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Abstract: High global expenditure on out-of-label-date drugs, along with safety concerns associated
with the accumulation of degradation impurities, justify the need for stability profiling. In this
article, a comprehensive study on the solid-state stability of ramipril (RAM) was performed via
isothermal methods under stress conditions. A validated stability-indicating HPLC protocol was
used. The effects of various factors on the rate of RAM degradation were investigated, including:
temperature, relative air humidity (RH), excipients (talc, starch, methylcellulose and hydroxypropyl
methylcellulose), mode of tablet storage, and immediate packaging. The degradation impurities
were also identified by HPLC–MS. It was found that RAM was unstable, and temperature accelerated
its degradation. RAM was also vulnerable to RH changes, suggesting that it must be protected from
moisture. The reaction followed first-order kinetics. The studied excipients stabilized RAM as a
pure substance. The tableting process deteriorated its stability, explaining the need for appropriate
immediate packaging. RAM in the form of tablets must be stored in blisters, and it cannot be crushed
into two halves. The degradation impurities were ramiprilat and the diketopiperazine derivative.

Keywords: ramipril; stability in solid state; excipients; tablets; degradation impurities

1. Introduction

The stability profile of a pharmaceutical formulation is primarily defined by the physic-
ochemical and microbial properties of the drug substance and drug product. Its assessment
involves chemical identity and purity testing, physical appearance, and organoleptic test-
ing, as well as microbiological limit testing. In particular, chemical stability is affected by
the following factors: qualitative and quantitative composition of excipients and active
ingredients, type of packaging, and environmental conditions, including temperature,
relative air humidity (RH), and light. Comprehensive stability protocols must therefore
evaluate the rate and mechanism of drug decomposition with respect to all of these vari-
ables so that drug shelf life under specified storage conditions can be accurately assessed.
Stress tests seem the most appropriate research method in this regard; they provide an
in-depth description of reaction kinetics and thermodynamics. Stress studies also allow the
differentiation and qualification of all of the degradants—even those that might remain
undetected under controlled real-life conditions. Essentially, the identification and quanti-
tation of all degradation impurities is necessary not only for scientific but also for safety
reasons. In fact, their gradual formation could translate into increased drug toxicity. Thus,
the thorough understanding of all of the intrinsic processes that may lead to the deteriora-
tion of a pharmaceutical formulation during storage is indispensable for the development
of a stable, effective, and safe final drug product [1,2].

Regulatory guidelines for the pharmaceutical industry provide extensive standard
protocols for drug stability profiling (ICH Q1A–Q1F) and monitoring of impurities (ICH
Q3A–Q3E, ICH M7). However, the relevant stability data remain confidential [3–5]. In
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general, commercially performed real-time stability assays set the shelf life of drugs conser-
vatively in the range of 1–5 years. Typically, detailed stability studies are not performed by
manufacturers, mainly due to their high cost and long duration. Furthermore, because of
the financial interests of manufacturers, the shelf lives of drugs are officially claimed to be
as short as possible. Underestimated expiry dates of pharmaceuticals become a financial
challenge for healthcare systems. In fact, huge amounts of out-of-label-date drugs are
disposed of annually, indicating that extending their expiration periods based on reliable
scientific data would be a great benefit [1]. In fact, in 2019, Zilker et al. reported that the
expiry period of a large number of pharmaceuticals can be prolonged even up to four times
beyond their label expiry dates [1]. Furthermore, in 2009, it was reported that every USD 1
spent by the US Department of Defense on the extension of drug expiry dates resulted in
savings of USD 94 dollars. This proves that safe prolongation of dug shelf life is possible
and profitable [1,6]. In addition, despite the high level of pragmatism of the legally adopted
International Council for Harmonisation stability testing guidelines, in 2018 they proved
insufficient to control genotoxic impurities. This resulted in the N-nitrosodimethylamine
(NMDA) crisis and a worldwide recall of sartans and ranitidine-containing products. At
that time, N-nitrosoamine derivative—a potent carcinogenic impurity—was accidentally
found in numerous drug formulations, probably as a degradation or in-process impurity;
its concentrations significantly exceeded the acceptance criteria [7]. Since then, it has
become clear that thorough and widely available knowledge on drug stability must be
provided for both scientific and applicatory purposes. This claim seems the most relevant
to pharmaceuticals used in long-term therapy, since patient exposure and the cumulative
dose of their potentially toxic impurities may pose a significant safety concern.

Ramipril (RAM) is an angiotensin-converting enzyme inhibitor (ACE-I); it is widely
used in the chronic treatment of many cardiovascular and renal-system-related diseases as
first-line therapy; its beneficial, pleiotropic effects, manifested by a reduction in cardiac
mortality, have been confirmed in numerous large-scale clinical trials (e.g., AIRE, HOPE,
ONTARGET). Currently, it is considered to be one of the leading ACE-Is within the thera-
peutic class [8,9]. In 2018, the total number of RAM prescriptions in the US alone reached
nearly 4 million [10], confirming its wide patient exposure. RAM is a prodrug intended for
oral use, commercially formulated as tablets or capsules. Preliminary molecule screening
suggests its high liability to hydrolytic degradation due to the presence of an ester bond.
The probable clinical consequence of this reaction would be a reduction in its bioavailability.
Based on the literature review, intramolecular cyclization as an alternative degradation
pathway is also possible. This reaction was reported for other structurally-related ACE-Is,
including imidapril (IMD) [11], moexipril (MOXL) [12], quinapril (QUIN) [13], enalapril
(ENA) [14], lisinopril (LIS) [15], and perindopril (PER) [16]. However, the toxicological
data on the potential products of RAM cyclization are still unknown. Similarly, the sta-
bility profile of RAM remains unavailable to date, and no validated stability-indicating
analytical method has been described in the literature. Therefore, based on its long-term
cardiovascular indications, RAM seems to be an ideal candidate for enhanced stability
profiling—mainly for predictive and preventive purposes.

Taking all of the above issues into consideration, the aim of this multistage study was
to provide detailed knowledge about the mechanism of chemical degradation of RAM
under a variety of environmental conditions. The secondary objective was to establish the
potential impact of the studied factors on the efficacy and safety of RAM use in real life. For
that purpose, stability analysis and identification of degradation products were performed
for pure RAM, its commercial tablets, and its model mixtures with common excipients. The
corresponding reaction orders, degradation rate constants, and thermodynamic parameters
were then determined using a validated stability-indicating HPLC method.
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2. Materials and Methods
2.1. Materials

Pure RAM (100%) was purchased from Rolabo (Zaragoza, Spain, batch n◦: 11.PT24.01.02).
RAM in commercial tablets (dose 10 mg; batch n◦ H1606) was obtained from Sanofi-
Aventis Deutschland GmbH, Frankfurt am Main, Germany. Talc (T), starch (S), methylcel-
lulose (MC), and hydroxypropyl methylcellulose (HPMC) were purchased from Merck,
Darmstadt, Germany. Methanol, acetonitrile, and potassium dihydrogen phosphate were
purchased from Merck, Darmstadt, Germany.

2.2. Instruments
2.2.1. HPLC Method

The stability study of RAM was performed by HPLC–UV using a LiChroCART®

column (250-4 HPLC-Cartridge, LiChrospher® 100 RP-18, 250 mm × 4 mm × 5 µm, Merck,
Darmstadt, Germany). The employed mobile phase consisted of acetonitrile/phosphate
buffer (0.035 mol/L, pH = 2.0) at a ratio of 65:35 (v/v). The flow rate was 1.0 mL/min. The
injection volume was 20 µL. The detection wavelength was set at 213 nm.

2.2.2. HPLC-MS Method

The degradation products of RAM were identified by HPLC–MS using a LiChroCART®

column (250-4 HPLC-Cartridge, LiChrospher® 100 RP-18, 250 mm × 4 mm × 5 µm, Merck,
Darmstadt, Germany). The mobile phase consisted of methanol/water/formaldehyde
(49:50:1, v/v/v). The flow rate was 0.5 mL/min. The injection volume was 100 µL. The
range of registered masses was m/z 150 to 1000 or m/z 150 to 600. Positive (ES+) and
negative (ES−) electrospray ionization modes were applied. A constant temperature of 298
K was maintained throughout the analysis.

2.2.3. Other Instruments

The auxiliary equipment included a pH CD-401 electrode (Mettler Toledo, Greifensee
Switzerland); a Sartorius BP 2105 analytical scale; and WAMED KBC—125 W thermal cham-
bers with automatic temperature and relative humidity (RH) control (Wamed,
Warsaw, Poland).

2.3. Procedures
2.3.1. Preparation of the Mobile Phase

The mobile phase for HPLC–UV analysis was prepared by mixing acetonitrile and
phosphate buffer (0.035 mol/L, pH = 2.0) at a ratio of 65:35 (v/v). Phosphate buffer was
freshly prepared as follows: 0.0681 g of potassium dihydrogen phosphate (KH2PO4) was
transferred to a 500 mL volumetric flask. Then, 400 mL of distilled water was added. The
mixture was shaken until dissolved. Then, pH was adjusted to 2.0 using 85% phosphoric
(V) acid. Finally, distilled water was added up to 500.0 mL.

To prepare the mobile phase for the HPLC–MS analysis, methanol, water, and formalde-
hyde were mixed at a ratio of 49:50:1 (v/v/v).

Both solutions were filtered using a filtration system equipped with a vacuum pump
(filter 0.22 µm). Then, they were degassed using an ultrasonic cleaner for 20 min prior
to use.

2.3.2. Preparation of Pure RAM (Standard Solution)

First, 0.0100 g of pure RAM was weighed and transferred to a volumetric flask (volume
of 25 mL). Then, 15 mL of methanol was added. The mixture was shaken until RAM was
dissolved. Finally, it was filled with methanol up to 25.0 mL (solution B).
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2.3.3. Validation of HPLC for the Stability Assay of Pure RAM and RAM–Excipient
Model Mixtures
Selectivity

First, 0.0100 g of pure RAM was weighed and transferred to a 5 mL glass vial. The
sample was placed in a thermal chamber and heated (T = 363 K, RH = 76.0%). After 40 days,
the sample was collected, cooled to room temperature, and its content was transferred to a
volumetric flask (volume of 25 mL), using methanol as a solvent. The flask was shaken
until the RAM dissolved. Then, it was filled with methanol up to 25.0 mL (solution A).

Next, 0.0100 g each of MC, HPMC, T and S were weighed to separate volumetric
flasks (volume of 25 mL). Each flask was filled with 15 mL of methanol and shaken until
its contents dissolved. The samples were diluted with methanol up to 25.0 mL and then
filtered (solutions MC, HPMC, T, S).

Aliquots containing 20 µL of the solutions A, B (as described in Section 2.3.2), MC,
HPMC, T and S were injected into the HPLC column. Chromatograms were registered.

Precision

Low and high precision levels were assessed. The exact amounts of 0.0050 g and 0.0100
g of RAM were weighed. The samples were transferred to eight volumetric flasks (volume
of 25 mL), and methanol was added. The flasks were shaken for 15 min. Then, they were
filled up with methanol to 25.0 mL (solutions PNi and PWi). Solutions PNi and PWi were
injected into the chromatographic column (20 µL). Chromatograms were registered. The
obtained peak areas were subjected to statistical analysis.

Linearity

The calibration curve for RAM covered the concentration range from 0.004% to 0.040%.
Exactly 0.0200 g of RAM was weighed and transferred to a volumetric flask (50 mL). The
sample was dissolved in 50.0 mL of methanol (solution A). Aliquots of 1.0, 2.0, 3.0, 4.0, 5.0,
6.0, 7.0, 8.0, 9.0 and 10.0 mL of solution A were transferred to respective volumetric flasks.
Then, they were diluted with methanol up to 10.0 mL (solutions Ai).

The solutions Ai were injected into the chromatographic column (20 µL). Chro-
matograms were recorded. The obtained peak areas were analyzed as a function of
RAM concentration.

Sensitivity

The limit of detection (DL) and the limit of quantification (QL) were calculated using
the following formulae:

DL = 3.3
Sy

a
(1)

QL = 10
Sy

a
(2)

where Sy is the standard deviation and a is the slope of the calibration curve [17].

2.3.4. Kinetic Study—Preparation of Samples

An isothermal method was used to study the kinetic mechanism of solid-state degra-
dation of RAM. The RH range was 50.0 to 76.0%, and the temperature range was 343 to
363 K. The experimental conditions were adjusted automatically. The experiments were
performed for pure RAM, RAM in tablets and RAM in model mixtures, with the following
excipients: T, S, HPMC and MC. The experimental conditions were achieved by introducing
the samples into the thermal chambers that maintained the required temperature and RH
levels throughout the experiments, with an accuracy of ± 1 K and ± 1%, respectively.

Pure RAM

A total of 0.0100 g of pure RAM was accurately weighed into 5 mL glass vials. For
the evaluation of the thermal decomposition of RAM in solid state, the samples were
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exposed to the stress conditions of RH 76.0%, in a temperature range of 343–363 K. The
maximum time of exposure was 150 days. To evaluate the effect of RH, the samples were
exposed to stress conditions of T = 343 K and increasing RH of 50.0, 60.0, 66.0 and 76.0%.
The maximum time of exposure was 100 days. The samples were collected and cooled to
ambient temperature successively. The contents of the vials were quantitatively transferred
to volumetric flasks using methanol. The flasks were shaken for 10 min; then, they were
filled to 25.0 mL with the same solvent (solutions Ai). The standard solution of RAM
(solution B) was prepared as described in Section 2.3.2.

The solutions Ai and B were injected into the chromatographic column (20 µL). Chro-
matograms were registered. The content of pure RAM in the samples was calculated
relative to the standard solution B.

RAM in Model Mixtures with Excipients

Model mixtures of RAM with the excipients MC, HPMC, S and T were prepared at
a weight ratio of 1:1 (w/w). A total of 0.500 g of RAM and 0.500 g of the excipient were
accurately weighed and transferred quantitatively to a porcelain mortar. The mixtures were
homogenized for 15 min manually. Then, 0.0200 g of each model mixture was transferred
to 5 mL glass vials.

To evaluate the thermal decomposition of RAM in model mixtures, the samples were
exposed to stress conditions of RH 76.0% and increasing temperatures of 323 K, 328 K,
333 K and 343 K. The maximum time of exposure was 250 days. For the evaluation of
the impact of RH, the samples of model mixtures were exposed to stress conditions of
T = 343 K and increasing RH of 50.0, 60.0, 66.0 and 76.0%. The samples were collected
and cooled to ambient temperature successively, at timepoints depending on the observed
RAM decomposition rate. The maximum time of exposure was 200 days. The content of
each vial was quantitatively transferred to 50 mL volumetric flasks, and then dissolved
in 25.0 mL of methanol. The solutions were shaken for 30 min. Then, they were filtered
through a quantitative 390 hard filter (Munktell) (solutions MCi, HPMCi. Si and Ti).

The standard solution of RAM (solution B) was prepared as described in Section 2.3.2.
Aliquots of 20 µL of solutions MCi, HPMCi, Si, Ti and B were injected into the

chromatographic column. Chromatograms were registered. The concentration of RAM in
the studied samples was calculated using the following formula:

C =
PAi·c·V·M

PB·m·z
(3)

where PAi (solutions MC, HPMC, S and T) and PB represent the peak areas of the tested and
the standard solutions of RAM, respectively; c is the concentration of RAM in the standard
solution (%); V is the dilution factor; M is the model mixture mass; m is the weight of the
sample and z is the content of RAM in the model mixture.

RAM in Tablets

Three isothermal experiments were performed: for whole blistered tablets, for whole
blisterless tablets, and for halved blisterless tablets. In each experiment, samples with RAM
tablets were placed in 5 mL glass vials and exposed to the stress conditions (temperature
318 K and RH 76.0%). After exposure, the contents of each vial were quantitatively
transferred to 50 mL volumetric flasks. The test samples were disintegrated in 2.0 mL of
distilled water and dissolved in 23.0 mL of methanol. The solutions were shaken for 15
min. Then, they were filtered through a quantitative 390 hard filter (Munktell) (solution
Ai). The standard solution of RAM (solution B) was prepared as described in Section 2.3.2.

Aliquots of 20 µL of solutions Ai and B were injected into the chromatographic column.
Chromatograms were registered.
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2.3.5. Reaction Model Fitting

Mathematical model fitting was performed by comparing the correlation coefficients of
theoretical curves. The following reaction models were considered: nucleation (power-law,
Avrami–Erofeev, Prout–Tompkins), geometrical contraction (contracting area, contracting
volume), diffusion (1D diffusion, 2D diffusion, 3D diffusion), and reaction-order (zero-
order, first-order, second-order and third-order) [18].

2.3.6. Calculation of Thermodynamic Parameters

For each experiment, the degradation rate constant (k) was determined. Then, its
natural logarithm was plotted against the reciprocal of the corresponding temperature to
fulfil the Arrhenius relationship:

ln ki = lnA − Ea/RT (4)

where ki is the reaction rate constant (s−1), A is the frequency coefficient, Ea is the activa-
tion energy (J mol−1), R is the universal gas constant (8.3144 J K−1 mol−1), and T is the
temperature (K).

The activation energy (Ea), enthalpy of activation (H 6=), and entropy of activation
(∆S 6=) at 298 K and RH 76.4% were determined using the following equations:

Ea = −a × R (5)

Ea = ∆H 6= + RT (6)

∆S 6= = R lnA − ln KT/h (7)

where a is the slope of ln ki = f(1/T), A is a frequency coefficient, Ea is the activation energy
(J mol−1), R is the universal gas constant (8.3144 J K−1 mol−1), T is the temperature (K),
∆S 6= is the entropy of activation (J K−1 mol−1), ∆H 6= is the enthalpy of activation (J mol−1),
K is the Boltzmann constant (1.3806488(13) × 10−23 J K−1), and h is Planck’s constant
(6.62606957(29) × 10–34 J × s) [19].

2.3.7. Identification of RAM Degradation Impurities by HPLC–MS

A total of 0.0100 g of pure RAM was weighed accurately into a 5 mL glass vial. The
sample was stressed at temperature of 363 K and 76.0% RH for 40 h. The decomposed
sample was collected and cooled to room temperature, and then it was quantitatively
transferred to a volumetric flask using methanol. The flask was shaken until dissolved and
filled up to 25.0 mL with methanol (solution A).

The standard solution of RAM (solution B) was prepared as described in Section 2.3.2.
Aliquots of 20 µL of solutions A and B were injected into the chromatographic column.

Chromatograms were registered.

3. Results
3.1. Validation of the Analytical Method

The selectivity of the developed stability-indicating HPLC method was expressed by
the retention times (tR) of the signals in the obtained chromatograms, as demonstrated in
Figure 1. In the time range from 2 to 10 min, single and well-separated peaks were observed,
which were attributed to RAM (tR = 7.80 min) and RAM decomposition products (tR = 4.15
and 5.83 min, respectively). The studied excipients (MC, HPMC, T, and S) exhibited no
interference with RAM or its degradation impurities. Their peaks were not recorded in
the tested time range (Figure 2). Standard deviation (SD), relative standard deviation
(RSD) and variation coefficient (CV%) were used to evidence the method’s precision, as
demonstrated in Table 1. Linearity was described by the parameters of the regression:
correlation coefficient (r), slope (a) and intercept (b); they were determined by the least
squares method. The regression parameters are provided in Table 2.
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Figure 1. HPLC chromatograms: (A) pure RAM in non-degraded sample; (B) pure RAM after
exposure to stress conditions (T = 363 K, RH = 76.0%, t = 40 days).

Figure 2. HPLC chromatogram of RAM–excipient model mixture solution.

Table 1. Precision of the stability-indicating HPLC method for RAM analysis: low and high levels.

Statistical Evaluation Low Precision Level High Precision Level

Arithmetic mean of the measured value, area 3.4489 6.8340

Standard deviation (SD) 0.0505 0.0792

Relative standard deviation (RSD) 0.0146 0.0124

Variation coefficient (CV%) 1.2200 1.2410

Table 2. Regression parameters for the stability-indicating HPLC method for RAM analysis.

Statistical Analysis for y = ax + b Statistical Analysis for y = ax

a ± ∆a = 138.87 ± 7.62 a ± ∆a = 144.22 ± 7.05

b ± ∆b = 0.149 ± 0.189 Sa = 3.119

Sa = 3.308 Sy = 0.113

Sb = 0.0821 r = 0.998

Sy = 0.120

r = 0.998
The relevance of the coefficient b in Pi/PWz = f(c) shows that b = 0, as tb = b/Sb = 1.8246, which is lower than the
critical value t0.05 = 2.3060.



Pharmaceutics 2021, 13, 1600 8 of 17

Under the applied analytical conditions, QL for RAM equaled 0.0083% and DL
was 0.0027%.

3.2. Kinetic Parameters
3.2.1. RAM in Pure Form and in Model Mixtures with S, T, HPMC and MC

Based on the obtained kinetic curves, the mechanism of solid-state RAM degradation in
pure from and in model mixtures with S, T, HPMC, MC was assessed (Figure 3). The kinetic
and thermodynamic parameters of RAM degradation are provided in Tables 3 and 4. The
effect of the studied excipient on the stability of RAM in the solid state under increasing RH
is demonstrated in Figure 4, presented as a semi-logarithmic plot of reaction rate constants (k)
versus RH%. The correlation lnk = f (RH%) was provided only for one model mixture, since
in the remaining cases the curves were analogous.

Figure 3. Kinetic curves for RAM decomposition at T = 343 K and RH = 76.0%: (1) pure RAM, (2) RAM–S, (3) RAM–T, (4)
RAM–HPMC, (5) RAM–MC. Changes in RAM concentration as a function of time.

3.2.2. RAM in Tablets

The kinetic parameters of the decomposition of RAM in the final drug formulation
were assessed for three different storage modes: tablets in commercial immediate pack-
aging, whole tablets without commercial packaging, and bare tablets broken in half. The
corresponding degradation rate constants (k) for pure RAM and for RAM in tablets under
stress conditions (RH = 76.0%, T = 318 K) are depicted in Table 5.

3.2.3. Identification of Degradation Impurities

The identification of pure RAM and its degradation impurities was performed by
HPLC–MS. The obtained chromatograms and the mass spectra are shown in Figure 5.
The remaining spectra are available in the Supplementary Materials. The analysis of the
obtained m/z values is demonstrated in Table 6. The identification of degradation impuri-
ties of RAM in tablets was also conducted via HPLC–MS. The obtained chromatogram is
available in the Supplementary Materials.
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Table 3. Effect of temperature on the stability of pure RAM and RAM in model mixtures with excipients (RH 76.0%): kinetic
and thermodynamic parameters.

T (K) Decomposition Rate Constants
in Solid Phase ki (s−1)

Parameters of the Arrhenius
Relationship ki = f(1/T)

Thermodynamic Parameters of
RAM Decomposition (RH 76%)

RAM in pure

343 (2.241 ± 0.185) × 10−7 a = −5138.0 ± 561.2 Ea = (96.39 ± 22.4) KJ/mol

348 (3.035 ± 0.293) × 10−7 b = 1.032 ± 0.417 ∆H 6= = (93.91 ± 24.8) KJ/mol

353 (5.145 ± 0.351) × 10−7 Sa = 176.360 ∆S 6= = (−92.01 ± 189.2) KJ/(K
mol)

363 (1.343 ± 0.093) × 10−6 Sb = 0.449 T = 298 K

Sy = 0.449

r = −0.998

RAM–MC model mixture

323 (5.860 ± 0.122) × 10−9 a = −13,580.2 ± 4041.5 Ea = (112.91± 33.6) KJ/mol

328 (9.900 ± 0.149) × 10−9 b = 23.74 ± 10.72 ∆H 6= = (110.43 ± 36.7) KJ/mol

333 (5.141 ± 0.168) × 10−8 Sa = 1270.110 ∆S 6= = (−47.57 ± 98.5) KJ/(K mol)

343 1.151 ± 0.149) × 10−7 Sb = 3.862 T = 298 K

Sy = 0.223

r = −0.991

RAM–HPMC model mixture

323 (4.890 ± 0.480) × 10−9 a = −13,976.4 ± 3528.2 Ea = (116.20 ± 29.3) KJ/mol

328 (9.168 ± 0.254) × 10−9 b = 24.83 ± 9.36 ∆H 6= = (113.71 ± 31.8) KJ/mol

333 (4.569 ± 0.388) × 10−8 Sa = 1108.800 ∆S 6= = (−38.47 ± 167.2) KJ/(K
mol)

343 (1.090 ± 0.286) × 10−7 Sb = 3.371 T = 298 K

Sy = 0.195

r = −0.993

RAM–S model mixture

323 (4.660 ± 0.268) × 10−9 a = −14,824.4 ± 2433.1 Ea = (123.25 ± 20.2) KJ/mol

328 (8.161 ± 0.396) × 10−9 b = 27.38 ± 6.45 ∆H 6= = (120.78 ± 22.7) KJ/mol

333 (4.154 ± 0.816) × 10−8 Sa = 764.64 ∆S 6= = (−17.26 ± 109.2) KJ/(K
mol)

343 (1.268 ± 0.452) × 10−7 Sb = 2.325 T = 298 K

Sy = 0.134

r = −0.997

RAM–T model mixture

323 (8.264 ± 0.268) × 10−9 a = −11,910.2 ± 2248.9 Ea = (99.02 ± 18.7) KJ/mol

328 (1.264 ± 0.665) × 10−8 b = 18.42 ± 5.96 ∆H 6= = (101.51 ± 21.2) KJ/mol

333 (4.268 ± 0.426) × 10−8 Sa = 706.760 ∆S 6= = (−89.43 ± 105.2) KJ/(K
mol)

343 (1.152 ± 0.338) × 10−7 Sb = 2.149 T = 298 K

Sy = 0.124

r = −0.996
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Table 4. The influence of RH on the stability of RAM in pure form and in the presence of the
excipients MC, HPMC, S, and T; T = 343 K.

RH (%)
Decomposition Rate Constants (k ± ∆k) s−1 for RAM in the Presence

of Excipients

MC HPMC S T

50 (7.158 ± 0.461)
10−8

(5.998 ± 0.328)
10−8

(7.234 ± 0.234)
10−8

(8.518 ± 0.398)
10−8

60 (8.145 ± 0.435)
10−8

(7.129 ± 0.569)
10−8

(8.657 ± 0.781)
10−8

(9.551 ± 0.670)
10−8

66 (9.216 ± 0.541)
10−8

(8.161 ± 0.871)
10−8

(9.551 ± 0.443)
10−8

(1.005 ± 0.981)
10−7

76 (1.157 ± 0.781)
10−7

(1.097 ± 0.563)
10−7

(1.268 ± 0.542)
10−7

(1.149 ± 0.894)
10−7

Regression parameters ln ki = a (RH%) + b

a ± ∆a 0.0187 ± 0.0053 0.0234 ± 0.0068 0.0215 ± 0.0068 0.0116 ± 0.0022

b ± ∆b −17.43 ± 0.35 −17.86 ± 0.43 −17.56 ± 0.44 −16.89 ± 0.14

Sa 0.0017 0.0021 0.0022 0.0007

Sb 0.108 0.137 0.136 0.045

r 0.992 0.991 0.990 0.996

RH (%) Decomposition Rate Constants
(k ± ∆k) s−1 for Pure RAM

Regression Parametersln
ki = a(RH%) + b

50 (4.166 ± 0.885) 10−8 A ± ∆a 0.0646 ± 0.0152

60 (8.169 ± 0.982) 10−8 B ± ∆b −20.29 ± 0.98

66 (1.022 ± 0.465) 10−7 Sa 0.0048

76 (2.248 ± 0.664) 10−7 Sb 0.307

r 0.995

Figure 4. Semi-logarithmic plots of the degradation rate constant of pure RAM and RAM in the presence of HPMC as a
function of RH% under T = 343 K (1: pure RAM, 2: RAM–HPMC).
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Table 5. Kinetic parameters of solid-state RAM decomposition in final drug formulation.

(k ± ∆k) s−1 t0.1 (days) t0.5 (days)

RAM in pure form (1.449 ± 0.156) × 10−8 84.2 553.5

RAM tablets in blisters (0.993 ± 0.846) × 10−8 123.2 810.2

RAM in whole blisterless tablets (1.865 ± 0.795) × 10−8 65.2 428.8

RAM in halved blisterless tablets (4.395 ± 0.328) × 10−8 27.8 182.7

k: reaction rate constants; t0.5: half-life; t0.1: shelf life.

Table 6. Identification of RAM decomposition products (T = 363 K, RH = 76%) by the analysis of m/z values from
mass spectra.

Compound Molecular Formula Molecular Mass m/z in ES+ [M-H]+ Ion m/z in ES− [M-H]− Ion

RAM C23H32N2O5 416 417 415

Product n◦1
(RAMat *) C21H28N2O5 388 387 389

Product n◦2
(DKP-RAM) ** C23H30N2O4 398 397 399

* RAMat = ramiprilat; ** DKP-RAM = diketopiperazine derivative of RAM.

Figure 5. Cont.
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Figure 5. HPLC–MS chromatograms and mass spectra for solid-state RAM in degraded sample (T = 363 K, RH = 76%):
identification of degradants.

4. Discussion

The designed stability profiling was intended to investigate diverse potential sources
of variability during RAM’s life cycle, covering the manufacturing process, logistics, stor-
age, and real-life use. For this reason, the following factors that could affect its stability,
efficiency, safety, and costs were considered: temperature, RH, excipients S, T, HPMC and
MC, immediate packaging and real-life storage mode. The degradation impurities were
also identified for safety reasons.

4.1. Validation Report

The initial stage of the performed studies was to develop and validate an appropriate
stability-indicating method. This method had to be powerful enough to differentiate,
qualify, and quantify RAM and its impurities. The procedure of choice was HPLC–UV, due
to its wide accessibility, low cost, and the relative simplicity of its analytical process. The
preliminary analytical conditions were selected based on a review of literature available for
other structurally related ACE-Is [11–16,20–24]. Then, the protocol was optimized so as to
achieve adequate levels of selectivity, precision, linearity, and sensitivity. The selectivity of
the stability-indicating method is crucial for the monitoring of drug concentration changes
in the presence of its degradants. This requirement is most significant, as these compounds
usually share close physiochemical characteristics. The chromatograms obtained under
the analytical conditions described in Section 2.3.3. Selectivity showed acceptable peak
separation and sharp shape, meeting the selectivity criteria. The developed peaks were
assigned to RAM and its two degradation products. There were no interferences from
T, S, HPMC or MC, nor from the components of the tablet formulation (Figures 1 and 2).
The SD and RSD ranged from 0.0505 to 0.0146, and CV% was between 1.220% and 1.241%
(Table 1), which was satisfactory. QL and DL were also accepted, suggesting good precision
and sensitivity. Analysis of variance showed a linear relationship between peak areas
and concentration. A calibration plot was determined and the corresponding regression
equation was found (Figure 2, Table 2). A systematic error was excluded, indicating that
the developed HPLC–UV protocol was applicable for the stability profiling of solid-state
RAM in pure form; in model mixtures with S, T, HPMC, MC and in a tablet formulation.

4.2. Kinetic Order of RAM Degradation

The isothermal method under stress conditions of increased temperature and RH was
applied for RAM stability profiling. It was selected due to its high exploratory potential
to recognize all sources of variability that may affect the stability of RAM in solid state.
This method is also an integral part of drug development and management programs in
accordance with the quality by design concept, as per the ICH Q8 (R2) pharmaceutical
development guideline. Determination of the kinetic order of RAM degradation was
conducted by evaluating the percentage of the remaining drug content in the tested samples
after their exposure to stress conditions at different time intervals. The stress conditions
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included increased temperature (343 to 363 K) and RH (50.0 to 76.0%). An analogous
protocol had been adopted previously for other structurally related ACE-Is [12–16,22].
As expected, in the current study, a progressive loss of RAM over time was observed.
Calculated concentrations in the successive samples were plotted versus time of exposure
ct = f(t) to construct kinetic curves. The reaction order was established mathematically via
a model-fitting method. The highest correlation coefficient was obtained for the first-order
reaction. Thus, it was discovered that solid-state degradation of RAM in pure form, as well
as in the presence of S, T, MC and HPMC, is consistent with first-order kinetics. This was
described by the following kinetic equation:

lnCt = C0 − k·t (8)

where C0 and Ct represent the RAM concentration (%) at t0 and tt, respectively, k is the
RAM decomposition rate constant in pure form and in model mixtures (s−1), and t is
the time.

Based on the obtained linear plots lnCt = f(t), the reaction rate constants (k) were
determined; they corresponded to the slope (a) in the following manner: a =−k. The results
confirmed that the degradation of RAM followed the most predictable kinetics, and that
the studied excipients did not interfere with this process. In contrast, for other structurally
related ACE-Is, the autocatalytic reaction model for their solid-state degradation was
reported: IMD [11,20], MOEX [12], QUIN [13], ENA [14], LIS [15] and PER [16]. The
half-life of pure RAM was calculated using the following formula: t0,5 = 0.693/k; under
the conditions of RH 76% and T = 363 K it equaled 146 h. Considering the half-life values
within the therapeutic class, ACE-Is can be arranged in the following order: QUIN > PER >
MOEX > ENA > cilazapril (CIL) > RAM > IMD > LIS > benazepril (BEN). BEN is the most
stable as its t0,5 is the longest (266 h) [11–16,20–25].

4.3. Effect of Temperature

The effect of heating on the degradation rate of RAM in pure form and in model
mixtures was examined. The experiments were performed at four temperatures: 343 K,
348 K, 353 K, and 363 K. Kinetic plots were constructed for each series of samples, and
the degradation rate constants (k) were elucidated. The obtained results were plotted so
as to fulfil the Arrhenius relationship lnki = f(1/T) (Table 3). This clearly demonstrated
that stress conditions of increased temperature significantly compromised RAM’s stability
in all experiments, as expressed by the increase in degradation rate constants (k) with
temperature. It was also confirmed that heating did not change the kinetic mechanism of
RAM degradation.

According to the transition state theory, the thermodynamic parameters of RAM degrada-
tion in pure form and in the presence of excipients were estimated. The value of Ea describes
the minimum energy input necessary to initiate the reaction; this corresponds to the strength
of the bonds split. The lowest Ea was obtained for pure RAM (Ea = 96.39 ± 22.4 (KJ/mol)),
indicating its greatest vulnerability to degradation in this form. The studied excipients
stabilized RAM in the following order: T > HPMC > MC > S, as evidenced by increasing
Ea in the respective model mixtures (Table 3). This demonstrates that the tested excipients
are suitable for commercial RAM formulations. The positive ∆H 6= in each experiment indi-
cated that the observed reactions of RAM degradation were endothermic—they needed a
constant energy supply for the formation of the activated complex. The ∆S 6= were negative,
which is characteristic of bimolecular reactions.

Summarizing the Ea values within a therapeutic class, ACE-Is can be ranked in the
following order: RAM > IMD > MOEX > BEN > PER > QUIN > ENA > LIS > CIL, indicating
that RAM is the most vulnerable to temperature changes [11–16,20–25].

4.4. Effect of RH

The effect of RH on the degradation rate constant (k) of RAM in pure form and in
the presence of T, S, MC and HPMC was investigated at T = 343 K, in an RH range of
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25.0–76.0%. Linear relationships lnki = f (RH%) were developed for each experiment. This
confirmed that humidity did not change the kinetic mechanism of RAM degradation in
pure form or in the presence of excipients; however, it increased its rate exponentially. The
magnitude of slope for each relationship lnki = f (RH%) defines the vulnerability of RAM
to RH-dependent degradation (Figure 4). Pure RAM was found to be the most sensitive,
while the excipients stabilized it in the following order: T > MC > S > HPMC. Based on the
literature, the sensitivity to RH variations within the ACE-I class increases as follows: BEN
> ENA > IMD > CIL > QCHL = RAM > MOXL [11–16,20–25].

4.5. Three-Dimensional Correlation between T, RH, and k for RAM Degradation under
Humid Conditions

The achieved experimental data on the solid-state stability of pure RAM versus RH
and temperature were demonstrated collectively as a three-dimensional stability surface,
which was described by the following relationship:

lnk = −5610.72 (1/T) + 0.067 (RH) − 4.00 (9)

The proposed 3D correlation was based on linear semi-logarithmic plots: lnki = f
(RH%) and lnki = f (1/T). The surface is convenient and practical for predictive purposes
(Figure 6); it can facilitate the calculation of the degradation rate constant for solid-state
RAM decay by the use of easy-to-measure parameters of drug storage.

Figure 6. Three-dimensional relationship between temperature (1/T), RH, and k (lnk) for solid-state RAM degradation
under humid conditions.

4.6. RAM in Tablets

Experiments with RAM in final dosage forms were performed for three tablet series:
whole blistered tablets, whole blisterless tablets and halved blisterless tablets. Their aim
was to investigate the effects of drug formulation processes and in-home storage habits on
drug quality and safety.

In our studies, it was confirmed that the process of tableting did not influence the
mechanism of RAM decomposition, since first-order kinetics were observed:

lnCt = C0 − k·t (10)
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where C0 and Ct represent the RAM concentration (%) at t0 and tt, respectively, k is the
RAM decomposition rate constant in commercial tablets (s−1) and t is the time.

However, tableting caused an acceleration of RAM degradation when compared
to the pure substance, as evidenced by a higher degradation rate constant for RAM in
the blisterless tablet series (Table 6). Regarding storage habits, it was found that halved
tablets without blisters exhibited the poorest stability profile. Similarly, the stability of
whole blisterless tablets was compromised. The most stable were whole blistered tablets,
evidencing that this is the only proper mode of drug handling. This information must be
clearly explained to patients by the dispensing pharmacists.

4.7. Degradants

The identification of RAM degradation products via HPLC–MS facilitated the descrip-
tion of its decay pathways. The obtained chromatogram for pure RAM depicted one peak
at tR ≈ 6.85 min for the anionic form ES− and tR ≈ 6.98 for the cationic form ES+; the m/z
values were 415 and 417, respectively. This confirmed the identity of the drug (RAM molar
mass = 416). The HPLC–MS chromatogram registered for the degraded sample (after stress
at T = 363 K, RH = 76.4% for 40 days) revealed three peaks attributed to the parent com-
pound and two degradation impurities: (a) RAM (tR ≈ 6.88 min for ES− and tR ≈ 6.86 for
ES+; m/z = 415 and 417, respectively); (b) degradation impurity n◦1 (tR ≈ 3.38 min for ES−

and tR ≈ 3.45 min for ES+; m/z = 387 and 389, respectively), and (c) degradation impurity
n◦2 (tR ≈ 5.41 min for ES− and tR ≈ 5.49 min for ES+; m/z = 397 and 399, respectively); this
is demonstrated in Figure 5. Based on the obtained m/z values, it was concluded that pure
RAM underwent simultaneous hydrolysis with the formation of ramiprilat (RAMat), and
intramolecular cyclization that produced the diketopiperazine derivative (DKP) (Table 6).
Under the applied experimental conditions, the dominant reaction was hydrolysis over
cyclization, as evidenced by the 20-fold larger HPLC and HPLC–MS peak sizes for RAMat
than for DKP (Figures 5 and 7). RAMat is the active form of RAM; it has low toxicity;
however, it is not absorbed from the gastrointestinal tract following oral administration;
thus, its formation compromises RAM’s bioavailability and potency. The presence of DKP,
in turn, may pose a safety concern, as the data on its toxicity remain unavailable until now.
Therefore, owing to RAM’s indications for long-term use and its potential high lifetime
exposure, further toxicological studies are recommended for DKP.

Figure 7. Proposed degradation pathway of RAM in the solid state.
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The HPLC–MS chromatogram obtained for degraded RAM in tablets demonstrates
one distributed peak, which was assigned to RAMat (tR ~ 3.49 min) (Supplementary
Materials). This suggests that under the applied conditions, the degradation of the drug in
tablets was mainly by de-esterification.

5. Conclusions

Based on the present research, it can be concluded that RAM is liable to thermal
degradation, and that the main factor accelerating this process is RH. Therefore, RAM as a
substance must be stored in closed containers protected from moisture, while tablets should
be stored in immediate packaging. With this respect, patients must be clearly informed by
label claims and dispensing pharmacists that storing halved RAM tablets or tablets removed
from the blister (e.g., in pill organizers) shortens their shelf life significantly, and this mode
of storage should generally be avoided. The tableting process deteriorates RAM’s stability
compared to the pure substance. Therefore, appropriate immediate packaging for final drug
formulation is obligatory. The stabilization of RAM can be achieved by co-formulation with
S, T, HPMC and MC, since their presence is considered to protect the ester bond in the RAM
molecule from hydrolysis. Thus, these excipients are recommended for RAM manufacture
as first-choice excipients. The degradation of RAM follows parallel pathways of hydrolysis
and intramolecular cyclization, with the former predominating. Hydrolysis compromises
the bioavailability of RAM, while the clinical effect of intramolecular cyclization remains
unknown, and requires further study.

Considering all of the issues discussed, the novelty of this work can be summarized as
a comprehensive elucidation of the kinetic mechanism of RAM’s thermal degradation for
the first time. These data provide a reliable scientific basis for extending the shelf life or con-
firming the quality of RAM tablets and pure RAM after exposure to various environmental
conditions, and potentially in real-life storage. Thus, the minimization of drug waste can
be achieved, which would be an effective cost reduction strategy. Furthermore, since the
effects of various excipients on the stability of an active ingredient are not homogenous in
general, the data presented herein clearly indicate which excipients should be considered
by manufacturers as RAM stabilizers during the formulation development. Moreover, for
the first time it was confirmed that no toxic impurities are formed during RAM’s storage.
This knowledge became an important safety issue after the global N-nitrosamine crisis in
2018, as the regulations in force at that time did not address this subject in sufficient detail.
Finally, for the dispensing pharmacists, clear confirmation of the best in-home storage
practice provided here is useful for increasing patient compliance with label claims. This
aspect seems crucial, as self-verification of excessive RAM loss during improper in-home
storage is impossible due to the absence of any physical changes in the tablets’ appearance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13101600/s1, Figure S1: HPLC-MS chromatogram for degraded RAM in
tablets (RH 76.0%; T = 318K). Figure S2: HPLC-MS chromatogram and mass spectrum for solid state
undegraded RAM sample.
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