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Abstract
Lung cancer is the leading cause of cancer‐related deaths worldwide. Although sev-
eral therapeutic strategies have been employed to curb lung cancer, the survival rate 
is still poor owing to the development of drug resistance. The mechanisms underlying 
drug resistance development are incompletely understood. Here, we aimed to identify 
the common signaling pathways involved in drug resistance in non‐small cell lung 
cancer (NSCLC). Three published transcriptome microarray data were downloaded 
from the Gene Expression Omnibus (GEO) database comprising different drug‐re-
sistant cell lines and their parental cell lines. Differentially expressed genes (DEGs) 
were identified and used to perform Gene Ontology (GO) enrichment analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. An overlap-
ping analysis was performed for KEGG pathways enriched from all the three datasets 
to identify the common signaling pathways. As a result, we found that metabolic 
pathways, ubiquitin‐mediated proteolysis, and mitogen‐activated protein kinase 
(MAPK) signaling were the most aberrantly expressed signaling pathways. The 
knockdown of nicotinamide phosphoribosyltransferase (NAMPT), the gene involved 
in metabolic pathways and known to be upregulated in drug‐resistant tumor cells, was 
shown to increase the apoptosis of cisplatin‐resistant A549 cells following cisplatin 
treatment. Thus, our results provide an in‐depth analysis of the signaling pathways 
that are commonly altered in drug‐resistant NSCLC cell lines and highlight the poten-
tial strategy that facilitates the development of interventions to interfere with upregu-
lated signaling pathways as well as to boost downregulated signaling pathways in 
drug‐resistant tumors for the elimination of multiple resistance of NSCLC.
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1 |  INTRODUCTION

Lung cancer is the most common and lethal malignancy, 
with a 5‐year survival rate of only 16%.1 Non‐small cell lung 
cancer (NSCLC) is the most common type of lung cancer 
that accounts for more than 80% of all lung cancer cases.2,3 
Chemotherapeutic drugs such as gemcitabine, taxane, and 
platin, alone or in combination, are the first line of treat-
ment for patients with NSCLC. In addition, new therapeutic 
strategies have been applied for lung cancer treatment, in-
cluding immunotherapy.4-6 Immunotherapy using antibodies 
that block immune checkpoints, programmed cell death 1 
(PD‐1)/programmed cell death 1 ligand (PD‐L1), has shown 
impressive antitumor effects and clinical benefits for the 
treatment of NSCLC. The Food and Drug Administration 
(FDA) has approved anti‐PD‐1 antibodies, nivolumab, and 
pembrolizumab, for treatment of solid tumors including ad-
vanced NSCLC.7-9 The China Food and Drug Administration 
(CFDA) has recently approved nivolumab for the treatment 
of advanced NSCLC that lacks epidermal growth factor re-
ceptor (EGFR) mutations and anaplastic lymphoma kinase 
(ALK) mutations. However, most patients with late‐stage 
NSCLC show resistance to these drugs that has led to an in-
crease in mortality rates.10 Drug resistance is a gene‐driven 
and pathway‐mediated process. Gene heterogeneities and 
mutations have been shown to play an important role in influ-
encing drug efficacy and resistance in lung cancer; these phe-
nomenon include mutations in tumor suppressor protein 53 
(TP53),6,11 kirsten rat sarcoma viral oncogene (KRAS),12,13 
PI3‐kinase subunit alpha (PIK3CA), PI3‐kinase subunit delta 
(PIK3CD),14,15 and EGFR.16 In addition, noncoding RNAs 
(eg, microRNAs [miRNAs]) are known to alter drug resis-
tance or sensitivity in lung cancer under chemotherapy treat-
ment.1 These molecular mechanisms cause drug efflux, drug 
metabolism/inactivation, drug target alteration, DNA repair, 
or apoptosis deficiency. Over the past decades, therapies 
targeting either gene mutation or amplification have offered 
promising results, but the acquired resistance following treat-
ment has demanded further investigations. It is acknowledged 
that genetic alterations in signaling pathways controlling 
apoptosis, cell cycle, and cell growth are common hallmarks 
of drug‐resistant tumors. Alterations in signaling pathways 
vary with different drug treatments. The drugs that target key 
molecules or block the downstream signaling pathways may 
cause feedback regulations and activate alternative signaling 
pathways to resist drug‐mediated destruction, as observed in 
tumor cells; this phenomenon has become a major obstacle 
for the elimination of drug resistance. Hence, it is essential 
to identify the common signaling pathways that mediate drug 
resistance.

Microarray technology has recently gained popularity 
for the investigation of gene alterations in tumorigenesis, 
metastasis, cancer recurrence, and drug resistance as well 

as to identify biomarkers for tumor diagnosis, prognosis, 
and therapy.17-22 Through RNA‐sequencing analysis, many 
genes, RNAs, including messenger RNAs (mRNAs), long‐
noncoding RNAs (lncRNAs), and miRNAs, and proteins 
have been reported to play a vital role in lung cancer initia-
tion, progression, and recurrence. Larsen et al23 identified a 
distinct gene expression profile for recurrent lung squamous 
cell carcinoma through genome‐wide profiling. Sun et al24 
reported the decrease in the expression of insulin‐like growth 
factor‐binding protein 3 (IGFBP3) in cisplatin‐resistant lung 
cancer cells, resulting in an increase in the activation of insu-
lin‐like growth factor 1‐receptor (IGF‐1R) signaling and the 
subsequent resistance to cisplatin and radiation. Therefore, 
advances in RNA technology have made it possible to sys-
tematically study the genetic changes and commonly altered 
signaling pathways in drug‐resistant tumor cells.

In this study, we screened the Gene Expression Omnibus 
(GEO) database and analyzed the selected three datasets with 
a multistep strategy (Figure 1). We first compared the differ-
ences at the gene level between drug‐resistant tumor cell lines 
and parental cell lines and identified several differentially ex-
pressed genes (DEGs). We performed Gene ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses of the DEGs for each dataset. An over-
lapping analysis of the KEGG pathways enriched from the 
three datasets was subsequently performed and 17 common 
pathways were identified. We detected the common signaling 
pathways associated with drug resistance and provided po-
tential therapeutic options and possibilities to overcome drug 
resistance in patients with lung cancer.

2 |  MATERIALS AND METHODS

2.1 | Microarray data
The transcriptome profiles of GSE6914 and GSE77209 were 
downloaded from GEO (https ://www.ncbi.nlm.nih.gov/geo/) 
database. A total of 24 samples were used, including 10 drug‐
resistant NSCLC cell lines and 14 parental cell lines. GSE6914 

F I G U R E  1  The multistep analyzed strategy used in this study
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comprised one dataset, Calu3, containing four gemcitabine‐
resistant Calu3 NSCLC cell lines and four parental cell lines. 
These eight samples were accessed using GPL96 Affymetrix 
Human Genome U133A Array. GS E77209 comprised two 
datasets, H1299T18 and H1355T16. The H1299T18 dataset 
had three taxane‐platin‐resistant H1299T NSCLC cell lines 
and five parental cell lines, while the H1355T16 dataset was 
composed of three taxane‐pla tin‐resistant H1355 NSCLC 
cell lines and five parental cell lines. These 16 samples were 
accessed using GPL10058 Illumina HumanHT‐12 v4.0 ex-
pression BeadChip.

2.2 | Data preprocessing
Normalization is very crucial for the comparison of microar-
ray datasets. We used the GEOquery package to download 
the raw probe‐level data (CEL. files) through the GEO da-
tabase. The Z‐score method was used for the normalization 
of the three microarray data. Values of multiple probes that 
corresponded to the same gene were averaged as the final 
expression level for the specific gene.

2.3 | Screening and clustering of the DEGs
The limma package was used for the identification of the 
DEGs between drug‐resistant cell lines and parental cell lines. 
The random variance model (RVM) t test was applied to filter 
the DEGs between the two groups, and the cut‐off value was 
set as |log (fold change)| >1.2 and false discovery rate (FDR) 
<0.05. Hierarchical clustering of the DEGs was based on the 
Euclidean distance, and was performed with EPCLUST.25-27 
Venn diagram package was used to perform Venn analysis of 
the DEGs in three datasets. Unique DEGs were selected.

2.4 | Enrichment analysis of unique DEGs
The GO analysis was used to analyze the biological functions 
of the genes, while KEGG pathway enrichment analysis was 
performed to investigate the signaling pathways that were re-
lated to the unique DEGs. The bioconductor package was used 
to perform GO and KEGG enrichment analyses. In particular, 
two‐sided Fisher's exact and chi‐squared tests were used to 
classify the GO category, FDR and q values were calculated 
to correct the P‐values.28-32 For the overlapping KEGG path-
ways, we overlapped the enriched KEGG pathways from the 
three datasets and identified the common KEGG pathways 
that were consistently altered in three datasets.

2.5 | Cell culture
Human lung adenocarcinoma cancer cell line A549 
(#SCSP‐503) and cisplatin‐resistant A549 (#ZQ0461) were 
purchased from the Chinese Academy of Sciences Cell 

Repertoire (Shanghai, China). All cells were cultured with 
5% CO2 atmosphere at 37°C and maintained in Dulbecco's 
modified Eagle's medium (DMEM; Gibco, Grand Island, 
NY, #10569010) supplemented with 10% fetal bovine serum 
(HyClone, Logan, UT, #30068.03), 100 U/L of penicillin, 
and 100 μg/mL streptomycin (Thermo Fisher Scientific, 
Massachusetts, #15070063).

2.6 | RNA extraction and real‐time 
polymerase chain reaction (RT‐PCR)
The total RNA from cisplatin‐resistant A549 cells was ex-
tracted with Trizol (Invitrogen Corporation, Carlsbad, CA, 
#A33250). NanoDrop 2000 (Thermo Scientific, Waltham, 
MA) was used to detect the concentration and purity of total 
RNA. The 1 μg of total RNA was reversely transcribed into 
complementary DNA (cDNA) with Prime Script RT rea-
gent kit with genomic DNA eraser (TaKaRa, Tokyo, Japan, 
#RR037A). The primers used for cDNA preparation were 
oligo(dT). Real‐time quantitative PCR was performed on 
Agilent Mx3005P (Santa Clara, CA) consisting of specific 
primers and SYBR Premix Ex Taq II (TaKaRa, Tokyo, Japan, 
#RR8202). Primers used for this experiment are listed in 
Supplementary Table S10. All primers were purchased from 
Sangon Biotech (Shanghai, China), and the PCR program was 
as follows: 95°C for 30 s, 95°C for 5 s, and 60°C for 30 s. The 
range of CT values in this experiment was 21.25‐30.53. We 
used the 2−ΔΔCt method for the analysis of the relative gene 
expression level. Each experiment was independently per-
formed in triplicates, and glyceraldehyde 3‐phosphate dehy-
drogenase (GAPDH) was used for the normalization of data.

2.7 | RNA interference
For transient expression knockdown, small‐interfering RNA 
(siRNA)‐NAMPT and negative control were designed and 
purchased from Gene Pharma Company (Shanghai, China); 
the siRNA sequences are shown in Supplementary Table 
S11. The siRNAs (si‐1‐NAMPT‐349, si‐2‐NAMPT‐1757, 
and si‐control‐NAMPT) were diluted in diethyl pyrocarbon-
ate water at a final concentration of 20 μM according to the 
manufacturer's description. A549 and cisR‐A549 cells were 
plated in six‐well plates at a density of 5 × 105 cells per well. 
After reaching approximately 60% confluency, the cells 
were transfected with the siRNA or negative control (2 μM/
well) using Lipofectamine 3000 (Invitrogen, Carlsbad, CA, 
#L3000001) for 48 hours. After transfection, the cells were 
collected for RT‐PCR analysis or treated with cisplatin.

2.8 | Flow cytometry for apoptosis analysis
After 24 hours of treatment with cisplatin, the supernatant was 
harvested and tumor cells were washed twice with ice‐cold 
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phosphate‐buffered saline (PBS). The cells were suspended 
in Annexin‐V‐binding buffer (BioLegend, San Diego, CA, 
#422201) at a final concentration of 106 cells/mL, and 100 μL of 
cell suspension was transferred into a 1.5 mL centrifuge tube and 
incubated with 5 μL of Alexa Fluor 647 Annexin‐V fluorescein 
isothiocyanate (FITC; BioLegend, San Diego, CA, #640906) 
and RNase (Thermo Fisher Scientific, USA, #AM2286) for 
15 min at 4°C in the dark. After incubation, the samples were 
treated with propidium iodide (5 μL) (Sigma, Santa Clara, CA, 
USA, #P4170) and immediately analyzed with flow cytometry 
(BD, San Diego, CA, USA, FACSCanto II).

2.9 | Western blot analysis
Radioimmunoprecipitation assay (RIPA) buffer (Solarbio, 
China, #R0010) mixed with protease and phosphatase in-
hibitors was used to isolate total proteins from cells. The 
protein concentration was measured using the bicinchoninic 
acid (BCA) Protein Assay Kit (Thermo Fisher Scientific, 
Massachusetts, #A53226), as per the manufacturer's in-
struction. Total protein was mixed with 5 × protein loading 
buffer (Beyotime, Shanghai, China, # P0280) at 1:4 ratio 
and boiled for 15 minutes. A total of 15 μg (10 μL vol-
ume) protein was added to 5% concentrated gel and 10% 
separation gel with 15 wells (Bio‐Rad, California, America, 
#1658000). After electrophoresis (80 V for 30 minutes and 
120 V for 1.5 hours), the protein bands from sodium dode-
cyl sulfate polyacrylamide gel electrophoresis (SDS‐PAGE) 
gel were transferred onto nitrocellulose filter membranes 
(0.2 μm) (GE Healthcare Life science, Pittsburgh, Germany, 
#10600001) using the transfer slot (LiuYi Biological Co., 
Ltd., Beijing, China, #121‐4040) and SDS‐PAGE transfer 
buffer (Servicebio, Wuhan, China, #G2017) (200 mA for 
1.5 hours). The membranes were stained with Ponceau S to 
investigate total protein level and washed thrice with TBST. 
The membranes were placed in a block buffer (TBST with 
5% skim milk powder) for 1 hour at room temperature. After 
incubation, the membranes were washed thrice with TBST 
and incubated with 5% bovine serum albumin (BSA; Labio, 
Zhengzhou, China, #LB8020) containing anti‐total P44/42 
mitogen‐activated protein kinase (MAPK; 1:1000 dilution; 
Cell Signaling Technology, #9102S), phosphorylated P44/42 
MAPK(Thr202/Tyr204) (1:1000 dilution; Cell Signaling 
Technology, #4370T), and anti‐β‐actin (1:1000 dilution; Cell 
Signaling Technology, #3700S) overnight at 4°C. The mem-
branes were washed thrice with TBST and incubated with 
a horseradish peroxidase (HRP)‐labeled goat anti‐rabbit IgG 
(1:3000 dilution, ZSGB‐BIO, Beijing, China, #ZB2301) for 
1 hour at room temperature. Following incubation, the mem-
branes were washed thrice with TBST and treated with an 
enhanced chemiluminescence (ECL) substrate (CWBIO, 
Beijing, China, #CW00495). FluorChem E System (Protein 
Simple, USA) was used to evaluate protein expression.

2.10 | Statistical analysis
Data were analyzed with SPSS software (version 16.0; SPSS 
Inc, Chicago, IL) and GraphPad Prism 7 (version 5.0; San 
Diego, CA), and the results were presented as mean ± SD. 
The ratio data were subjected to log2 transformation and the 
proportion data were subjected to logit transformation. The 
two‐tailed unpaired t test was used to compare the difference 
in the relative gene expression and apoptosis ratios between 
experimental and control groups. The results were presented 
as histograms with overlaid dot plots; the whiskers repre-
sented error bars, and the upper box boundaries represented 
an average value. The dots represented the mean values of 
two technical repetitions. Each experiment has at least three 
biological replicates. P‐value less than 0.05 was considered 
statistically significant.

3 |  RESULTS

3.1 | DEGs identified between drug‐
resistant cell lines and control parental cell 
lines
The transcriptome profiles of GSE6914 and GSE77209 
were downloaded from the GEO database. The two profiles 
comprised 10 drug‐resistant cell lines and 14 paired paren-
tal cell lines. GSE6914 carried one dataset, Calu3, consist-
ing of four gemcitabine‐resistant NSCLC cell lines, and four 
parental cell lines, while GSE77209 included two datasets, 
H1299T18 and H1355T16, comprising three taxane‐platin‐
resistant NSCLC cell lines (H1299 or H1355) and five of 
their parental cell lines. The characteristics of the three in-
dividual datasets are shown in Table 1. We first identified 
the DEGs from the above three datasets and listed the top 
10 DEGs (Supplementary Tables S1‐S3). We performed a 
two‐dimensional hierarchical clustering analysis of DEGs for 
each dataset. The results revealed the significant differences 
in the drug‐resistant cells as compared to their parental cells, 
as observed from the clustering of the DEGs. These observa-
tions indicate the high quality of these datasets and the reli-
ability of the subsequent analysis (Figure 2).

3.2 | GO analysis of DEGs
To investigate the functional role of the DEGs from the three 
independent datasets, we performed GO enrichment analysis. 
We observed 572 significantly enriched GO terms in Calu3 
dataset, including 174 upregulated and 378 downregulated 
terms. In addition, we observed 307 GO terms in H1299T18 
dataset, including 107 upregulated and 200 downregulated 
terms, and 343 GO terms in H1355T16 dataset, including 181 
upregulated and 162 downregulated terms. The top 15 GO 
terms are shown in Figure 3, and the detailed information 
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of the top 10 significantly upregulated or downregulated GO 
terms is listed in Supplementary Tables S4‐S6. The results 
showed the alterations in the small molecule metabolic pro-
cess in drug‐resistant tumor cells.

3.3 | KEGG pathway analysis of DEGs
To systematically understand the central pathways involved in 
drug resistance, we performed KEGG pathway analysis of the 
DEGs from the three datasets. The results revealed 180 signifi-
cantly enriched KEGG pathways in Calu3 dataset, including 
64 upregulated and 116 downregulated pathways, 89 KEGG 
pathways in the H1299T18 dataset, including 50 upregulated 
and 39 downregulated pathways, and 69 KEGG pathways in 

the H1355T16 dataset, including 47 upregulated and 22 down-
regulated pathways. The top 15 KEGG pathways are shown 
in Figure 4, and the detailed information of the top 10 sig-
nificantly upregulated or downregulated KEGG pathways is 
listed in Supplementary Tables S7‐S9. A great difference was 
found in the enriched upregulated and downregulated path-
ways among the three datasets. Moreover, we found that the 
treatment of H1355 and H1299 with the same drugs taxane 
and platin resulted in variations in the alteration patterns, indi-
cating that the cell lineage may affect the activation of signal-
ing pathways. We also found that some signaling pathways 
were aberrantly altered in the three datasets (eg, metabolic 
pathways), indicating that these pathways were central for ac-
quiring drug resistance.

T A B L E  1  Characteristics of the three individual datasets

Dataset GEO ID Platform Cell line Samples

Calu3 GSE6914 GPL96 Affymetrix Human Genome U133A 
Array

Calu3 4 gemcitabine–resistant/4 
parental cell lines

H1299T18 GSE77209 GPL10058 Illumina HumanHT‐12 V4.0 
expression beadchip

H1299 3taxane+platin–resistant/5 
parental cell lines

H1355T16 GSE77209 GPL10058 Illumina HumanHT‐12 V4.0 
expression beadchip

H1355 3taxane+platin–resistant/5 
parental cell lines

F I G U R E  2  Cluster analysis of differentially expressed genes based on gene expression level in three datasets. A‐C, Represents the dataset of 
Calu3, H1299T18, and H1355T16
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3.4 | Overlapping analysis of 
KEGG pathways
To further identify the KEGG pathways that were common 
in drug resistance, we performed an overlapping analysis 
of KEGG pathways that were enriched in all three data-
sets (Figure 5). We reported 17 overlapping KEGG path-
ways, including 10 upregulated and seven downregulated 
pathways (Figure 6), the detailed information is listed 
in Table 2. The results showed that metabolic pathways, 
upregulated ubiquitin‐mediated proteolysis, and MAPK 
signaling pathways were the major pathways mediating 
drug resistance, as evident from the most common signifi-
cant alterations observed.

3.5 | Genes and common signaling pathways 
altered in cisplatin drug‐resistant tumor cells
We next used cisplatin‐resistant A549 tumor cells to vali-
date the findings observed in our study. Some well‐known 
drug resistance‐related genes were detected with quantita-
tive PCR, including multidrug resistance 1 (MDR‐1), ATP‐
binding cassette subfamily C member 1 (ABCC1), ABCC2, 
ABCC3, and ABCC4. The results revealed that the expression 
of these genes was upregulated in cisplatin‐resistant tumor 
cells, suggesting that these cell lines are resistant to cispl-
atin (Figure 7A). We detected the mRNA expression levels 
of the genes that contributed to drug resistance identified in 
our study. As a result, we found that most of these genes were 

F I G U R E  3  Top 15 Gene Ontology (GO) enrichment analysis of three datasets. A and B, Upregulated and downregulated of GO terms in the 
Calu3 dataset. C and D, Upregulated and downregulated GO terms in the H1299T18 dataset. E and F, Upregulated and downregulated of GO terms 
in the H1355T16 dataset
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F I G U R E  4  Top 15 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) analysis of three datasets. A and B, Upregulated and 
downregulated of KEGG pathways in the Calu3 dataset. C and D, Upregulated and downregulated of KEGG pathways in the H1299T18 dataset. E 
and F, Upregulated and downregulated of KEGG pathways in the H1355T16 dataset

F I G U R E  5  Venn diagram of the overlapping parts of KEGG pathways enriched in three datasets A, Identification of overlapping parts of 
three upregulated KEGG pathways. B, Identification of overlapping parts of three downregulated KEGG pathways
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also upregulated in cisplatin‐resistant cells (Figure 7B). To 
further validate these results, we knockdown the expression 
of NAMPT with RNA interference, the efficiency of knock-
down is shown in Figure 7C. The apoptosis of tumor cells 
was analyzed with flow cytometry, and the gating strategy 
is shown in Supplementary Figure S1. The knockdown of 
NAMPT expression dramatically increased the apoptosis of 
cisplatin‐resistant tumor cells following cisplatin treatment 
(Figure 7D), while minimum effects were observed on A549 
cells. Western blot analysis showed that the expression of 
phosphorylated p44/42 MAPK(Thr202/Tyr204) was upregu-
lated in cisplatin‐resistant tumor cells (Figure 7E) and unpro-
cessed picture is shown in Supplementary Figure S2. These 
results suggest that the MAPK signaling pathways may be 
the common link in drug‐resistant tumor cells.

4 |  DISCUSSION

Somatic alterations in signaling pathways are common at 
varying frequencies and combinations in tumor cells and 
seem crucial in the development of resistance to various 
drugs. Therefore, the identification of the commonly altered 
signaling pathways in drug‐resistant tumor cells is essential 
for the development of effective therapeutic strategies.

In this study, we compared the gene expression pro-
files of 24 samples comprising gemcitabine‐resistant and 
taxane‐platin‐resistant NSCLC cell lines and their paren-
tal cell lines. We integrated three microarray datasets and 
identified the common signaling pathways associated with 
drug resistance. DEGs were identified for each dataset, and 
GO and KEGG enrichment pathway analysis for DEGs 
were performed to explore the molecular mechanisms un-
derlying drug resistance development for each dataset. The 
functional enrichment analysis of GO terms and KEGG 
pathways showed striking differences between three drug‐
resistant cell lines, indicating that the selective activation of 
signaling pathways is crucial for mediating drug resistance 
in tumor cells.

Drug resistance is a major obstacle observed during che-
motherapy treatment, and different pathways are activated 
in the tumor cells in response to different drug treatments. 
Therefore, the identification of the common signaling path-
ways that are important to mediate drug resistance in NSCLC 
is desirable to eliminate drug resistance. We performed 
an overlapping analysis of three KEGG pathways for each 
dataset and found most significant alterations in metabolic 
pathways. Metabolic reprogramming is a hallmark of cancer 
development. Many studies have confirmed increased aerobic 
glycolysis, fatty acid synthesis, and glutamine metabolism 
to be associated with therapeutic resistance in cancer.33 In 
breast cancer, fatty acid synthase (FASN) induces docetaxel/
trastuzumab/adriamycin resistance and lactate dehydroge-
nase A (LDHA) contributes to paclitaxel/trastuzumab resis-
tance.34,35 Aberrant metabolism has been thought to induce 
drug resistance in cancer cells; thus, the strategies targeting 
metabolism, for instance, glucose transporters (GLUTs), hex-
okinase (HK), pyruvate kinase M2 (PKM2), LDHA, pyruvate 
dehydrogenase kinase (PDK), and glutaminase (GLS), were 
shown to achieve a remarkable progress in reducing drug re-
sistance in experimental and clinical studies.36-43 Tavassoly 
et al44 reported different metabolic pathways in allopurinol‐
sensitive and ‐resistant cell lines. Fatty acid catabolic process 
and triglyceride process were enriched in the resistant cells, 
while the pathways and processes related to oxidative stress 
were likely to be dominant in sensitive cells.

In this study, we found that NAMPT upregulation was 
the most common. NAMPT is a rate‐limiting enzyme in the 
salvage pathway for the biosynthesis of nicotinamide ade-
nine dinucleotide (NAD+) from nicotinamide. NAMPT has 
been reported to activate MAPK signaling. As per our re-
sults, MAPK signaling was synergistically upregulated with 
NAMPT expression.45 In addition, NAMPT has also been 
associated with chronic inflammation in pancreatic cancer 
and is thought to contribute to drug resistance.46 The knock-
down of NAMPT expression significantly increased the 
apoptosis of cisplatin‐resistant A549 tumor cells following 
cisplatin treatment. In contrast, the gluconeogenic enzyme 

F I G U R E  6  Common signaling pathways in three datasets. A, Upregulated common KEGG pathway in three datasets. B, Downregulated 
common KEGG pathways in three datasets
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fructose‐1,6‐bisphosphatase 1 (FBP1) is encoded by a well‐
known tumor suppressor gene47 and known to be downregu-
lated in drug‐resistant cell lines. These results indicate that 
the alternative metabolic reprogramming was essential in 
mediating resistance to drug killing. We similarly identified 
certain molecules such as alpha‐aminoadipic semialdehyde 

synthase (AASS) and coenzyme Q 7 homolog ubiquinone 
(COQ7) whose functions were unknown in tumor cells.

Ubiquitin‐mediated proteolysis pathway was the second 
most significantly upregulated pathway shared by the three 
datasets. Ubiquitin‐mediated proteolysis is involved in most cel-
lular processes, including cell cycle, DNA repair, transcription, 

T A B L E  2  Common Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in three datasets

KEGG ID KEGG name Enrichment P‐value

False 
discovery 
rate(FDR) Genes

Upregulated KEGG pathways  

01100 Metabolic pathways 5.183963 3.9E‐24 9.55E‐22 NAMPT, AASS, COQ7, CCD01, GNPDA1, 
CEPT1, FH, CDIPT, POLR3C, PMVK

04120 Ubiquitin‐mediated 
proteolysis

7.914154 2.65E‐06 7.2E‐05 CUL4B, ERCC8, UBE2J2, ANAPC5, 
UBE2D4, PML, DET1, UBA7, SKP1, SKP2

04010 MAPK signaling pathway 7.635487 3.68E‐06 9.01E‐05 AKT3, ATF2, DUSP10, GADD45A, TGF7, 
TGF9, FGFR2, FGFR4, HSPA1A, HSPB1

05012 Parkinson's disease 5.617819 5.69E‐05 0.000864 UBE2J2, COX8A, GNAl1, SLC25A6, APAF1, 
NDUFA2, NDUFA9, NDUFB2, SDHA, 
SDHC

05016 Huntington's disease 3.823513 9.69E‐05 0.001319 AP2S1, CLTB, COX8A, CREB1, APAF1, 
NDUFA2, NDUFA9, NDUFA10, NDUFB2, 
NDUFS2

05200 Pathways in cancer 4.677113 0.000118 0.001521 AKT3, CDK6, CDKN2A, LPAR1, F2R, FGF7, 
FGF9, FGFR2, FH, FN1

04350 TGF‐β signaling pathway 6.453804 0.004447 0.025337 DCN, BAMBI, ID4, SMAD3, SMAD5, PITX2, 
PPP2CA, BMP2, SKP1, BMP4

00190 Oxidative 
phosphorylation

5.556443 0.00678 0.043659 COX8A, ATP6V0E2, NDUFA9, NDUFB2, 
NDUFS3, NDUFV1, ATP6V1F, UQCRC1, 
SDHC, ATP6V1A

05161 Hepatitis B 4.455777 0.0098 0.041395 AKT3, CDK6, LAMTOR5, CREB1, ATF2, 
DDB2, DDX58, APAF1, IFNA10, IFNB1

00240 Pyrimidine metabolism 5.163043 0.011883 0.046958 POLR3C, CMPK2, TWISTNB, POLR2J2, 
NME7, ITPA, NME2, NT5C3A, POLR2K, 
POLR2J3

Downregulated KEGG pathways  

01100 Metabolic pathways 4.470121 3.1E‐21 7.63E‐19 FBP1, ALG3, B3GNT3, CEPT1, ACAA2, 
AGPAT2, SPTLC1, CEL, FTCD, MGLL

05202 Transcriptional misregu-
lation in cancer

8.731303 6.8E‐11 2.39E‐09 CDK9, CEBPA, CEBPB, DUSP6, ETV5, 
HOXA9, HOXA10, ID2, IGFBP3, JUP

04919 Thyroid hormone 
signaling pathway

7.012028 2.52E‐05 0.000151 MED16, PLCD3, CTNNB1, AKT1, MTOR, 
ATP1B1, NOTCH1, NOTCH3, 
PLCD1,PLCD2

05165 Human papillomavirus 
infection

5.632562 1.60E‐08 0.003651 LAMC3, COL6A1, COL6A2, DVL1, DVL3, 
PPP2CB, TNC, RELA, RHEB, LAMA5

05231 Choline metabolism in 
cancer

4.856451 1.60E‐08 0.003565 CHKA, CHKB, RALGDS, RHEB, TSC1, 
PLPP3, PDGFC, PCYT1A, JUN, PIK3CB

05222 Small cell lung cancer 6.414103 0.001457 0.004371 POLR3C, CMPK2, TWISTNB, POLR2J2, 
NME7, ITPA, NME2, NT5C3A, POLR2K, 
POLR2J3

00562 Inositol phosphate 
metabolism

5.854564 0.03265 0.004523 MINPP1, SYNJ2, MTMR1, ITPKC, PI4K2A, 
PLCD1, PLCG2, INPP5K, PLCD3, ITPKB
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apoptosis, angiogenesis, protein synthesis, polyamine biosyn-
thesis, and antigen presentation.48 The abnormal activation of 
ubiquitination has been linked to many diseases. Accumulating 
evidence has proved that the dysregulation in ubiquitin‐medi-
ated proteolysis may play a crucial role in tumorigenesis and 

progression. The mutation in Clb gene, which is required for 
EGFR internalization and lysosomal degradation, results in the 
inhibition of the ubiquitin‐mediated degradation and has been 
linked to gastrointestinal tumor formation.49 However, in our 
results, we identified that Cullin 4B (CUL4B), a member of 

F I G U R E  7  Validation of microarray data in cisplatin‐resistant A549 cell line. A, Drug‐resistant related genes mRNA expression in A549 and 
CisR‐A549 cells by RT‐PCR (CisR‐A549 represents cisplatin‐resistant A549). B, The identified genes mRNA expression in A549 and CisR‐A549 
cells by RT‐PCR. C, The validation of knockdown efficiency by RT‐PCR. D, The apoptosis of A549 and CisR‐A549 cells upon cisplatin treatment 
(10 μg/mL) analyzed by flow cytometry (left panel). Statistical analysis of the rate of apoptosis cells upon cisplatin treatment (right panel). E, 
Representative western blot for total and phosphorylated P44/42 MAPK (Thr202/Tyr204) protein expression in A549 and CisR‐A549 cells. β‐actin 
was used as loading control. The number represents the protein size. Graphic display method refers to this articles.62,63 The data in (A‐C) were made 
log2 transformation, and analyzed by unpaired t tests. The data in (D) were made logit transformation and analyzed by unpaired t tests. The dots 
represent the mean value of the two technical repetitions, results are representative of three independent experiments
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E3 ubiquitin ligases, was overexpressed in drug‐resistant cell 
lines. CUL4B promoted the degradation of P53 and inhibited 
the expression of phosphatase and tension homology (PTEN) 
through posttranscriptional modifications.50 In addition, recent 
studies have reported that CUL4B increases the expression 
of human EGFR2 (HER2) in gastric cancer cells to promote 
tumor invasion. Zhang et al showed that ubiquitination regu-
lates the stability of MDR1 gene product, P‐glycoprotein, and 
affects the functions of this membrane transporter, resulting in 
multidrug resistance. This phenomenon was confirmed by Liu 
et al These authors found that the seven‐in‐absentia homologue 
1 (Siah1), an E3 ubiquitin ligase that regulates ubiquitination, 
was downregulated in P‐glycoprotein‐mediated multiple drug‐
resistant cancer cells. Siah1 exhibits the function of decreas-
ing P‐glycoprotein level, and low expression level of Siah1 
was shown to induce multidrug resistance in cancer cells.51,52 
Therefore, the treatment of drug‐resistant cells with β‐elemene 
was shown to increase the expression of E3 ubiquitin ligases 
to enhance the efficacy of DOX treatment.53 This evidence, as 
well as our study, indicated the important role of ubiquitination 
in tumor progression.

MAPK signaling pathway is well‐known to participate 
in mediating drug resistance and is crucial for the damage‐
induced DNA replication. Therefore, aberrant activation of 
MAPK signaling may prevent the death of cancer cells from 
drug treatment.54 Numerous studies have confirmed that 
MAPK signaling is involved in drug resistance induced by 
various chemotherapy drugs such as gemcitabine, platinum, 
5‐fluorouracil, and tamoxifen.55-58 Ercan et al59 revealed the 
amplification of MAPK1 gene in EGFR kinase inhibitor‐
resistant NSCLC cell lines. Inhibition of MAPK signaling 
using MEK inhibitor, CI‐1040, resulted in the restoration of 
sensitivity to WZ4002. Furthermore, MAPK feedback acti-
vation was another mechanism underlying drug resistance 
observed following EGFR inhibitor treatment. Dysregulation 
of MAPK signaling pathway was shown to correlate with 
the progression of pancreatic ductal adenocarcinoma. The 
blockade of MAPK signaling using FBP1‐derived small 
peptide could overcome the gemcitabine‐induced ERK acti-
vation and increase the efficacy of anticancer treatment.60,61 
In our study, upregulated MAPK signaling level was re-
ported with a concomitant overexpression of activating tran-
scription factor 2 (ATF2), an isoform of P38 MAPK family. 
Furthermore, dual‐specificity phosphatase 10 (DUSP10, 
MKP5) and downregulated FBP1 expression in drug‐re-
sistant NSCLC tumor cell lines were observed among the 
three datasets. Fang et al also revealed the upregulated ex-
pression of MAPK signaling pathway in cisplatin‐resistant 
A549 cells, thereby supporting our analysis and validation 
(western blot analysis). These authors also found that the 
phosphoinositide 3‐kinase (PI3K)/protein kinase B (AKT) 
signaling pathway was upregulated in cisplatin‐resistant 
A549 cells. However, we failed to observe any consistent 

activation of PI3K/AKT signaling in the three datasets, as 
PI3K/AKT signaling was upregulated in gemcitabine‐resis-
tant Calu3 cell line but downregulated in taxane‐platin‐re-
sistant NSCLC cell line (H1299 or H1355).30 Janus kinase/
signal transducer and activator of transcription (JAK‐STAT) 
signaling pathway have been reported to be upregulated in 
allopurinol‐resistant cell lines, but we failed to report similar 
observation in either taxane‐platin‐resistant cells or gemcit-
abine‐resistant cells. These differences may be related to the 
different killing mechanisms of the chemotherapy drugs.

To our knowledge, this is the first study to focus on the 
common signaling pathways involved in mediating drug re-
sistance in NSCLC. Although many pathways identified in 
our study have already been known, our results prove that 
these pathways play an important role in mediating resistance 
to different drugs. In addition, we found that the genes in 
the same pathways may show different levels of alterations 
in response to different drugs, and revealed the functions of 
several genes involved in drug resistance. However, our study 
has a few limitations. For instance, only two types of drug‐re-
sistant cell lines (gemcitabine and taxane‐platin) were used, 
only three cell lines were used, and the sample size was small. 
In addition, the backgrounds of tumor cell lines used were 
different, and our results lack the validation of mouse experi-
ments and tumor specimen analysis. Further investigations in 
suitable mouse models and tumor samples from patients with 
NSCLC that are confirmed as drug resistant are warranted to 
validate the common pathways identified in this study.

In summary, our study provides a deep understanding of 
the signaling pathways that contribute to drug resistance in 
NSCLC and highlight some key molecules involved in these 
altered pathways. Notably, the most common signaling path-
ways identified in our study may facilitate the development 
of therapeutic interventions for drug‐resistant NSCLC.
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