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Abstract

Molecular mechanisms characterizing cancer development and progression are complex and 

process through thousands of interacting elements in the cell. Understanding the underlying 

structure of interactions requires the integration of cellular networks with extensive combinations 

of dysregulation patterns. Recent pan-cancer studies focused on identifying common dysregulation 

patterns in a confined set of pathways or targeting a manually curated set of genes. However, the 

complex nature of the disease presents a challenge for finding pathways that would constitute a 

basis for tumor progression and requires evaluation of subnetworks with functional interactions. 

Uncovering these relationships is critical for translational medicine and the identification of future 

therapeutics. We present a frequent subgraph mining algorithm to find functional dysregulation 

patterns across the cancer spectrum. We mined frequent subgraphs coupled with biased random 

walks utilizing genomic alterations, gene expression profiles, and protein-protein interaction 

networks. In this unsupervised approach, we have recovered expert-curated pathways previously 

reported for explaining the underlying biology of cancer progression in multiple cancer types. 

Furthermore, we have clustered the genes identified in the frequent subgraphs into highly 

connected networks using a greedy approach and evaluated biological significance through 

pathway enrichment analysis. Gene clusters further elaborated on the inherent heterogeneity of 

cancer samples by both suggesting specific mechanisms for cancer type and common 

dysregulation patterns across different cancer types. Survival analysis of sample level clusters also 
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revealed significant differences among cancer types (p < 0.001). These results could extend the 

current understanding of disease etiology by identifying biologically relevant interactions.
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1. Introduction

Cancer is an inherently complex and heterogeneous disease. New technologies provided a 

comprehensive list of genomic and epigenetic aberrations for tumor growth and proliferation 

(1-4). This knowledge base could provide a more comprehensive view of how signaling 

events alter homeostasis within cells, between cells, or the microenvironment. The multiple 

omics measurements collected could be integrated to identify mechanisms or specific 

functions relevant to cancer (5) where shared genomic features across cancers have been 

identified (1, 6, 7), some of which were through integrative methods to analyze multiple -

omics datasets (8-11), While these gene-centric approaches report valuable insights, the 

biology behind their prognostics or stratification might be more complicated, leading to poor 

treatment options or reproducibility. For example, gliomas with mutated IDH1 and IDH2 
have improved prognosis compared to gliomas with wild-type IDH (12). As a result, mutant-

selective IDH1 inhibitors were developed, but this drug strategy could make tumor 

progression worse (13-16). Other arguments are made over the validity of geneset-based 

biomarkers (17-19). Random genesets were shown to stratify patients into subgroups, 

contradicting the use of these geneset based methods (20, 21). Pathway-based approaches, 

on the other hand, could uncover functionally relevant mechanisms of oncogenic alterations 

to improve treatment options (4).

The availability of pan-cancer data allowed the simultaneous analysis of multiple cancer 

types. However, the multifaceted view of cancer hinders these efforts to uncover 

comprehensive maps of cancer for each cancer type. Sanchez-Vega et al. (4) were able to 

map 57% of tumors to at least one expert-curated signaling pathway targetable by currently 

available drugs. The ten expert-curated pathways in this study are a great resource but do not 

cover the alterations across all cancers. Leiserson et al. (22) focused on gene-level 

perturbations to find subnetworks common across cancer types but the identified 

subnetworks are not restricted to cover the same set of samples, which can mask 

subpopulations of samples with different genes mutated in the given subnetwork. An 

unsupervised approach that mines networks for a dynamic group of patients could bring a 

more comprehensive map and would provide improved insight into our understanding of 

tumor growth and treatment opportunities.

One of the commonly used methods in graph data mining is frequent subgraph mining 

(FSM). FSM provides a means to extract frequently occurring patterns in a graph database. 

For instance in the setting for protein-protein interactions (PPIs), one can define a graph for 

each cancer patient based on expressed proteins and mine for commonly occurring 

interactions across patients (23). FSM has been widely used in a variety of applications, 
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including the identification of common metabolic pathways and clusters (24-26). Multiple 

algorithms have been developed to overcome challenges inherently present in subgraph 

mining regarding both memory and subgraph isomorphism issues (27-30). The general 

approach for mining frequently occurring patterns in a graph database is to grow candidate 

patterns either in depth-first search or breadth-first search manner and check whether the 

required support is achievable. One drawback of using FSM-based methods is the 

computational requirement since the subgraph isomorphism problem is NP-Complete (31).

One other methodology for utilizing global network topology is the random walks with 

restarts (RWR) on finite graphs. RWR algorithm is the simulation of a random walker 

jumping from node to node in the interaction network with the given parameters similar to 

the PageRank algorithm (32). A modified version of this approach is used to prioritize the 

local neighborhood by allowing the random walk to restart from specified seed nodes. This 

approach has been widely used for candidate gene prediction or disease-disease similarity 

measurements (33-35).

In this paper, we describe an integrative -omics approach to pan-cancer analysis using FSM 

coupled with biased random walks utilizing genomic alterations, gene expression, and PPI 

networks. We use FSM to identify frequently occurring interaction patterns to provide a 

better understanding of functional alterations across multiple cancer types while accounting 

for the complex interaction topology of cancer. Our goal is to integrate PPI networks with 

somatic alterations and gene expression profiles to infer molecular networks representing 

dysregulation in cancers. More specifically, we extract subnetworks that are frequent in the 

population and in close proximity to the mutated genes. In our analysis, we investigate 

TCGA samples for 32 cancer types. We present patient clusters across all cancer types as 

well as patient classifications of individual cancers based on these networks. We identify 

mechanisms that are shared across tumor types and unique to individual cancers.

2 Methods

2.1 Pan-cancer Dataset and Omic Databases

We have downloaded TCGA single nucleotide variation (SNV) data from UCSC Xena (36). 

Additionally, we have filtered out samples with mutations of more than 800 to reduce the 

possible effects of hypermutators. PPI network was downloaded from StringDB version 10.5 

and filtered to include edges with confidence scores > 0.4 with the remaining number of 

nodes being 17473 (37). Pathways were downloaded from the Reactome database. We 

excluded pathways with genes of less than 8 (38).

2.2 Biased Random Walks with Restarts

Biased random walks are applied to each sample separately by considering the mutated 

genes as seeds hence prioritizing local neighborhood of genomic alterations (See 

Supplementary Method Section S1.1). In this process, nodes with high degrees will 

intrinsically have increased probability values/traversed more often, to capture nodes with a 

statistically significant association with the seed set of nodes, we compared these results to a 

null distribution generated by applying the biased random walks to thousand randomly 
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generated seed sets keeping the number of seeds equal to the original seed set. p-values for 

each node are obtained by comparing the steady-state probability vector to the null 

distribution per gene. Multiple hypothesis testing corrections are done using the Bonferroni 

method and genes with p-values < 0.1 are kept. Restart probability for the biased random 

walk is chosen as 0.6 to not restrict the networks towards the neighbors of seed sets. 

However, note that restart probability can be fine-tuned specifically to each network but 0.6 

generally performs well across biological networks. Furthermore, since biased random walks 

can also identify spurious significant nodes solely due to the topology of the network, we 

have extracted connected components with the number of genes > 3.

2.3 Frequent Subgraph Mining

We developed an efficient method to sample for frequently occurring subgraphs across pan-

cancer samples (Algorithm 1). The goal of frequent subgraph mining is to discover all 

subnetworks of graphs in the database which recur at least k times (39, 40). The database is 

a collection of undirected gene networks assembled as described in Section 2.1. The 

parameter k in Algorithm 1 is called the minimum support. A subgraph is considered 

“frequent” (and supported) if it recurs at least k times.

In this analysis pipeline, we have applied biased random walks over the PPI network for 

each sample separately using the somatic alterations as seed sets. Following the RWR, FSM 

can be applied with two approaches; Mining a single graph database generated by merging 

the RWR results over all the samples or mining graph databases generated separately for 

each sample. A Sample-specific network can be generated by filtering the combined network 

to include nodes found significant for the current sample. Simply this approach will result in 

subnetworks with the specified support that are also present in the current sample. FSM 

results for sample-specific networks are then merged and duplicate networks are filtered. We 

have chosen to run FSM in sample-specific approach since applying FSM over an all-sample 

database (a single graph database including all the edges from all the samples) will lead to 

bias in the identified subgraphs due to the subset of the samples having a high number of 

dysregulated patterns.
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Algorithm 1: 
High-level algorithm for the proposed framework. The input matrices V and W have sizes g 
× p and g × g respectively. g is the number of genes and p is the number of samples in the 

pan-cancer data. k is the minimum number of samples a frequent subnetwork recurs. The 

algorithm returns the set of k-frequent subgraphs.

Applying the algorithm above to our problem naively is not practical. It involves solving 

several difficult sub-problems, including candidate subgraph generation and subgraph 

isomorphism. Furthermore, many frequent subgraphs would overlap with each other (41) 

returning exponentially large similar subgraphs (42). Our FSM approach resolves these 

problems in two ways. First, it uses a highly optimized method for candidate generation 

which prunes unsupported supergraphs (39). Second, instead of collecting all frequent 

subgraphs, a sample of graphs is collected using the GRAPLE algorithm (42). GRAPLE 

models the set of frequent subgraphs as a lattice where the graphs in the lattice are 
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connected by their subgraph and supergraph relationships (see Figure 1). Frequent subgraphs 

are sampled from the lattice by taking random walks on the lattice. For full details see (39, 

42), a related approach can be found in (43).

We have extensively tested the FSM algorithm to validate our approach and also compared it 

to previous methods (43-45). We tested parameter k on various benchmark datasets 

(Supplementary Table S3) and validated k’s effect on run time and subnetwork discovery. 

We ran these simulations in a non-heuristic mode to recover all subnetworks. We 

comprehensively compared our performance with GRAMI (Supplementary Table S4). 

GRAMI finds a slightly different number of patterns because it uses undirected graph search 

(otherwise GRAMI’s run time suffers). Our tool outperformed GRAMI.

2.4 Integrating Gene Expression Measurements to FSM Framework

We integrated the somatic mutations with gene expressions using the same -omics dataset 

and interaction network from (46). The integration of gene expression is done in two steps. 

First, in the biased random walk step, the transition probabilities are assigned based on the 

euclidean norm of z-scores of interacting genes. This scheme prioritized genes with high 

dysregulation compared to the population in addition to seed sets. Furthermore, for 

functional relevance, we have applied dimension reduction followed by clustering with PAM 

and pathway enrichment (PAM-Clusters, Figure S10) (47). To apply the dimension 

reduction, each identified subgraph is assigned an average dysregulation score (matrix of 

frequent subgraphs vs samples) (23).

2.5 Functional Analysis

To associate biological mechanisms with frequent subgraphs, we utilize clustering, non-

linear dimension reduction, pathway enrichment, and survival analysis. Since FSM is done 

in a sample-specific manner, identified subgraphs contain redundant interactions (repeated 

interactions across multiple subnetworks). We apply greedy clustering to remove these 

redundant interactions by grouping highly connected nodes (48). In this process, we find 

high modularity partitions of our networks.

For survival analysis, we utilized unsupervised clustering using the frequent subgraphs as 

features. Frequent subgraphs mined using gene expression integration are assigned 

dysregulation scores using the average euclidean norms of standardized gene expressions for 

a single fsg ∑i
ngi2 and samples are clustered using PAM on dimension reduced space (47, 

49). For FSGs identified using only SNVs, we assigned the frequency of matching genes in 

the FSG and the sample as a score and employed PAM. However note that for clustering 

samples with matching gene frequencies as scores, we did not use non-linear dimension 

reduction.

3 Results

3.1 Pan-cancer Subgraphs

FSM has identified 43k unique subgraphs with sizes between 6-60 edges across the 90% of 

the pan-cancer dataset with support 20 corresponding to 0.3% of samples (Figure 2). 
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Identified subgraphs covered more than 40% of the genes in the protein-protein interaction 

networks.

3.2 Pathway Enrichment

To elaborate on the functional relevance of the identified subgraphs, we have clustered the 

merged subgraph network using a greedy approach (FSG-Clusters) (48). More specifically, 

frequent subgraphs are merged into a single network, and clustering is applied. This method 

can be seen as filtering the initial protein-protein interaction network to include edges that 

show frequent interaction patterns. However, note that this scheme is not similar to simply 

filtering the edges that have minimum support level but in subgraph space. A total of 106 

clusters was identified (See Suppl. tables). To filter clusters without functional relevance, we 

have removed clusters with node size smaller than 10 and larger than 400. Pathway 

enrichment analysis using the Reactome Pathways has identified a total of 620 significant 

subnetworks using a p-value threshold of 0.01, including previously identified mechanisms: 

PI3K Cascade, Cytokine Signaling, DNA Repair, Signaling by NOTCH (Figure 3).

3.3 Disease Enrichment

To evaluate the representation of cancer types in identified clusters we have done enrichment 

analysis for each patient as well (Figure S3). Multiple clusters showed few over-

representation in terms of predefined disease types. These clusters also showed few or no 

pathway enrichment which might suggest small subnetworks stratifying patients in 

combination with broad dysregulation patterns.

Samples with lower-grade glioma (LGG) are represented across different clusters similar to 

breast cancer samples. However, increased representation for LGG samples in clusters 85 

and 63 is visible. Cluster 85 is mostly associated with CSF2RA-B metabolism, which are 

cytokines related to macrophage, granulocyte differentiation, and production. An earlier 

study showed how intercellular microglia polarization signaling through CSF2 (GM-CSF) 

and IFNG are the molecules that drive microglia towards the M1 phenotype (50). Cluster 63, 

on the other hand, is related mostly to NOTCH signaling, p75NTR degradation through 

NRIF interactions (Figure S11). In contrast, breast cancer patients show increased 

representation in clusters 23, 24, 35, and 44. Given clusters correspond to lipid metabolism 

(known risk factor for developing cancer (51)), membrane trafficking, cytoskeletal related 

processes, SEMA3A, SEMA4D signaling, which might related to increased Metastasis in 

breast cancer (52). Patients with skin disorders are mainly represented in clusters 47 and 

102. Pathway enrichment for the clusters identifies degradation of the extracellular matrix, 

O-linked glycosylation, and collagen biosynthesis. On the other hand, uveal melanoma 

patients are enriched for cluster 89, which shows dysregulation in GPCR signaling, the main 

biological processes impacted by the recurrent mutations in uveal melonama (53). Thyroid 

cancer patients show the most specific enrichment for cluster 80, showing functional 

relevance in the regulation of RAS by GAPs, and MAPK pathways, key signaling pathways 

in both initiation and progression of medullary thyroid carcinoma (54). Prostate cancer 

patients are mainly enriched for clusters 35, 44, and 23, showing enrichment for Rho 

GTPase activation of PAK, cleavage of cell adhesion proteins through apoptosis, SEMA3A, 

and SEMA4D related signaling. Head and neck cancer patients also show dysregulation 
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across a large number of clusters discovered but show the highest enrichment for cluster 

106, similar to breast cancer and LGG patients.

3.4 Comparison of Pan-cancer FSM Networks

Oncogenic Signaling Pathways of Pan-cancer—To further elaborate on the utility of 

the proposed method we have compared the genes in identified frequent subgraphs to 

previously established expert-curated pathways (4). We have recovered 65% of genes 

covering 90% of pathways reported in the curated list including EGFR, TP53, PIK3CA, 

PTEN matching various mechanisms. To further compare against previously curated 

pathways, we have utilized cancer hallmark genesets (55, 56). Frequent subgraphs cover 

100% of the hallmark gene sets with at least 1 overlapping gene. Interestingly FSG clusters 

cover multiple pathways and pathways are covered by multiple FSG clusters as well both for 

oncogenic signaling pathways and hallmark gene sets. This further elaborates on the 

complexity of cancer and the interaction topology (Figure S1). We identified additional 

genes, novel to the curated pathway database as well suggesting the importance of system-

level identification of functional mechanisms and the complexity of cancer progression (See 

Suppl. Figure S2).

HotNet2 Pan-cancer Subnetworks—We also compared our method to HotNet2 (22), 

which aims to find subnetworks significantly enriched in given alterations across the pan-

cancer dataset. However, the main difference is that HotNet2 focuses on gene-level 

perturbations and looks for subnetworks covering a wide range of samples in the dataset. 

More specifically in the subnetworks identified by HotNet2, different subsets of samples can 

show alterations in different nodes of the subnetwork. In contrast, our methodology aims to 

identify subnetworks for all samples meaning that in the identified subnetworks a common 

set of samples show dysregulation for all the nodes in the subnetwork. When we compare to 

HotNet2 subnetworks, we observe that clusters 63, 70, 80, and 90 correspond to 5 

subnetworks out of 15 relating to BRAF, RAS, PIK3CA subnetwork, KDM6A, MLL2, 

MLL3 subnetwork, SWI/SNF complex, BAP1 complex and cell adhesion networks 

respectively using overrepresentation analysis (See Suppl. Tables.). However, a comparison 

of FSGs prior to clustering results in 12 subnetworks to be significantly enriched. This 

suggests that different groups of patients show dysregulation in separate parts of a larger 

network that are combined into a single cluster based on intermediary interactions.

3.5 Functional Classification of Pancancer Samples

We calculated dysregulation scores for each subnetwork to stratify the cancer samples. We 

set the support level (k) to 8 for this purpose to increase the number of samples identified 

during the FSM run since with larger support of 20, many of the samples drop out. As 

expected, the number of unique frequent subgraphs increased dramatically to 135k, 

increasing the noise inherent in the frequent subgraph space (14k unique genes). However, 

dimension reduction shows clear separation of cancer types (See Figures 4, 5 and Suppl. 

Figures S4, S5 and S6).

While some cancers are spread across multiple clusters (e.g. BRCA), some cancers were 

separated based on tissue, which reflects implicit biological processed and their alterations 
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(e.g. Uveal melanoma, brain tumors, LIHC, PCPG, THCA etc.) (See also Suppl. Figure 

S12). Most importantly, survival differences (Figure 4) clearly exist across cancers and 

cancer subtypes. LGG is split into clusters 11 and 14, where 14 represents GBM-like LGG 

samples with significant survival differences (57). BRCA clusters 3, 4, 5, 6, 8, and 26 show 

significant survival differences in these groupings, which reflect previous findings (17, 58).

Significant features between clusters are obtained by comparison of subnetwork 

dysregulation scores using 1 vs all approach with p-value threshold after Bonferroni 

correction set as 0.01. Pathway enrichment is done on genes in the significant subnetworks. 

Pathway enrichment also shows functionally relevant mechanisms. For instance, clusters 9, 

21, and 22 representing Stomach Adenocarcinoma, Rectum Adenocarcinoma, and Colon 

Adenocarcinoma are significantly enriched for genes related to O-linked glycosylation 

(Fig.S6). However separately from Rectum and Colon Adenocarcinomas, Stomach 

Adenocarcinoma is highly enriched for Defective CSF2RA/CSF2RB causes pulmonary 
surfactant metabolism dysfunction pathway, which has been previously associated with 

Stomach Adenocarcinomas. Interestingly, there is a clear separation of functional 

mechanisms between clusters: 1, 5, 6, 8, 9, 10, 20, 21, 22, 26 (Group 1), and the rest. More 

specifically, the second group of cancers is all associated with mechanisms related to 

signaling events such as RAF/MAP kinase cascades, FGFR signaling, and PI3K Cascade, 

but the first group is not. These results provide a strong validation for the FSM approach 

presented.

3.6 Analysis of Single Cancers using Pan-cancer Frequent Subgraphs

We have shown further utility of FSGs mined using the pan-cancer dataset to stratify patients 

into subtypes. We have applied FSG level clustering using PAM and identified significant 

survival differences (Fig. S7). The significant results were seen for two separate cancers, 

Lower Grade Gliomas (LGG) and Uterine Cancer suggest that subnetworks mined using the 

pan-cancer dataset is able to capture subtype-specific functional networks. This further 

shows the comprehensive nature of our networks identified in this framework.

3.7 Single Cancer Analysis with the FSM Framework

While individual cancer analysis using the pan-cancer FSGs are possible (as shown above 

Section 3.6), the FSM framework we present can be applied to a single cancer type as well. 

For this purpose we analyzed glioblastoma multiforme (GBM) samples only. In a recent 

study, we used a more simplified FSM framework to cluster individual cancer types and 

successfully found subtypes for breast cancer and GBM (23). Using our new approach, we 

have identified 1.2k frequent subgraphs with a total of 5 clusters representing the frequent 

subgraph network and covering 60% of the GBM samples. The spectrum of the pathway 

dysregulation in the clusters corresponded to Cytokine Signaling, TRAF6 mediated IRF7 

activation, PI3K/AKT signaling, and PIP3 signaling. Interestingly, cluster-2 covered a large 

fraction of dysregulated pathways and, cluster-4 was enriched specifically for the AKT 

related pathways. However clusters 3 and 5 showed no pathway enrichment which requires 

further analysis.
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3.8 Survival Differences of Patients Represented in PAM-Clusters

We have investigated the patient groups that correspond to each cluster identified using gene 

expression and SNP datasets. Pairwise comparison of survival curves show high significance 

between clusters (Fig.5). For example, cluster-8, which is represented mostly by BRCA 

patients, shows a significant difference when compared against clusters 1, 4, 5, 6 that are 

composed of mixed disease types of OV, UCEC, HNSC, LUSC, LUAD, BRCA. 

Furthermore, the difference between clusters 8 and 26 for BRCA patients only might 

represent subtype differences as well. Similarly clusters 11 and 14 represent 2 distinct LGG 

patient clusters with significant survival differences. Interestingly however BRCA, LUAD, 

LUSC, HNSC, UCEC, and OV cancer types are heterogeneously divided into different 

clusters suggesting common molecular mechanisms driving the diseases and requires further 

investigation.

4 Discussion

We have applied frequent subgraph mining coupled with random walk with restarts to the 

pan-cancer dataset. The application of the FSM with patient-level constraints allowed us to 

extract interaction patterns functionally relevant to cancer progression. Identified patterns 

might prove useful for novel targeting strategies especially patient-specific targets due to 

increased sensitivity in regulatory pattern identification.

The approach proposed in the context of mining functionally important subgraphs is more 

efficient compared to our initial methodology published (23) both in terms of runtime and 

coverage. Biased random walks significantly decrease the search space by reducing the 

number of edges per patient and applying the FSM separately for each patient as given 

above ensures that each sample is represented. Furthermore, the use of biased random walks 

allowed us to increase the sensitivity of our approach by considering the mutational 

signatures as a network. More specifically, each graph database is obtained based on the 

mutated genes but frequent subgraphs do not necessarily contain mutated genes but are 

associated with mutated genes. Additionally, as given above the proposed approach is more 

comprehensive in comparison with other methods available since gene-level enrichment-

based methods or prior knowledge do not take into account the complex interaction patterns 

relevant to cancer progression.

In comparison to previous methods and established biomarkers, the proposed method 

underlines the complex interaction patterns present in defining different cancer groups. For 

example, SEMA3A has been previously associated with breast cancer metastases through 

the promotion of osteoblast differentiation in MCF-7 cell lines (59). Colony-stimulating 

factor has also been associated with glioma progression previously and identification of 

CSF2RA is an important observation (60). p75 neurotrophin receptor also is a crucial 

regulator of glioma progression leading to cytoskeletal modifications (61). Analysis of GBM 

patients only increased the sensitivity of frequent subgraphs. PI3K/AKT is responsible for 

drug resistance for malignant glioma patients, suggesting a critical biomarker in targeted 

therapies (62).
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Furthermore, we have shown that the proposed approach is able to elucidate increased 

functional relevance by strictly enforcing frequency requirements hence decreasing false 

positives in contrast with previously established methods that either focus on gene-level 

approaches or do not consider the underlying topology of the patient data.

Finally, our approach is able to stratify patients of individual cancers based on pancancer 

frequent subgraphs. In this unsupervised approach, we were able to find significant survival 

differences in patient groups of LGG and Uterine Cancer. This further validates our 

approach and shows utility for future cancer studies.
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Fig. 1: 
Figure (b) is a connected subgraph lattice of the graph in Figure (a) including only the 

subgraphs with 2 or more embeddings in Figure (a). The boxed nodes in the graph show the 

embeddings of the boxed subgraph in the lattice. In the figure, the colors (black, gray, and 

white) are standing in for labels on the vertices (Adapted from, (39)).
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Fig. 2: 
Sample frequent subgraphs mined from the pan-cancer dataset. Each edge in the given 

subgraph is represented in at least 20 common set of samples.
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Fig. 3: 
Top three enrichment results of identified clusters sorted by root pathways (FSG-Clusters).
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Fig. 4: 
Left: UMAP dimensionality reduction on scored frequent subgraph matrix. Samples clusters 

are labeled and colored based on labels. Right: Pairwise survival differences using log-rank 

test are shown for FSM patient clusters shown on the left.
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Fig. 5: 
Disease profile for each UMAP cluster is shown. The number of patients for each cancer 

type is stacked on each bar. TCGA disease codes are listed in Supplementary Table S1.
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