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Abstract: The antidiabetic drug empagliflozin is reported to produce a range of cardiovascular
effects, including a reduction in systemic blood pressure. However, whether empagliflozin di-
rectly modulates the contractility of resistance-size mesenteric arteries remains unclear. Here, we
sought to investigate if empagliflozin could relax resistance-size rat mesenteric arteries and the
associated underlying molecular mechanisms. We found that acute empagliflozin application
produces a concentration-dependent vasodilation in myogenic, depolarized and phenylephrine
(PE)-preconstricted mesenteric arteries. Selective inhibition of smooth muscle cell voltage-gated
K+ channels KV1.5 and KV7 abolished empagliflozin-induced vasodilation. In contrast, pharma-
cological inhibition of large-conductance Ca2+-activated K+ (BKCa) channels and ATP-sensitive
(KATP) channels did not abolish vasodilation. Inhibition of the vasodilatory signaling axis involv-
ing endothelial nitric oxide (NO), smooth muscle cell soluble guanylyl cyclase (sGC) and protein
kinase G (PKG) did not abolish empagliflozin-evoked vasodilation. Inhibition of the endothelium-
derived vasodilatory molecule prostacyclin (PGI2) had no effect on the vasodilation. Consistently,
empagliflozin-evoked vasodilation remained unaltered by endothelium denudation. Overall, our
data suggest that empagliflozin stimulates smooth muscle cell KV channels KV1.5 and KV7, resulting
in vasodilation in resistance-size mesenteric arteries. This study demonstrates for the first time a novel
mechanism whereby empagliflozin regulates arterial contractility, resulting in vasodilation. Due to
known antihypertensive properties, treatment with empagliflozin may complement conventional
antihypertensive therapy.
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1. Introduction

Type 2 diabetes (T2D) and hypertension are two major and independent risk factors
for the development of cardiovascular diseases including heart disease, stroke, peripheral
arterial disease and chronic kidney disease [1]. Hypertension and T2D often coexist,
which multiplies the risk of adverse cardiovascular events in affected individuals [1,2].
Approximately 20% of patients with hypertension also have T2D, and 50% of patients with
T2D have hypertension [3].

Clinical studies suggest that there is considerable residual risk for cardiovascular
events in the hypertensive-diabetic group despite standard pharmacologic treatment and
lifestyle modifications [4]. Therefore, there is a growing interest among clinicians with
respect to management strategies for blood pressure lowering in this high-risk group
that complement conventional antihypertensive therapy. This is based on a number of
rigorous clinical trials that have shown that new hypoglycemic agents such as SGLT2
(sodium-glucose cotransporter-2) inhibitors can lower systemic blood pressure and have
overall favorable cardiovascular outcomes [5–17]. In this regard, three members of SGLT2
inhibitors, namely empagliflozin, canagliflozin and dapagliflozin, have attracted much
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attention for use in the high-risk hypertensive-diabetic population due to their antihyper-
tensive and hypoglycemic actions [18–20]. This blood pressure lowering effect is believed
to be, at least in part, due to SGLT2 inhibitor-mediated vasodilation of systemic resistance
arteries and a reduction in peripheral vascular resistance [5,21,22].

Empagliflozin is a potent and highly selective SGLT2 inhibitor that received U.S.
FDA (The United States Food and Drug Administration) clearance for use in T2D in
2014 [23]. A significant body of evidence shows that empagliflozin treatment is associated
with reduced arterial stiffness [24,25], vascular resistance [25] and blood pressure [17,26].
Recently, empagliflozin was reported to relax rabbit aorta by activating PKG and KV1.5 ion
channels [27]. In addition, empagliflozin treatment was shown to decrease both systolic and
diastolic pressure in rabbits [27]. In an earlier study, dapagliflozin was also shown to cause
aorta relaxation by activating PKG and KV1.5 ion channels [21]. This raises the possibility
that empagliflozin may also relax and reduce the resistance of systemic vessels such as small
mesenteric arteries. Moreover, empagliflozin and other SGTL2 inhibitors were reported to
possess significant antioxidant and anti-inflammatory actions that afford protection against
nitro-oxidative stress and suppress vascular inflammation and atherosclerosis [5,28–35].
In this study, we investigated vasodilatory action of acute empagliflozin application in
freshly isolated, resistance-size mesenteric arteries by using pressure myography and
pharmacological approaches.

Our data demonstrate that empagliflozin stimulates smooth muscle cell voltage-gated
K+ channels KV1.5 and KV7 to elicit vasodilation in resistance-size mesenteric arteries.
This study is significant as it unveils a direct role for empagliflozin in relaxing mesenteric
arteries that reduces vascular resistance and may explain blood pressure lowering effects of
this drug. This study also lends additional support for the use of this drug in hypertensive-
diabetic patients for reducing the risk of adverse cardiovascular events such as heart attack
and stroke.

2. Results
2.1. Acute Empagliflozin Application Produces Vasodilation in Resistance Mesenteric Arteries

To examine the direct effect of acute empagliflozin treatment on arterial contractility,
we performed pressure myography on small resistance-size mesenteric arteries. Freshly
isolated third to fourth order mesenteric artery segments were cannulated and main-
tained in a temperature-controlled perfusion chamber continuously perfused with 37 ◦C
PSS. Intravascular pressure gradually increased from 10 to 80 mmHg to stimulate the
development of myogenic tone (~25% at 80 mmHg), and a cumulative concentration re-
sponse to empagliflozin was performed. Our myography data show that empagliflozin
produced a concentration-dependent vasodilation in mesenteric arteries (Figure 1A,B).
Empagliflozin at 100 µM concentration produced a maximum dilation in mesenteric ar-
teries by 13.31 ± 1.49% of passive arterial diameter at 80 mmHg (Figure 1C). Having
examined the vasodilatory effect of empagliflozin in myogenic arteries, we next verified
this finding in arteries pre-constricted with either 1 µM phenylephrine (PE) or 30 mM
K+-PSS (30K), which depolarizes arteries to the same extent as 80 mmHg intraluminal
pressure. We found that empagliflozin relaxed both PE and 30K-preconstricted arteries
in a concentration-dependent manner (Figure 2A–D), similar to what was observed in
pressurized myogenic arteries. Overall, these data demonstrate that empagliflozin is a
vasodilator in resistance-size rat mesenteric arteries.



Int. J. Mol. Sci. 2021, 22, 10842 3 of 14

Figure 1. Empagliflozin stimulates concentration-dependent vasodilation in myogenic resistance-
size mesenteric arteries. (A) An original trace illustrating vasodilation in a rat mesenteric artery
at different concentrations (0.001 to 100 µM) of empagliflozin. (B) Mean data for empagliflozin-
induced vasodilation, n = 6. (C) Mean data for empagliflozin-induced vasodilation expressed as % of
maximum passive diameter at 80 mmHg, n = 6.

Figure 2. Empagliflozin stimulates vasodilation in PE- and 30K-constricted mesenteric arteries.
(A) An original trace showing concentration-dependent inhibition of 1 µM PE-induced contraction
in a mesenteric artery by empagliflozin (0.001 to 100 µM). (B) Mean data for % inhibition of PE-
induced constriction by empagliflozin, n = 3. (C) An original trace showing concentration-dependent
inhibition of 30K-induced constriction in a mesenteric artery by empagliflozin (0.001 to 100 µM).
(D) Mean data for % inhibition of 30K-induced constriction by empagliflozin, n = 6.
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2.2. Empagliflozin-Induced Mesenteric Artery Vasodilation Is Independent of NO-sGC-PKG
Signaling Axis

Endothelial cells (ECs) that line the lumen of all blood vessels are a critical regulator
of smooth muscle contractility and vessel diameter. ECs produce vasodilators that act on
underlying smooth muscle cells to elicit arterial vasodilation. NO, produced by eNOS, is
one of the most prominent vasorelaxant factors that diffuses into arterial smooth muscle
cells to stimulate sGC and cGMP production. Elevated cGMP levels activate PKG, which
in turn activates myosin light chain phosphatase, resulting in vasodilation [36].

Considering the critical role of the NO-sGC-PKG signaling axis in vasodilation,
we examined whether pharmacological inhibitors of this signaling axis could attenu-
ate empagliflozin-mediated arterial vasodilation. We found that L-NNA, an inhibitor of
eNOS, ODQ, a sGC inhibitor or KT5823, an inhibitor of PKG did not abolish empagliflozin-
induced vasodilation (Figure 3A,B). These data suggest that the NO-sGC-PKG signaling
axis is not involved in mesenteric artery vasodilation produced by empagliflozin.

Figure 3. Empagliflozin-induced vasodilation in resistant mesenteric arteries is independent of NO-
sGC-PKG signaling axis. (A) Original traces comparing empagliflozin (Empa)-induced vasodilation
with or without pharmacological modulators (10 µM L-NNA, 10 µM ODQ and 1 µM KT5823) of
NO-sGC-PKG signaling axis. (B) Mean data comparing Empa-induced mesenteric artery vasodilation
with or without pharmacological inhibitors of NO-sGC-PKG signaling, n = 4.

2.3. Empagliflozin-Evoked Mesenteric Artery Vasodilation Does Not Depend on Endothelial PGI2

Cyclooxygenase (COX) enzymes in the endothelial cells synthesize another major
vasodilator PGI2 that acts on its smooth muscle cell receptors to produce vasorelax-
ation [37,38]. Therefore, we asked if empagliflozin could stimulate PGI2 production to in-
duce vasodilation. To perform this, we preincubated mesenteric arteries with indomethacin,
an inhibitor of COX, and then applied empagliflozin. Our pressure myography data re-
vealed that indomethacin application did not abrogate empagliflozin-induced vasodilation
in mesenteric arteries (Figure 4A,B). These data suggest that empagliflozin-evoked vasodi-
lation is not mediated by COX stimulation and PGI2 production.
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Figure 4. Empagliflozin-induced vasodilation is not mediated by endothelial PGI2 production.
(A) Original traces comparing Empa-induced vasodilation with or without indomethacin (10 µM).
(B) Mean data comparing Empa-induced mesenteric artery relaxation with or without indomethacin,
n = 7. * p < 0.05 vs. Empa.

2.4. Endothelium Denudation Does Not Alter Empagliflozin-Evoked Vasodilation

To assess the role of endothelium further, we compared empagliflozin-induced vasodi-
lation in endothelium-intact and endothelium-denuded mesenteric arteries. Endothelium
denudation was performed by slowly passing air bubbles through the vessel lumen and
confirmed as described by others previously [39–41]. Briefly, we applied 1 µM acetyl-
choline (ACh) to endothelium-intact and endothelium-denuded arterial segments that had
been preconstricted with 1 µM PE. We found that ACh fully reversed PE constriction in
endothelium-intact arteries but not in endothelium-denuded arteries (Figure 5A,B). The
application of 1 µM sodium nitroprusside (SNP), a NO donor, completely reversed PE
constriction in both endothelium-intact and endothelium-denuded arteries (Figure 5A,B),
suggesting that endothelium denudation does not affect smooth muscle responses to
NO. Since ACh-induced vasodilation is primarily mediated by endothelial NO produc-
tion, selective loss of ACh-evoked vasodilation demonstrates successful endothelium
denudation [39–41]. We then compared empagliflozin responses in endothelium-intact
and endothelium-denuded arteries. We found that empagliflozin treatment reversed PE-
induced vasoconstriction both in endothelium-intact and endothelium-denuded arteries
(intact 100% vs. denuded 101.24%) (Figure 5C,D). These data suggest that empagliflozin-
elicited mesenteric artery vasodilation does not depend on endothelial signaling and likely
involves smooth muscle.
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Figure 5. Empagliflozin-induced vasodilation is endothelium independent. (A) Original traces
comparing responses of PE-constricted endothelium (endo) intact and denuded mesenteric arteries
to ACh (1 µM) and SNP (10 µM). (B) Mean data showing selective loss of ACh-induced vasodilation
but not SNP-elicited vasodilation in endo-denuded and PE-constricted arteries, n = 4. * p < 0.05 vs.
endo-intact. (C) Original traces comparing Empa-induced (100 µM) vasodilation in endo-intact and
endo-denuded arteries. (D) Mean data comparing Empa-induced vasodilation in endo-intact and
endo-denuded mesenteric arteries, n = 4.

2.5. Role of Smooth Muscle Cell Voltage-Gated K+ (KV) Channels in
Empagliflozin-Induced Vasodilation

Arterial smooth muscle cells express a wide variety of K+ channels that control
membrane potential and arterial contractility [42]. Several voltage-gated K+ channels
(KV) are reported to be expressed in smooth muscle cells, and their activation causes K+

efflux, smooth muscle hyperpolarization and vasodilation [43,44].
Therefore, we sought to examine the hypothesis that empagliflozin may directly stimu-

late KV channels to cause vasodilation in mesenteric arteries. Indeed, our data showed that
the application of 4-aminopyridine (4-AP), a non-selective KV blocker, [37,43,45] reduced
empagliflozin-evoked vasodilation by ~60% (Figure 6A,B). These data suggest that KV
channel stimulation is critical for empagliflozin-mediated vasodilation in mesenteric arter-
ies. We next explored the contribution of major KV channel isoforms present in mesenteric
artery smooth muscle cells, including KV1.3, KV1.5 and KV7 [43,44]. Our pressure myogra-
phy data revealed that the application of DPO-1, a selective KV1.5 inhibitor [46,47], reduced
empagliflozin response by ~27%. Interestingly, the application of linopirdine, a blocker of
KV7 [48,49], suppressed empagliflozin-induced vasodilation by ~42%. When KV1.5 and
KV7 channels were simultaneously inhibited by the co-application of DPO-1 and linopir-
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dine, empagliflozin-evoked vasodilation was strongly suppressed by ~69% (Figure 6C,D),
similar to 4-AP-meidated reduction (60%) of empagliflozin response (Figure 6A,B). The
selective inhibition of KV1.3 channels by psora-4 did not suppress empagliflozin-induced
vasodilation (Figure 6C,D). These findings provide compelling pharmacological evidence
for the involvement of both KV1.5 and KV7 channels in mediating empagliflozin-induced
vasodilation in small mesenteric arteries.

Figure 6. Role of smooth muscle cell KV channels in empagliflozin-induced vasodilation. (A) Original
traces showing that non-selective inhibition of KV channels with 4-AP (1 mM) reduced Empa-induced
vasodilation in mesenteric arteries. (B) Mean data illustrating significant reduction in Empa-evoked
vasodilation by non-selective inhibition of KV channels, n = 4. * p < 0.05 vs. Empa. (C) Original traces
illustrating the effects of KV1.5, KV7 and KV1.3 channel inhibitors (1 µM DPO-1, 10 µM linopirdine
and 100 nM psora-4, respectively) on Empa-induced vasodilation in resistance mesenteric arteries.
(D) Mean data comparing the modulation of Empa-evoked vasodilation by KV1.5, KV7 and KV1.3
channel inhibition, n = 3–7. * p < 0.05 vs. Empa.

2.6. Role of Smooth Muscle Cell BKCa and KATP Channels in Empagliflozin-Induced Vasodilation

Arterial smooth muscle cells also express large-conductance Ca2+-activated K+ chan-
nels (BKCa) and ATP-sensitive K+ channels (KATP) which, when stimulated, caused arterial
hyperpolarization and vasodilation [50].

Here, we analyzed the contribution of BKCa and KATP channels in empagliflozin-
induced vasodilation. Myography data showed that the application of paxilline, an in-
hibitor of BKCa channels [51] and glibenclamide, a blocker of KATP channels [52], did
not attenuate empagliflozin-induced vasodilation in resistance-size mesenteric arteries
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(Figure 7A,B). These data suggest that empagliflozin-evoked vasodilation is mediated by
KV channels, specifically KV1.5 and KV7 but not BKCa or KATP channels.

Figure 7. Role of smooth muscle cell BKCa and KATP channels in empagliflozin-induced vasodilation.
(A) Original traces showing that the inhibition of BKCa and KATP channels (by 10 µM paxilline and
10 µM glibenclamide, respectively) does not reduce Empa-induced vasodilation in resistance-size
mesenteric arteries. (B) Mean data showing that BKCa and KATP channel inhibition does not attenuate
Empa-induced vasodilation, n = 3–5. * p < 0.05 vs. Empa.

3. Discussion

In this study, we demonstrated for the first time that empagliflozin stimulates vasodi-
lation in resistance arteries such as the small mesenteric arteries. Our data also demonstrate
that empagliflozin-evoked vasodilation does not depend on endothelial signaling; rather, it
depends on the activation of arterial smooth muscle cell KV1.5 and KV7 ion channels.

Accumulating evidence suggests that empagliflozin treatment is associated with sub-
stantial reduction in adverse cardiovascular events, such as heart attack and stroke, in
diabetic patients [17]. Cardiovascular risk reduction has also been attributed to a decrease
in arterial stiffness [24,25], contractility [25], vascular oxidative stress and inflammation
in addition to improved cardiac function [5,31,33–35]. Previous studies have also shown
that empagliflozin treatment lowers systemic blood pressure [17,26,27], resulting in better
cardiovascular outcomes [17]. Systemic blood pressure is a function of peripheral vascular
resistance exerted by small arteries and arterioles. It has been proposed that empagliflozin
may lower blood pressure by reducing vascular resistance [27]. However, experimental evi-
dence demonstrating a reduction in vascular resistance is lacking. Our study demonstrates
for the first time that empagliflozin produces vasodilation in resistance-size mesenteric
arteries which are part of the systemic vasculature and contribute to total peripheral re-
sistance. A recent study by Seo et al. (2020) showed that empagliflozin treatment reduces
the reactivity of rabbit thoracic aorta rings [27]. Since the aorta is a conduit vessel that is
primarily involved in pressure damping and distribution of blood to the periphery without
any major contribution to the peripheral vascular resistance, the relevance of such findings
in systemic blood pressure regulation could not be ascertained. Our study establishes
a correlation between empagliflozin-induced blood pressure lowering and a reduction
in vascular resistance through vasodilation of resistance mesenteric arteries. Mesenteric
arteries which are part of splanchnic circulation receive over 25% of cardiac output [53].
Therefore, the relaxation of small mesenteric arteries may contribute appreciably to the
reduction in peripheral vascular resistance and systemic blood pressure. However, further
studies will be required to assess if acute empagliflozin treatment could also lower systemic
blood pressure.

Here, we demonstrated that empagliflozin relaxes myogenic (80 mmHg-constricted),
30K- and PE-constricted resistance-size mesenteric arteries (Figures 1 and 2). Intraluminal
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pressure of 80 mmHg or 30K+ PSS opens voltage-gated Ca2+ channel CaV1.2 in arterial
smooth muscle cells, resulting in Ca2+ influx, rise of intracellular Ca2+ concentration and
vasoconstriction. PE binds to smooth muscle cell α1 adrenergic receptor (Gq11-coupled),
which activates phospholipase C (PLC), resulting in the formation of inositol triphosphate
(IP3). IP3 binds to ryanodine receptors on sarcoplasmic reticulum (SR) to stimulate the
release of stored SR Ca2+ into the cytoplasm, causing smooth muscle contraction [54].
Although these pathways tend to overlap and activate each other, the efficacy of em-
pagliflozin in relaxing mesenteric arteries regardless of the stimuli reinforces our finding
that empagliflozin is a potent vasodilator with the ability to relax arteries preconstricted
with different vasoconstrictors. Seo et al. (2020) showed that empagliflozin relaxes rabbit
aorta by activating PKG and KV1.5 channels [27]. Our findings are partly in agreement
with this study in that empagliflozin stimulates KV1.5 channels in mesenteric arteries,
as it did in the aorta. Furthermore, our study demonstrates that empagliflozin-induced
vasodilation in mesenteric arteries is dependent on the activation of two smooth muscle cell
KV ion channels, KV1.5 and KV7 (Figure 6). We demonstrated that, in mesenteric arteries,
KV7 inhibition produces 15% more vasodilation than the inhibition of KV1.5 channels.
As KV1.5 channels are the predominant KV isoform (65%) [41,44] in mesenteric arteries,
the involvement of KV7 which has relatively lower abundance (<10% of all KV) [41] may
indicate a greater selectivity of empagliflozin for KV7 over KV1.5 channel. This suggests
that KV7 channel activation is the major contributor to empagliflozin-elicited vasodilation
in mesenteric arteries. In contrast, a lack of involvement of KV7 channels in mediating
empagliflozin-induced relaxation of the aorta may be attributed to the difference between
aorta and mesenteric artery microenvironment. Unlike the previous finding that suggests
a role for PKG in aorta relaxation, our data rule out the contribution of PKG activation
and its upstream signaling components involving sGC and endothelium-derived NO in
empagliflozin-induced mesenteric artery vasodilation. These findings suggest that, al-
though PKG activation is required for empagliflozin-induced relaxation of aorta, it has no
role in mesenteric artery vasodilation or the activation of KV1.5 and KV7 channels. Since
empagliflozin relaxed 30K-constricted mesenteric arteries, it is possible that other mecha-
nisms, in addition to KV ion channels, are also activated by this drug to induce vasodilation.
Regardless of the mechanisms involved, relaxation of resistance mesenteric arteries upon
acute empagliflozin application may be beneficial for reducing blood pressure and the risks
of heart attack and stroke that are associated with elevated arterial tone and hypertension.

SGLT2 inhibitors including empagliflozin have been shown to have a wide range of
effects in the cardiovascular system and beyond [5,28–35] Although they are primarily
recommended for decreasing renal glucose reabsorption by selectively blocking SGLT2 [55],
this class of drugs appears to have many other molecular targets that result in a range of
glucose independent beneficial effects or ‘pleiotropic’ effects. Since SGTL2 has the highest
concentration in the renal proximal tubule, the vasodilatory action of empagliflozin in
mesenteric artery may be another example of a pleiotropic effect of SGLT2 inhibitors. Future
studies are likely to identify more targets of empagliflozin action in the cardiovascular and
other systems that may explain improved cardiovascular function in diabetic patients.

Our study has several limitations. Since our findings are based on healthy, young
animals, future studies using diabetic animals will be required to validate the vasodilatory
action of this drug in a relevant model. We tested the vasodilatory action of empagliflozin
in an ex vivo preparation of resistance-size mesenteric arteries. Proof of concept studies
such as blood pressure measurement in ambulatory animals as well as in vivo blood flow
measurement will be required to understand the full therapeutic potential of this drug in
blood pressure and blood flow regulation. Similar experiments in human vessels and the
measurement of blood flow and blood pressure will significantly enhance the translational
aspect of this work.

In summary, we demonstrated that empagliflozin relaxes resistance-size mesenteric
arteries by stimulating smooth muscle cell KV1.5 and KV7 ion channels. Empagliflozin-
evoked vasodilation does not depend on endothelial signaling or other smooth muscle K+
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channels. This finding is significant as it uncovers a direct role for empagliflozin in reducing
vascular resistance, which may provide an explanation for its blood pressure lowering
action in clinical studies. As diabetes and hypertension coexist, the use of empagliflozin
(perhaps other SGLT2 inhibitors) in this high-risk diabetic population may complement
conventional antihypertensive therapy to potentially reduce the overall risk of adverse
cardiovascular events such as heart attack and stroke.

4. Materials and Methods
4.1. Animals

All animal protocols were approved by the Mercer University Institutional Animal
Care and Use Committee (IACUC, Ref. No. A2107011, last approved on 11 August
2021) Male Sprague Dawley (SD) [35] rats, 8–9 weeks of age, were used for this study.
Animals were purchased from Charles River Laboratories (Wilmington, MA, USA) and
acclimatized in the vivarium of the Mercer University College of Pharmacy for one week
before experimentation. Rats were individually caged in a temperature-regulated room
(temperature 22 ± 2 ◦C; 55% humidity; and 12 h light/dark cycles) and had access to
standard chow diet and drinking water ad libitum. Animals were randomized for all
experiments. The experiments were conducted in accordance with the guidelines set
by the United States National Institutes of Health [56] Guide for the Care and Use of
Laboratory Animals.

4.2. Tissue Preparation

Animals were euthanized by passing compressed CO2 gas into a CO2 euthanasia
chamber followed by decapitation. An entire mesenteric artery bed was dissected and
placed into ice-cold PSS (see composition below). Third and fourth order branches of
mesenteric arteries (150–250 µm) were dissected cleaned of adventitial tissue in ice-cold
PSS. Cleaned arterial branches were cut into 1–2 mm long segments that were kept in
ice-cold PSS until cannulated for pressure myography [39–41,57].

4.3. Solutions and Chemicals

PSS for vessel dissection, isolation and preparation contained (in mM) the following:
KCl 6.0, NaCl 112, NaHCO3 1.18, MgSO4 1.18, KH2PO4 1.18, CaCl2 1.8 and glucose 10. The
pH of the PSS was adjusted to and maintained at 7.4 by continuous flow of normal air into
the PSS. The amount of 60 mM K+-PSS (60K) was prepared by equimolar replacement of
NaCl with KCl in the PSS. Empagliflozin was purchased from Ambeed Inc. (Arlington
Heights, IL, USA) and used in the concentration range of 0.001–100 µM. Phenylephrine
(PE) and 4-aminopyridine (4-AP) were purchased from Sigma-Aldrich (St. Louis, MO,
USA) and used at a final concentration of 1 µM and 1 mM, respectively. Indomethacin
(10 µM), DPO-1 (1 µM), Linopirdine (10 µM), Psora-4 (100 nM), Glibenclamide (10 µM),
paxilline (10 µM), ODQ (10 µM), KT 5823 (1 µM), L-NNA (10 µM), SNP (10 µM) and
acetylcholine (ACh, 1 µM)) were purchased from Tocris (Minneapolis, MN, USA). 4-AP,
SNP and PE were dissolved in distilled water. Empagliflozin, DPO-1, linopirdine, psora-4,
indomethacin, glibenclamide, paxilline, ODQ, KT5823, L-NNA and ACh were dissolved
in dimethyl sulfoxide (DMSO). The final DMSO concentration (<0.1%) in the myograph
chamber had no significant effect on arterial contractility.

4.4. Pressure Myography

Arterial segments were cannulated in a perfusion chamber (Living Systems Instru-
mentation, St. Albans, VT, USA), continuously perfused with 37 ◦C PSS and gassed with a
mixture of 21% O2, 5% CO2 and 74% N2 to maintain pH 7.4. A 60K-induced constriction
was used for testing the viability of the arteries at 10 mmHg before all experiments. Intra-
luminal pressure gradually increased to 80 mmHg with increments of 20 mmHg at each
step to allow the development of myogenic tone. Intraluminal pressure was altered using
a pressure servo controller with peristaltic pump (PS-200, Living Systems) and monitored
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with a pressure monitor. At 80 mmHg, mesenteric arteries developed 25 ± 3.91% myo-
genic tone, after which increasing concentrations of empagliflozin (0.001–100 µM) were
applied. Diameter changes were recorded at 1 Hz using a charge-coupled device (CCD)
camera connected to a Nikon Ts2 microscope and an automatic edge-detection function of
IonWizard software (IonOptix, Milton, MA, USA). Luminal flow was absent during the
experiment. Myogenic tone (%) was calculated as follows: 100 × (1 − Dactive/Dpassive),
where Dactive is active arterial diameter in the presence of Ca2+ and Dpassive is the passive
arterial diameter determined in Ca2+-free PSS supplemented with 5 mM EGTA [39–41,57].

For the mechanistic studies, we used 1 µM PE-preconstricted arteries. Arteries were
preincubated for 15 min with different pharmacological modulators prior to the application
of empagliflozin in the presence of the modulator.

4.5. Endothelium Denudation

Endothelium was denuded by slow passage of air bubbles through the vessel lumen
for 1–2 min. Absence or at least 90% reduction in ACh-induced vasodilation was used
as the indicator of successful endothelium denudation [39–41]. Sodium nitroprusside
(SNP)-induced vasodilation and myogenic-induced and 60K-induced vasoconstriction
remained unaltered by endothelium denudation.

4.6. Statistical Analysis

OriginLab software version 9.55 (2019b) (OriginLab, Northampton, MA, USA) was
used for data analysis. The results were expressed as mean ± SEM. Considering the interval-
ratio data with normal distribution, we performed unpaired Student’s t-tests (two-tailed)
to test hypotheses. A p value of <0.05 was considered statistically significant [28,29,39].
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