER 3.1b2 (17) using de-
fault parameters and a Hidden Markov Model (HMM)
database of SWIM (PF04434). Domain structures of each
FAR1 gene were constructed from the modified Inter-
proScan results, ignoring any domains with e-values higher
than 1E-4. Only genes with at least one FAR1 (PF03101)

domain were considered for downstream analyses. Do-
mains excluding FAR1 (PF03101), MULE (PF10551) or
SWIM (PF04434) were considered ‘integrated domains’
(IDs).

Motif analysis of FAR1 genes

All protein sequences from FAR1 gene models were used
as input for de novo motif discovery by MEME v5.1.1 (18)
(-protein -mod zoops -nmotifs 100 -minw 10 -maxw 50 -
objfun se -markov order 0). A total of 79 motifs identified
by MEME were then matched to 18,744 protein sequences
using MAST v5.1.1 (19). Motifs appearing repetitively in
various locations were excluded from defining motif posi-
tion in the top three gene structures.

Chi-square enrichment test

An in-house Perl script including fisher.test and chisq.test
functions from the Statistics::R module in R were used
to determine whether gene structures, ID, and motifs were
enriched in monocots or eudicots. P-values were approxi-
mated by Monte Carlo simulations using 10,000 replicates
for Fisher’s and chi-square tests to control familywise error
rate and false discovery rate. P-values <0.0001 were consid-
ered highly significant for the confident enrichment test.

Phylogenetic analyses of FAR1 genes

FAR1 genes with intact FAR1 domains containing the
first and last motifs of FAR1 domains were used for phy-
logenetic tree construction. The 12,590 protein sequences
were aligned by fftns from MAFFT v7.470 (20). Poorly
aligned regions were calculated and removed by trimAl
v1.4.rev22 (21) (-gappyout). RAxML v8.2.12 (22) predicted
the PROTGAMMAJTTF model to be most suitable for
this dataset (-m PROTGAMMAAUTO -p 12345), and 500
rapid bootstraps were run with random parsimony seeds to
support the best maximum likelihood tree (-m PROTGAM-
MAJTTF -p 12345 -x 12345 -# 500). The tree was mid-point
rooted and visualized using Interactive Tree of Life v5.7
(23), and the finalized tree was arranged into 28 subgroups
based on FAR1 motif architectures and taxonomy. Intact
FAR1 genes with similar domain and motif structures were
grouped together, whereas those with distinct gene struc-
tures were further subdivided into separate groups. The re-
maining genes with partial FAR1 domains not included in
the tree were assigned to specific subgroups by a BLASTP
(-outfmt 7 -evalue 1E-10 -max target seqs 50) similarity
search against all available intact FAR1 protein sequences.
IQ-TREE v2.0.6 (24) (-mset JTT -mfreq F -alrt 1000 -B
1000 -safe) was used to infer phylogenetic relationships with
the same dataset to validate the subgroup division of the tree
from RAxML. Genes in each subgroup were examined to
determine if they branched together in both trees.

Identification of point mutation sites in FAR1 genes

DNA sequences of genes containing a FAR1 domain only
(F) or FAR1 and MULE domains only (FM) were ex-
tended downstream by 40 and 20 kb, respectively. Then,
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they were searched with HMMER 3.1b2 (17) using de-
fault parameters and HMM databases of FAR1 (PF03101),
MULE (PF10551) and SWIM (PF04434) to find evidence
of MULE and/or SWIM domains in the downstream re-
gions of F and FM genes. DupGen finder (25) was used
to define duplication pairs, which were grouped into two
categories, depending on whether each pair had the same
or different gene structures; the distinct domain architec-
tures of the latter group were inspected. Between the two
genes in a pair, the one with a shorter gene structure was
designated as Pair 1, while the longer one was labeled Pair
2. The pairs were designated ‘F-type’ or ‘FM-type’ based
on whether Pair 1 was an F or FM gene, respectively. Pep-
tide sequences of Pair 2 were aligned to extended DNA se-
quences of Pair 1 using Exonerate v2.2.0 (26) (–model pro-
tein2genome –minintron [minimum intron length of Pair 2 *
0.9] –showtargetgff yes –showquerygff yes –codongapopen
-1 –forcegtag yes). MAST v5.1.1 (19) was performed on the
alignment using 79 previously identified motifs. All motifs
in the alignment were grouped into four categories: front,
pre-end, end and back (Figure 3A). The end motif contain-
ing a stop codon at the C-terminal of Pair 1 was labeled
‘end’ motif site and, the motif positioned in front of the
‘end’ motif site in the alignment was considered ‘pre-end’
motif site. Any motifs located upstream of the ‘pre-end’ mo-
tif site were classified as ‘front’ motifs, while motifs aligned
downstream of the ‘end’ motif site were designated ‘back’
motifs.

Shortening of gene structures was expected to have oc-
curred through one of two mechanisms: premature trans-
lation termination or MULE/SWIM domain truncation.
If the ‘end’ motif site of Pair 1 was located immediately
after the last domain of the protein sequence, the pair
was predicted to experience premature translation termi-
nation. In contrast, if the ‘end’ motif site was positioned
after a domain missing from the annotation, the sequence
was thought to have undergone a partial truncation of its
MULE/SWIM domains. Thus, the sequence variation of
these two types was viewed separately. For noise filtra-
tion, only alignments covering >70% of Pair 2 were con-
sidered (Supplementary Figure S7). Additionally, for ex-
amining variation in sequences with premature translation
termination, alignments containing all four categories of
motifs (front, pre-end, end, back) were used for down-
stream analyses. For viewing sequence variation causing
MULE/SWIM domain truncation, alignments containing
remnants of MULE/SWIM domains were used (Supple-
mentary Figure S7). Numbers of frameshift or nonsense
mutations were counted for each motif position, with mul-
tiple mutations counted as one per motif position.

Phylogenetic heatmap analysis

To choose a candidate for functional investigation in
rice, we constructed a phylogenetic heatmap like that of
the CAFRI-Rice website (http://cafri-rice.khu.ac.kr/) (27).
Briefly, we measured the expression of FAR1 genes in the
G2 subgroup using a modified gene annotation file (Dataset
S1) and merged it with the phylogenetic tree of G2 subgroup
genes through the ETE3 toolkit (28).

RNA extraction and qRT-PCR analysis

Samples of Oryza sativa ssp. japonica were immediately
frozen with liquid nitrogen at various developmental stages
as described by Moon et al. (29). For pollen samples, we
used RNAlater Stabilization Solution (Invitrogen) to col-
lect and preserve pollen from dehiscent anthers at the paddy
field. Total RNA was extracted using a RNeasy Plant Mini
Kit (Qiagen) following the manufacturer’s instructions. cD-
NAs were synthesized using the SuPrimeScript RT Premix
Kit (GeNet Bio) with a 50◦C incubation for 60 min. For
qRT-PCR analysis, we used 2X Prime Q-Mastermix which
contains SYBR Green1, with PCR cycling conditions of
95◦C for 10 s, 60◦C for 15 s and 72◦C for 20 s using the
Rotor-Gene Q system (Qiagen). Rice ubiquitin 5 (OsUbi5,
LOC Os01g22490) was used as a reference gene, and rel-
ative expression was calculated by the 2−��Ct method (30).
The primers used for qRT-PCR are listed in Supplementary
Table S9.

Vector construction and rice transformation

To investigate subcellular localization, the coding sequences
of OSAT.v7 FAR1.Chr10.2 (hereafter called OFF) and
OsRH36 were amplified and fused with GFP and mCherry,
respectively, in the HindIII-digested pGreen vector us-
ing the In-Fusion HD PCR Cloning Kit (Takara). The
plasmids were transformed into Agrobacterium tumefa-
ciens GV3101 individually and used for tobacco infiltra-
tion assays as described below. To generate a knockout mu-
tant of OFF using CRISPR/Cas9 genome editing, we de-
signed a single-guide RNA through CRISPRdirect (http://
crispr.dbcls.jp/) (31). Designed oligomers were synthesized,
and annealed oligomer was ligated into the BsaI-digested
pRGEB32 binary vector (Addgene plasmid ID: 63142).
After the plasmid was transformed into A. tumefaciens
LBA4404, stable transformation of rice was performed us-
ing cv. Dongjin through the Agrobacterium-mediated co-
cultivation method as described in Lee et al. (32). The
primers for vector construction are listed in Supplementary
Table S9.

Subcellular localization assay

Agrobacterium tumefaciens GV3101 cells carrying the con-
structed p35S:OFF-GFP and p35S:OsRH36-mCherry vec-
tors were co-infiltrated into Nicotiana benthamiana (to-
bacco) leaves following the protocol by Sparkes et al. (33).
The infiltrated leaves were observed after 48–72 h with
a confocal scanning laser microscope (LSM 510 META;
Carl Zeiss). Fluorescence of GFP and mCherry was de-
tected using 488/505–530- and 543/560–615-nm filter sets
(excitation/emission), respectively. The acquired images
were analyzed with Zeiss ZEN lite v2.6.

Plant materials and growth conditions

Wild-type rice (O. sativa ssp. japonica cv. Dongjin) and the
knockout mutant (off-1) were cultivated in a growth cham-
ber under 28◦C/25◦C (day/night), 16 h/8 h light/dark cy-
cle and 80% humidity conditions for 2 weeks and trans-
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ferred to the paddy field located at Kyung Hee Univer-
sity in Yongin, South Korea, from May 2019 to October
2020. Seeds from these plants were grown on Murashige
and Skoog media for 2 weeks and transferred to soil in
the growth chamber. To obtain homozygous knockout
mutants, genomic DNA was extracted using the CTAB
method, and the CRISPR/Cas9 target region was amplified
for Sanger sequencing analysis. Tobacco plants for the infil-
tration assay were cultivated in a growth chamber at 25◦C
with a 12 h/12 h light/dark cycle and 60% of humidity for
3 weeks.

Transcriptome analysis

Anthers containing mature pollen grains were collected
from the paddy field and immediately frozen with liquid
nitrogen for RNA sequencing analysis. After passing qual-
ity control of the total extracted RNA, sequencing libraries
were constructed using the TruSeq Stranded mRNA LT
Sample Prep Kit following the manufacturer’s instructions
(Part #15031047 Rev. E). RNA sequencing was performed
by Macrogen, Inc., using the Illumina NovaSeq 6000 plat-
form (Illumina). Raw FASTQ files were trimmed using Cu-
tadapt v2.3 (34) (-a AGATCGGAAGAGC -A AGATCG-
GAAGAGC -q 30 -m 20) and mapped to the MSU7 ref-
erence rice genome (http://rice.plantbiology.msu.edu/) (35)
using the HISAT2 aligner v2.1.0 with default parameters
(36). The mapped reads were calculated using Feature-
Count v1.6.3 (-t exon -g gene id -p) (37) and statistically
tested using DESeq2 v1.30.0 (38) in R. Differentially ex-
pressed genes (DEGs) were selected with the following
criteria: basemean > 10, |log2(fold change)| > 1, and p-
and adj.P-value < 0.05. To investigate FAR1 binding sites
(FBS; CACGCGC) in 2-kb sequences located upstream of
the DEGs, we parsed the upstream sequences using Bed-
tools v2.26.0 (39) and performed enrichment analysis of
FBS through the AME function on the MEME Suite web-
site (https://meme-suite.org/meme/tools/ame) (40). Map-
Man software was used for functional analysis of the DEGs
between wild-type versus off-1 mutant plants (41). The raw
data files were deposited at ArrayExpress (https://www.ebi.
ac.uk/arrayexpress; E-MTAB-10106).

Phenotype analysis and fertility measurement

Flowers and anthers before anthesis were photographed
with an SZX61 microscope (Olympus). To determine pollen
grain morphology, each anther was squeezed with forceps,
and the released pollen grains were stained as described in
Kim et al. (42). Briefly, 1% I2-KI solution was used to stain
the starch inside the pollen grain, and 0.1% calcofluor white
and 0.001% auramine O solution were used to stain the
intine and exine, respectively. The tri-stained pollen grains
were observed using a BX61 microscope (Olympus) under
brightfield, ultraviolet and fluorescein isothiocyanate chan-
nels, respectively. To observe plant phenotypes, homozy-
gous plants and wild-type controls were grown in the paddy
field and photographed using COOLPIX P900s (Nikon).
Fertility was measured by calculating the seed setting ra-
tios of five panicles from three wild-type and off-1 knockout
plants (six plants total) (Supplementary Table S10).

Investigation of the emergence of functional gene

To elucidate the emergence of OFF in O. sativa ssp. japonica,
recent ancestral gene structures of the functional gene were
first identified by protein mapping of FMS-type genes in the
same subgroup (G2) against chromosome 10 of other Oryza
spp. using Exonerate v2.2.0 (26) (–model protein2genome –
showtargetgff yes –showquerygff yes –forcegtag yes). Align-
ment results mapping >90% of OSAT.v7 FAR1.Chr12.1
were considered to have a copy of the ancestral gene se-
quence with the FAR1-MULE-SWIM (FMS) structure.
Mutation sites were detected in the alignment results. A
multiple sequence alignment was performed using CLC Se-
quence Viewer 8 (CLC Bio), which identified an insertion
of a 79-bp sequence in OFF.

Yeast-two-hybrid screening assay

FAR1 domain coding sequence of OFF (2nd amino acid
to 190th) was cloned into the EcoRI/BamHI-digested pG-
BKT7 vector. The self-transcriptional activation of the bait
plasmid was examined by transforming into the AH109
yeast strain together with an empty prey vector. After con-
firming that there is no self-activation of baits, the yeast-
two-hybrid screening assay was conducted by Panbionet
Corp (Pohang, South Korea) using rice anther yeast library.
Of the 8.88 × 106 screened colonies, 60 colonies were grown
on SD medium lacking leucine, tryptophan, histidine and
adenosine (SD-LWHA) plates to find real positive interac-
tions. To confirm the interaction, the prey part of DNA
from 60 positive candidates were amplified by PCR or by
Escherichia coli transformation, and then the amplified can-
didate prey was reintroduced into yeast with the FAR1 bait
plasmid or with a negative control plasmid. The primers
used for bait construction are listed in Supplementary Ta-
ble S9.

RESULTS AND DISCUSSION

Structural characteristics of updated FAR1 genes among 80
plant species

We performed re-annotation of FAR1 gene family (here-
after called FAR1 genes) in 31 plant species and consoli-
dated a total of 18,744 updated genes from these and an
additional 49 plant genomes by integrating previously im-
proved FAR1 gene models (14) (Supplementary Table S1).
Of the updated genes from 80 total species, 15,546 (83%)
were newly annotated, which was a 5-fold increase from
3,198 (17%) previously annotated genes and were unevenly
distributed across taxonomic classes: 82.1% (monocots),
17.5% (eudicots) and 0.4% (others) (Figure 1A and Supple-
mentary Table S1). We observed that 10,693 (69%) of the
newly annotated genes were generated based on RNA-Seq
or protein data, showing high-confidence evidence (Supple-
mentary Table S2). Most monocot FAR1 genes were pre-
dominantly observed in the Poaceae family (92%), suggest-
ing a lineage-specific expansion of FAR1 genes that corrob-
orates a report that Mutator sequences are ubiquitous in the
grasses (43).

Structural analysis of FAR1 genes revealed that the or-
der of abundance of three major gene structures (87%) was

http://rice.plantbiology.msu.edu/
https://meme-suite.org/meme/tools/ame
https://www.ebi.ac.uk/arrayexpress;
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Figure 1. Characteristics of the re-annotated FAR1 gene family in 80 plant species. (A) Total and average numbers of FAR1 genes identified from 80 plant
species, including 35 monocots and 36 eudicots, are illustrated as bar plots. Orange and blue bars indicate previously published genes and newly annotated
genes, respectively. (B) The numbers of top 10 gene architectures found in the FAR1 genes are shown in bar plots, while the overall ratio of the top three
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reversed after our annotation update; in contrast to 1,306
(40.8%), 833 (26.0%) and 478 (14.9%) previously annotated
genes containing FAR1-MULE-SWIM (FMS), FAR1 only
(F) and FAR1-MULE (FM), respectively, our updated
gene models included 5,067 (27.0%), 5,559 (29.7%) and
5,634 (30.1%) genes with these respective elements (Figure
1B and Supplementary Table S3). Specifically, a chi-square
test showed that FM genes were significantly abundant in
newly annotated genes, especially among monocots, com-
pared with prior analyses (Figure 1B and Supplementary
Table S3). Considering the absence of known functional
FM genes in model plants like Arabidopsis, our findings
suggest that the updated annotation can serve as a novel re-
source for functional investigations of FAR1 genes (Supple-
mentary Tables S3 and S4). Of the 2,484 genes (13%) exclud-
ing the three major gene architectures, 1,603 contained 570
distinct integrated domains (IDs) comprising high propor-
tion of transposable element (TE)-related content, such as

reverse transcriptase, integrase and gag polypeptide, closely
associated with gene regions and function (44,45), as well
as several lineage-specifically enriched domains, such as
GATA and COMM (Figure 1C and D). Specifically, 68%
of distinct IDs were identified in newly annotated genes
and contributed to the annotation of new FAR1 gene struc-
tures (Figure 1C and D). These observations demonstrate
that this updated annotation could provide improved FAR1
gene resources that contain a large number of previously
non-annotated genes for further comprehensive analyses.

Motif architectures of the top three FAR1 gene structures

For the three major gene structures of FAR1 genes, we
identified and determined positions of 51 conserved mo-
tif sequences, excluding 28 motifs located repetitively in the
N- and C-terminals of 16,210 F, FM or FMS genes (86%)
(Figure 2A and Supplementary Table S5). Motifs in the
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region encompassing the MULE and SWIM domains were
highly conserved, consistent with previous studies reporting
high sequence similarity in the central transposases and C-
terminal zinc-binding domains (8,11) (Figure 2A). In con-
trast, FAR1 domains were variable and included monocot-
specifically expanded motifs adjacent to position 5, espe-
cially in the Poaceae family (98%), and eudicot-specifically
expanded motifs in the Fabaceae family (64%), generating
structural diversity in overall major FAR1 gene structures
(Figure 2A and Supplementary Table S5). We next com-
pared motif architectures of F, FM and FMS genes sep-
arately, revealing that their motif compositions were not
distinct (Supplementary Figure S1), which suggests that all
three major gene structures of the FAR1 repertoire presum-
ably underwent structural changes after emerging from a
common ancestor.

Subgroup characteristics and phylogenetic relationships of
FAR1 genes

We constructed a phylogenetic tree using 12,590 FAR1 pro-
tein sequences (67%) containing intact FAR1 domains with
both start and end motifs (at positions 3 and 8) and deter-
mined all 18,744 FAR1 genes into 1 of 28 subgroups (Fig-
ure 2B; Supplementary Figures S2 and S3). Using another
tree built with the same data, we validated the conserva-
tion of each clade with 99% overlap (Supplementary Fig-
ure S2). We observed specific subgroups of genes associ-
ated with distinct lineages; for example, 71% of genes in the
Poaceae family, including 85% of wheat-related genes, com-
posed a single large clade (99.9% of G18 to G28), indicating
Poaceae-specific expansion, especially in species of wheat
(Figure 2B; Supplementary Figure S3 and Table S6). Fur-
ther examination revealed that the most abundant FAR1
motif architectures of each subgroup varied between sub-
groups. FAR1 genes in the Poaceae-expanded subgroups
(G18 to G28) comprised monocot-enriched motifs, whereas
the G. max-expanded G16 subgroup exhibited a eudicot-
enriched FAR1 motif structure (Figure 2C and Supplemen-
tary Table S6). Moreover, we observed that most subgroups
contained all three main gene structures, providing evidence
that these gene structures originated from common ances-
tors of each subgroup and simultaneously underwent struc-
tural changes in different lineages (Figure 2D).

Structural divergence of FAR1 genes via recurrent sequence
mutations

Because genes do not likely simultaneously gain identical
gene structures across different subgroups, we postulated
that genes containing FM or F only underwent losses of
MULE and/or SWIM domains through further evolution-
ary processes after emergence from their parental genes
comprising FMS. To verify this hypothesis, we examined
the downstream sequences of F and FM genes for evidence
of residual MULE and SWIM domain sequences (Supple-
mentary Figure S4). Of 5,559 F genes, 70% contained resid-
ual MULE and/or SWIM domains, whereas 37% of 5,634
FM genes contained remnants of SWIM domains, suggest-
ing that those genes were altered to F or FM structures
by relatively recent omission of MULE and/or SWIM do-
mains (Supplementary Figure S4 and Table S7). When we

analyzed the end motif positions of F and FM genes, most
F (90%) and FM (74%) genes were predicted to be short-
ened due to premature translation termination (Supplemen-
tary Figure S5 and Table S8). These findings indicate that
FAR1 gene structural changes mainly occurred via prema-
ture translation termination in F and FM genes, leaving
traces of residual MULE and/or SWIM domains in down-
stream sequences.

To investigate the cause of premature translation termi-
nation of F and FM genes, we identified recent duplica-
tion pairs and classified them into two groups based on
whether their domain structures were the same (60%) or dif-
ferent (40%) (Supplementary Figure S6). The latter duplica-
tion pairs were aligned to verify what caused the premature
translation termination of shorter genes (denoted the ‘Pair
1’ sequence of each pair) containing F or FM compared
to longer genes (‘Pair 2’ sequence of each pair) with FM
or FMS (Figure 3A). Of the F and FM genes shortened by
premature translation termination, 44% F (F-type) and 41%
FM (FM-type) genes had a duplication pair with a different
gene structure, of which 72% and 68% aligned pairs, respec-
tively, remained after noise filtration and were used to exam-
ine sequence differences between Pair 1 and Pair 2 (Supple-
mentary Figures S5B, S7 and Table S8). We next determined
the number of mutations in alignments with end motif sites
at 6 to 15 and 15 to 23 for F- and FM-type genes, respec-
tively (Figure 3A–C). Our analyses revealed that frameshift
and nonsense mutations causing premature translation ter-
mination were mostly accumulated at the end motif sites
of both F- (81%) and FM-type (84%) genes, whereas 9%
F- and 7% FM-type genes had mutations in their pre-end
motif sites (Figure 3B and C). Specifically, F- and FM-type
genes with end motif sites at 14 and 21, respectively, exhib-
ited the same pattern, with 95% of F- and 97% of FM-type
pairs containing frameshift or nonsense mutations at pre-
end (9%) or end (87%) motif sites (Figure 3D and E). These
findings demonstrate that mutations specifically accumu-
lated at the end motif sites, together with those at pre-end
motif sites, caused premature termination of translation in
Pair 1 genes, generating a different gene structure from that
of Pair 2 (Figure 3F and G).

Examination of the end motif site also revealed that
577 (10%) and 1,482 (26%) of total F and FM genes, re-
spectively, had stop codons located downstream of MULE
and/or SWIM domain regions but no MULE and/or
SWIM domains were annotated, suggesting that a small
proportion of F and FM genes underwent structural trans-
formation by MULE and/or SWIM domain truncation
(Supplementary Figure S8A and Table S8). Of these, 45%
had duplication pairs with different gene structures, of
which 192 (73%) F- and 235 (35%) FM-type pairs after
noise filtration were analyzed (Supplementary Figures S7,
S8B and Table S8). Although 60% of MULE and SWIM
regions contained frameshift or nonsense mutations for
F- and FM-type genes, respectively, this mutation pattern
was not as prominent as those seen in instances of prema-
ture translation termination (Supplementary Figure S8C
and D). Further examination of these pairs revealed that
mutations within or surrounding the truncated domains
caused variations in exon-intron structures, thereby gen-
erating changes in overall gene structure (Supplementary
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Figure S8E and F). For example, we found that a nonsense
mutation within the MULE domain of one pair caused par-
tial truncation of the second exon in Pair 1, altering some
of its MULE motifs to yield an intron region (Supplemen-
tary Figure S8E). Thus, the truncated MULE domain was
not annotated in Pair 1. Analysis of another pair without
a mutation in a missing MULE or SWIM domain revealed

that a region flanked by nonsense mutations in the fourth
exon was converted to an intron, together with the SWIM
domain (Supplementary Figure S8F). As a result, the
SWIM domain was removed from the annotation in Pair
1. Taken together, we conclude that these frameshift and
nonsense mutations impair normal translation of down-
stream sequences and/or truncated domains and generate
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gene structure variation in the FAR1 gene repertoire of
plants.

Functional investigations of a newly annotated gene in rice

Because functional studies of FAR1 genes in monocots have
been limited despite monocots containing the largest num-
ber of FAR1 genes, we verified the functionality of newly
annotated FAR1 genes in O. sativa ssp. japonica (Supple-
mentary Figures S9 and S10). Since the G2 subgroup con-
tains the largest rice FAR1 genes, we investigated the ex-
pression patterns of target genes using the phylogenetic
heatmap approach employed at the CAFRI-Rice website
(http://cafri-rice.khu.ac.kr/) (27). Oryza sativa FAR1 related
to Fertility (OSAT.v7 FAR1.Chr10.2 and GenBank acces-
sion number MW602302; hereafter, referred as OFF) gene,
a locus with an FM and aligned in the G2 subgroup, showed
unique pollen-specific expression, suggesting that its func-
tion may be predominantly associated with rice pollen (Sup-
plementary Figure S9A). We further confirmed its specific
expression in pollen through quantitative RT-PCR analyses
of the OFF in seven tissues (Figure 4A). Moreover, we per-
formed a tobacco infiltration assay to determine its subcel-
lular localization in the nucleus as a functional transcription
factor (TF) (Figure 4B). These results demonstrate that the
OFF is a preferentially pollen-expressed gene whose prod-
uct localizes to the nucleus, showing exact overlap with the
nucleus marker protein OsRH36-mCherry (46) (Figure 4A
and B).

Using CRISPR/Cas9 genome editing, we generated a 1-
bp deletion homozygous knockout mutant with a prema-
ture stop codon in its FAR1 domain (referred to as off-
1) (Figure 4C). We observed that off-1 plants in the T1
generation experienced reduced fertility to approximately
40% of that in wild-type plants but showed normal an-
ther and pollen development during pollen maturation, in-
dicating that OFF, which shares distinct domain architec-
ture with known functional FAR1 genes, could encode a
TF expressed in rice pollen that specifically affects fertility
(Figure 4D–F and Supplementary Figure S9B). Further-
more, our results demonstrate that OFF could be a novel
genetic resource for regulating fertility, unlike previously re-
ported male sterility genes, which are associated with abnor-
mal tapetum degradation and severely retarded anther and
pollen development (47).

To explore the transcriptional regulation associated with
OFF, we performed RNA-seq analysis using anthers at
stages 13–14 (48) from the wild-type and off-1 mutant
plants. Subsequently, we identified 5,023 differentially ex-
pressed genes (DEGs) from the transcriptome analysis and
elucidated 588 pollen-specific DEGs with more than a 2-
fold change in expression between the wild type and off-1
mutant (P < 0.05) (Figure 5A). Of these, 574 genes (97.6%)
were upregulated in the off-1 mutant, and most DEGs were
enriched for functions associated with transcription regu-
lation and protein degradation pathways (Figure 5A and
Supplementary Figure S11). Notably, there were six E3
ligases in the protein degradation category (Supplemen-
tary Table S11). Although there have been no reports of
the detailed protein degradation mechanism related to late
pollen development in rice, there were reports that GORI

and OsMTD2, key regulators in rice late pollen develop-
ment, interact with the E3 ligase involved in protein degra-
dation (42,49). Furthermore, we performed the yeast two-
hybrid screening with FAR1 domain of the OFF protein
and identified six interacting partners (Supplementary Fig-
ure S12). Among them, elongation factor 1 alpha showed
the strongest interaction with the FAR1 domain among the
interactors and there was a report that gene encoding this
protein has a functional role in pollen development via par-
ticipating in pollen sequestrome in tobacco pollen develop-
ment (50). Thus, these downstream genes can be used as an
important resource for further studies.

Because FAR1 proteins are known to specifically bind
the FAR1-binding site (FBS, CACGCGC) of various target
genes in Arabidopsis (8,51), we inspected 2-kb sequences up-
stream of each of the 574 upregulated DEGs and found that
29.8% of these genes contain FBS (Figure 5A). Of these,
upregulation of two FAR1 TFs and four genes related to
transcription regulation and protein degradation was iden-
tified in the off-1 mutant (Figure 5B), suggesting a possi-
bility of genetic compensation among homologous genes
to alleviate severe phenotypes in a loss of function mutant
for a gene as previously reported (52). Functional conserva-
tion among rice homologous genes expressed in reproduc-
tive tissue has also been reported (53,54). As another possi-
bility, the OFF might act as a suppressor for FBS contain-
ing genes so that FBS genes are more expressed in the off-1
mutant. Collectively, loss of function of OFF in the off-1
mutant is suggested to increase the expression of genes with
FBS sequences in the promoter region (Figure 5B and C).
This is the first report of the OFF as a functional FAR1-
associated TF that participates in transcriptional regula-
tion within rice pollen, together with other FAR1 genes. We
expect that our annotations and analyses of the OFF and
those of FAR1 genes from the 80 queried plant species will
be useful resources for characterizing late pollen develop-
ment and other related adaptations in plants.

Evolutionary adaptation of OFF gene

To illustrate how this functional gene emerged and ul-
timately adapted in O. sativa ssp. japonica, we first pre-
dicted the original structure of the most recent ancestral
gene of the OFF via protein mapping using FMS genes
of Oryza spp. in the G2 subgroup (Figure 5D and Sup-
plementary Figure S13A). We detected recent ancestral
gene structures containing FMS and two exons in only
four Oryza spp.; however, all carried sequence mutations
or deletions in different regions that generated translation
errors (Figure 5D and Supplementary Figure S13A). This
finding suggests that the recent ancestral gene emerged
from the four Oryza spp. after their divergence from other
Oryza spp. and subsequently lost the original gene struc-
ture by subspecies-specific sequence diversification (Supple-
mentary Figure S13A). A detailed sequence alignment of
these ancestral gene regions revealed that the O. sativa ssp.
japonica genome contains two copies of a 79-bp sequence,
whereas other O. sativa spp. have only one copy each, in-
dicating that a tandem duplication of the 79-bp sequence
occurred only in the recent ancestral gene of O. sativa
ssp. japonica (Supplementary Figure S13B). This tandem

http://cafri-rice.khu.ac.kr/
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seven rice tissues is illustrated. Relative expressions were calculated using the rice ubiquitin 5 gene (OsUbi5, LOC Os01g22490). Three biological replicates
were used for the analysis, and error bars indicate standard deviation. (B) Subcellular localization of the OFF-encoded protein in tobacco epidermal cells
is shown. The OFF-GFP protein localized to the nucleus, merging exactly with the nuclear marker protein, OsRH36-mCherry (scale bar = 20 �m). (C)
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duplication introduced a frameshift mutation in down-
stream sequences of the MULE domain of the recent an-
cestral gene of O. sativa ssp. japonica, leading to premature
translation termination; this change illustrates how the OFF
was shortened from its recent ancestral gene length and ul-
timately obtained the FM structure (Figure 5E). Thus, our
results unveiled a novel adaptation mechanism involving
structure truncation acquired through divergent evolution
via frameshift mutation and the acquisition of a new func-

tional gene that promotes fertility in O. sativa ssp. japonica
(Figure 5E).

CONCLUSION

It is unclear how TE-derived genes that generally exist as
high-copy numbers in plant genomes have diversified and
adapted after their initial emergence. In this study, we aimed
to understand the underlying adaptation process promoting
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frameshift mutation. Premature termination of protein translation (red arrowhead) was observed, and a function was newly acquired.



11776 Nucleic Acids Research, 2021, Vol. 49, No. 20

structural and functional divergence of FAR1 genes based
on comprehensive comparative studies using improved an-
notations of the MULE-derived TF family. We discov-
ered a large pool of newly identified genes, especially in
the Poaceae family of monocots, most of which formed
Poaceae-enriched clades with monocot-specific FAR1 do-
mains, suggesting that these genes may have evolved to
meet specific demands of monocots in a different growth
environment. Moreover, despite many known functional
genes containing FMS structures in Arabidopsis, our data
revealed that FM structures were the most prevalent and
may serve as a new source of TFs that control agricultur-
ally important traits in plants. Previous studies often fo-
cused on the emergence and adaptation mechanism of in-
dividual functional genes with little or no insight into a
global picture on a genomic scale (55). By comparing the
top three gene structures of FAR1 in 80 plant species, we
revealed that an accumulation of frameshift and nonsense
mutations causing premature translation termination in an-
cestral FMS genes was a key evolutionary mechanism in
continuously generating widespread structural divergence
of FAR1 genes. Although many of these genes may have be-
come inactive under negative selection, several genes driven
by positive selection could have obtained species-specific
functions. Through CRISPR/Cas9-based genome editing
approach, we unveiled a novel functional gene with an FM
structure in rice that regulates fertility-associated transcrip-
tion in pollen, together with other FAR1 TFs which val-
idates our gene models as practical resources for compre-
hensive functional investigations of important agricultural
crops. Other FAR1 TFs seemed to compensate for the loss
of function for OFF, suggesting sub-functionalization of
duplicated FAR1 genes in this multigene family (56). Closer
inspection of the novel functional gene illustrated that this
gene obtained its shortened form through a species-specific
frameshift mutation and finally acquired an agriculturally
important trait. Through a combined approach integrat-
ing computational analysis with molecular work, we ex-
plored a fundamental evolutionary mechanism underlying
adaptation by natural selection. Taken together, our find-
ings unveil a key evolutionary mechanism that contributes
to widespread structural divergence and subsequent func-
tional adaptation of MULE-derived TF genes in plants.
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