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Abstract

Background/Obijectives: Molecular mechanisms linking fish and vegetable oil intakes to their healthy metabolic
effects may involve attenuation of inflammation. Our primary aim was to examine in a randomized controlled setting
whether diets enriched in fatty fish (FF), lean fish (LF) or ALA-rich camelina sativa oil (CSO) differ in their effects on the
mMRNA expression response of selected inflammation-related genes in peripheral blood mononuclear cells (PBMCs)
and subcutaneous adipose tissue (SAT) in subjects with impaired fasting glucose.

Subjects/Methods: Samples from 72 participants randomized to one of the following 12-week intervention groups,
FF (n=19), LF (n=19), CSO (n=17) or a control group (n = 17), were available for the PBMC study. For SAT,

39 samples (n=28,n =10, n =9, n =12, respectively) were available. The mRNA expression was measured at baseline
and 12 weeks by TagMan® Low Density Array.

Results: In PBMCs, LF decreased ICAMT mRNA expression (P < 0.05), which was different (P = 0.06, Bonferroni
correction) from the observed increase in the FF group (P < 0.05). Also, compared to the control group, LF decreased
ICAMT mRNA expression (P < 0.05). Moreover, the change in [CAMT mRNA expression correlated positively with the
intake of FF (P < 0.05) and negatively with the intake of LF (P < 0.05), independently of study group. A diet enriched in
CSO, a rich source of alpha-linolenic acid (ALA), decreased PBMC IFNG mRNA expression (P < 0.01). The intake of CSO
in the CSO group, but not the increase in plasma ALA proportions, correlated inversely with the IFNG mRNA expression
in PBMCs (P =0.08). In SAT, when compared with the control group, the effect of FF on decreasing /LTRN mRNA
expression was significant (P < 0.03).

Conclusion: We propose that CSO intake may partly exert its benefits through immuno-inflammatory molecular
regulation in PBMCs, while modulation of ICAM1 expression, an endothelial/vascular-related gene, may be more
dependent on the type of fish consumed.
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in alpha-linolenic acid (ALA, 18:3 #-3), are regarded to
have beneficial effects on serum lipid profile and glucose
metabolism, even though still controversial' ™, potentially
contributing to a protective effect against type 2 diabetes
(T2D) and cardiovascular disease (CVD). Still, intake of
lean fish (LF), a poor source of n-3 FAs as compared to
fatty fish (FF), may reduce the risk of stroke and CV risk
factors, including circulating markers related to inflam-
mation®’.

One of the possible mechanisms linking the protective
effect of n-3 FAs could be through decreasing inflam-
mation. Indeed, previous results have shown that different
sources of n-3 FAs, mainly EPA and DHA, may affect
gene expression levels of markers involved in inflamma-
tion and immune system'™'2, The possible molecular
mechanisms linking the protective effect of LF, on the
other hand, have been much less studied. Even though we
and others have found conflicting results in the effect of
n-3 FAs or LF on the expression of immune-inflammatory
related genes, these studies were performed in different
populations and lacked an intervention arm with dietary
n-3 FA content as vegetable oil or fat™'*'%,

Peripheral blood mononuclear cells (PBMCs) are readily
accessible circulating cells that include lymphocytes and
monocytes and play a central role in inflammation'®, and
likely in the development of CVD'® and T2D'”. PBMC
gene expression is suggested as a model to investigate the
effect of dietary interventions on inflammation'>. Low-
grade inflammation has been proposed as an important
link between obesity and its secondary consequences such
as disturbances in lipid and glucose homeostasis resulting
in CVD and T2D'®?, Adipose tissue cells, in turn, seem
to respond to dietary modifications**~**, However, from
both tissues, randomized control studies in humans are
still scarce regarding the specific effect of different sources
of n-3 FAs in subjects at high risk for developing CVD and
T2D.

We have recently shown that a camelina sativa oil
(CSO)-enriched diet improved serum lipid profile as
compared with a diet enriched either in FF or LF in
subjects with impaired fasting glucose®. In the present
study, our primary aim was to examine in a randomized
controlled setting whether FF, LF and ALA-rich CSO
differ in their effects on the transcriptional response of
selected genes related to inflammation in PBMCs.
Because we had subcutaneous adipose tissue (SAT) from
a subset out of these samples, we also evaluated the
response of these inflammatory genes and the adiponectin
gene (ADIPOQ) in SAT.

Materials and methods
Study population

Altogether, 96 Caucasian volunteers aged 40 to 75 years
were recruited in Kuopio area, Finland, via advertisements
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in newspapers, noticeboards and intranet of the university,
and from previous clinical trials at our Department®. The
study inclusion criteria were: a fasting plasma glucose
concentration 5.6—6.9 mmol/l, concomitant with a 2h
glucose concentration in the oral glucose tolerance test of
<11.0 mmol/l, body mass index (BMI) 25-36 kg/m?, fast-
ing serum total cholesterol <7 mmol/l, low-density lipo-
protein-cholesterol (LDL-C) <5.0mmol/l and total
triglycerides <4.0 mmol/l. Subjects were excluded if they
had: any chronic disease, a condition hampering the ability
to follow the dietary intervention protocol, alcohol abuse
(>40 g/d) and weight loss of >5% during the preceding
6 months.

Originally, 79 subjects who were randomized to one of
the following 12-week intervention groups, FF (n = 20),
LF (n=21), CSO (n=18) or a control group (n=20),
finished the trial®® (SFigurel). For details on drop-out
rates and sample size calculations, see Supplementary
Information (SI) and ref. ?°.

For the PBMC gene expression study, we analyzed data
from 72 participants (FF: n=19; LF: n=19; CSO: n =17
and control group: n=17) (Table 1). As described in
SFigure 1, sample measurements from seven participants
were lost for technical reasons during the gene expression
procedure. To study SAT gene expression, we analyzed
data from 39 participants (FF: n =8, LF: n = 10; CSO: n =
9 and control group: n = 12) (STable 1) out of the 44 who
originally volunteered for AT biopsy collection. One
participant had SAT sample taken only at baseline, and
the measurements from the other four participants were
lost due to similar reasons as for the PBMCs (SFigurel).

Original study design and interventions

Recruitment for AlfaFish study started in autumn 2012
and it was completed in June 2014. After a 4-week run-in
phase in which the subjects followed their conventional
diet and were not allowed to use any oil supplements or
products enriched in plant stanols or sterols, the subjects
were randomly assigned into a CSO, LF, FF or control
group for 12 weeks. Randomization was stratified by sex,
age and use of statins. The subjects visited the study clinic
at 0 (baseline), 4, 8 and 12 weeks (end of study). Physical
activity, alcohol intake, smoking, body weight and use of
medication were to be kept constant during the study.

The study diets were isocaloric including current
nutrient recommendations®®, excluding fish and ALA
intakes. Subjects in the FF and LF groups were instructed
to consume four meals of fish per week (100-150 g per
meal). For example, in the FF group, salmon, rainbow
trout, Baltic herring, vendace, whitefish and mackerel to
provide around 1 g of EPA + DHA per day, and in the LF
group, for example, pike, perch, pike-perch, saithe and
cod. Both fish groups were asked to decrease the intake of
meat. The CSO group ingested CSO (27 g) in order to get
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10g of ALA per day and participants were asked to
decrease the intake of other vegetable oils. The control
and CSO groups were allowed to eat one fish meal per
week and were instructed to replace some of the fish
meals by lean meat and skin-free chicken. In the control
group, the subjects were advised to keep the intake of
dietary fats unchanged.

FA composition of plasma phospholipids and choles-
teryl esters (CE) was determined by gas chromato-
graphy”’, with an exception of using C19:0 as an internal
standard instead of C17:0, to assess compliance with the
study diets. Moreover, food records and daily consump-
tion records of key food items in both fish groups and
CSO group were kept for monitoring compliance.
< 2 The study was approved by the Ethical committee of the
Hospital District of Northern Savo (55/2012). The sub-
jects gave written informed consent after receiving both
oral and written information.

Control (n=17)
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CSO (n=17)
578+56
8/9
833+96
290+22
6.1+04
3+1
+
+
16+06
3+2

Collection of the samples

At both baseline (0 week) and end of the study
(12 weeks) visits, blood samples were drawn after a 10-h
overnight fasting from an antecubital vein for the bio-
chemical parameters, including primary end points pre-
viously reported*”, and PBMCs. The PBMCs were isolated
within 45 to 60 min from the blood samples collected
using special tubes developed for this purpose (cell pre-
paration tubes: CPT) according to the manufacturer’s
instructions (Becton, Dickinson and Company, Franklin
Lakes, NJ, USA). Separated PBMCs were suspended in
lysis buffer and stored at —80 °C until RNA extraction'?.
In a separate visit within the same week, SAT biopsy
specimen was obtained by needle aspiration just below
and lateral to the umbilicus under local anesthesia (1%
lidocaine without adrenalin)®>*®, Right after the biopsy,
samples were washed twice to remove blood contamina-
tion, subsequently frozen in liquid nitrogen and stored
at —80 °C until RNA extraction.

Lean fish (n=19)
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Isolation and extraction of RNA

The RNA from PBMC and SAT samples was extracted
using the miRNeasy Mini Kit (Cat. No. 217004, Quiagen
GmBH, Hilden, Germany) in accordance with the man-
ufacturer’s protocol and stored in RNase-free water
at —75°C.

cDNA synthesis and real-time qPCR

The following work was performed at the Karolinska
Institute (Sweden). The RNA integrity was checked using
a Bioanalyzer device (Agilent 2100 Bioanalyzer, Agilent
Technologies, Santa Clara, CA, USA). Then, 200 ng RNA
was converted to complementary DNA (cDNA) using
First-Strand Synthesis SuperMix (p/n 11752-050) from
ThermoFisher Scientific (Waltham, MA, USA).

Baseline characteristics of the subjects participating in the peripheral blood mononuclear cells mRNA expression study (n

FPG fasting plasma glucose, hsCRP high-sensitive C-reactive protein

Table 1

Age, years

Sex, M/F (n)

Body weight, kg

BMI, kg/m?

FPG, mmol/I

Serum cholesterol, mmol/I
Total

HDL

LDL

Serum triglycerides, mmol/I
Use of statins, n

Serum fasting hsCRP, mg/I
Data are mean+SD or n
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The expression levels of selected target genes and
internal control genes (GAPDH and TBP for PBMCs; 18S
and LRP10 for SAT) were measured on 384-well TagMan®
Low Density Arrays (ThermoFisher Scientific). Then,
100ng (1ng/pl) of cDNA was dispersed on the arrays
together with TagMan® gene expression master mix (Cat.
No. 4369016, ThermoFisher Scientific). Amplification was
registered in a 7900HT Fast Real-Time PCR System
(ThermoFisher Scientific). All samples were run in dupli-
cate. The resulting data were analyzed with RQ Manager
1.2.1 (Life Technologies). Data Assist software 3.01
(ThermoFisher Scientific) was used to normalize results in
relation to expression of the internal control genes
GAPDH and TBP (for PBMCs), and 18S and LRPI0 (for
SAT). Ct values from one sample was used as a reference
in the calculations of relative gene expression (the delta
delta Ct method) for normalization of all other samples.

For evaluating inflammation-related molecules at the
messenger RNA (mRNA) expression levels, we selected
ILIB, ILIRN, IL6, IL10, TNF, TNFRSFIA, TNFRSFIB,
TLR2, TLR4, RELA, ICAM1I and CCL2 in addition to IL18
and IFNG for PBMCs and ADIPOQ for SAT for data
analyses. The target genes were selected based on our
previous dietary studies in PBMCs and AT investigating
inflammation at the transcriptomic level™>'>*' and on
studies potentially showing an effect of different sources
of PUFAs on immune-inflammation-related genes in
PBMCs*™.

Statistical analyses

Analyses of dietary, biochemical, clinical and mRNA
gene expression variables were performed using SPSS
version 23.0 (IBM Corp., Armonk, NY.). The normality of
the variables was tested with the Kolmogorov—Smirnov
test followed by histogram plotting. When appropriate,
skewed variables were log-10-transformed before
analyses.

To compare the effect of each of the intervention
groups on the fold change of the gene mRNA expression
in PBMCs and SAT, and in plasma FA composition
(12-week value minus 0-week value) we used analysis of
covariance (ANCOVA) models. ANCOVA included each
of the outcome of interest as the dependent variable and
its baseline value as covariate. Quade’s test was used when
any of the variables included in the analysis were not valid
for parametric tests even after log-10 transformation.
Either ANCOVA or Quade’s test models included the
study group as the fixed effect, in which each of the
outcome of interest was the dependent variable and its
baseline value was covariate. The control group was used
as a reference group when comparing group differences.
Whenever a significant group effect was observed, Bon-
ferroni correction for multiple testing was applied, and
within-group changes (0 vs. 12 weeks) were tested by
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paired sample t-test (for variables or log-10 transformed
variables that achieved normal distribution) or Wilcoxon
signed ranks test (for non-parametric variables).

As secondary analyses, we also tested within-group
changes whenever the effect of one of the study group vs.
control group (represented by the P-coefficient) in the
above-described models testing gene expression response
had a P-value <0.10 (e.g., IFNG in PBMCs and ILIRN in
SAT). Spearman's correlations (rho (p)) were used to relate
relevant changes in the mRNA expression levels with the
changes in plasma FA composition of CE and phospholi-
pid fractions and with the intakes of fatty or lean fish
and CSO. The data are reported as mean + SD for nor-
mally distributed variables or median (interquartile range
(IQR)) for variables with non-normal distribution. A P
value < 0.05 was considered to be statistically significant.

Results
Dietary intake and plasma n-3 FA composition related to
compliance

Participants kept their body weight unchanged during
the study (time effect, P = 0.31; group vs. time effect, P =
0.35). The nutrient intake and dietary compliance asses-
sed by plasma FA composition in all study subjects has
been reported in detail elsewhere®. Similarly, subjects
participating in the PBMC gene expression study reported
higher intake of ALA during the intervention in the CSO
group as compared with the other groups (P < 0.05). The
intakes of EPA and DHA were higher in the FF group
than in the LF and control groups (P < 0.05 and P < 0.07,
respectively; Table 2). Furthermore, the average numbers
of fish meals per week during the study were 4.4 + 0.4,
43+0.5, 09+0.4 and 0.9+ 0.5 in the FF, LF, CSO and
control groups, respectively. The consumption of CSO
was 28.0 £ 2.7 g per day in the CSO group. These numbers
were also similar to those previously reported.

There was a significant increase in the proportion of
ALA in plasma CEs and phospholipids in the CSO group
(P <0.001) as compared with the other groups. The pro-
portion of EPA and DHA increased in the FF group in
both lipid fractions as compared with the other groups (P
<0.01), except that in the post hoc tests DHA did not
differ from the LF group in the phospholipid fraction
(Table 3).

The dietary FA intake and plasma FA composition of
subjects taking part in the SAT gene expression study are
described in STables 2 and 3. Overall, the compliance to
the diet as assessed by these means and by the intake of
CSO and fish during the study (data not shown) was
similar to those earlier reported®.

Effect of interventions on gene expression in PBMCs
Data on mRNA expression levels from the PBMC
samples before and after the dietary interventions are
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Fig. 1 Fold changes (12-0 weeks) in ICAM1 and INFG mRNA
expressions in peripheral blood mononuclear cells (12-0 weeks)
in each of the study groups. Group effect between fold changes
adjusted for mRNA expression at 0 week are indicated inside the
boxes for each marker and were tested by Quades's test for ICAM1 or
ANCOVA for IFNG, both followed by Bonferroni's post hoc tests for
multiple comparisons. For the effect of the study group vs. control in
the respective model: *P = 0.025 and *P = 0.087. CSO camelina sativa
oil

However, in general we did not find any consistent
correlation between the changes in mRNA expression
levels of ICAMI and in #n-3 FAs in both CE and phos-
pholipid fractions. None of these correlations were sig-
nificant when considering the whole study population (P
>0.10, STable 6). The same was observed within the FF
group (n =19, P>0.30; STable 6), except for a trend for
an inverse correlation between the increases in ICAMI
mRNA expression and DHA proportions in CEs (DHA: p
= —0.40, P =0.088).

The changes in PBMC IFNG mRNA expression corre-
lated with the reported intake of CSO (portions per day)
(n=17; p=—0.44, P=0.08), but did not correlate with
the changes in ALA proportions in either CE or PL
fractions (n =72; p=—0.17, P=0.15and p = —0.16, P=
0.19, respectively; CSO group, n =17: p = —0.06, P = 0.82
and p=-0.23, P=0.38, respectively). Because of the
previously reported beneficial effect of CSO on serum
lipid profile, we also tested the correlation between the
changes in [FNG expression and plasma lipids. We
observed that, when considering all the subjects (n =72),
the change in IFNG mRNA expression was positively
correlated with the changes in total cholesterol (TC: p =
0.40, P =0.001), LDL-C (p = 0.35, P=0.001), TC to high-
density lipoprotein-cholesterol (HDL-C) ratio (p =0.37,
P=0.001) and ApoB to ApoA-I ratio (p=0.32, P=
0.006).

Finally, the change of ILIRN mRNA expression in SAT
after the study correlated negatively with the change in
EPA in the plasma CE fraction (p =—0.32, P=0.044).
However, we did not find any other further correlations
with serum #-3 FA proportions (STable 6).
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Discussion

In this study, we investigated the effects of fish and CSO
intakes on the changes in gene expression in PBMCs and
SAT samples from subjects at high risk of developing T2D
and consequently CVD. Our results show that, even
though modest, the PBMCs were more responsive to the
dietary modifications than the SAT, which might have
been in part due to the smaller sample size and lack of
power in the analyses of SAT samples. In PBMCs, while a
diet enriched in lean fish decreased the levels of ICAM1
mRNA expression, a diet enriched in CSO, a rich source
of ALA, decreased the levels of IFNG mRNA expression.

The mRNA expression of ICAMI was downregulated
after LF in PBMCs. High consumption of fish, especially
of lean fish, may reduce risk of stroke” and cardiovascular
lipid risk factors in healthy subjects®, and blood pressure
levels in subjects with coronary heart disease’. Moreover,
LF contains a number of nutrients that may be beneficial
in the prevention of CVD?'. One example is taurine, an
amino sulfonic acid, present in fish and in higher content
in LF*'%3, which has been related to improved vascular
endothelial function®, also at the molecular level®>?°.
ICAM1 encodes for an inflammation-related protein
named intercellular adhesion molecule 1 ICAM-1) that is
known as a marker of endothelial dysfunction®”?®, a key
event in CVD. Even though we did not see any changes in
serum ICAM-1 circulating levels after 12 weeks of a LF
diet or a different effect among the study groups®”, we can
observe in this population study a positive correlation
between [CAMI mRNA expression in PBMCs and
ICAM-1 circulating levels in serum at both baseline and
12 weeks (data not shown). Furthermore, it is also pos-
sible that the effect of LF on serum ICAM-1 circulating
levels is more evident in patients with coronary heart than
in individuals still free of CVD.

We cannot explain the reason why in the FF group we
observed an increase in the expression of ICAM1. Rund-
blad et al." observed that an 8-week fish diet consisting of
lean fish and fatty fish decreased circulating levels of
ICAM1 compared to baseline. We also observed a nega-
tive correlation between the intake of FF during the study
and the changes in ICAMI mRNA expression. Other
factors or nutrients than the FAs may explain our results.
For example, FF depending from where it comes can
contain high amounts of mercury, which might impair the
protective effects of fish and omega-3 FAs and increase
inflammation®”. However, this is unlikely to play a major
role, because most of the FF consumed by the participants
were farmed fish, which has low content of mercury™.

An interesting finding was the correlation between the
increase in CSO, but not in ALA plasma proportions, with
the decrease in the PBMC /FNG mRNA expression levels
in the CSO group. IFNG encodes cytokine interferon-
gamma (IFN-y), which has important immunoregulatory
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functions and is a potent activator of macrophages*'. The
encoded protein is secreted by cells of both the innate and
adaptive immune systems. A higher ALA intake provided
as flaxseed oil was shown to decrease INF-y mRNA
expression and proliferation of T cells in a dose-
dependent manner in mice*?, but did not seem to influ-
ence immune function in humans®>*°, Still, our findings
could reflect immune response since the referred studies
used ALA intakes that varied from 2 to 3.5 g/day from
flaxseed oil, while we provided an average of 10 g/day
from CSO. These results are important due to the role of
the immune system in metabolic health and diseases such
as T2D*. Along with its benefit on serum lipid profile
earlier observed®, CSO could be possibly promoting CV
health in long-term through molecular mechanisms
related to immunoregulatory functions**. In fact, changes
in PBMC INFG expression correlated with the changes in
lipid profile induced by CSO.

Regarding the SAT mRNA expression response to the
dietary interventions, we observed a slight decrease in
ILIRN expression in the FF group of =5%. Recent work
has confirmed the limited effect of fish oil supplementa-
tion on SAT gene expression at least in healthy indivi-
duals™. In this same work, though, ILIRN was among the
regulated genes that benefited from fish oil supple-
mentation during evoked adipose tissue inflammation®”.
SAT is an important source of interleukin-1 (IL-1) family
cytokines, including IL-1 receptor antagonist (IL-1Ra)*.
Elevated circulating levels of IL-1Ra in humans is asso-
ciated with an increased risk to develop T2D*" with an
accelerated increase just prior the disease onset*®*,
Although we did not observe any changes in circulating
levels of IL-1Ra in the original study population, pair-
wise comparison within the FF group showed a reduction
in this marker at borderline significance level (P = 0.07).
Therefore, this immune-inflammatory response might be
important, leading to the hypothesis that increasing the
intake of FF could have a protective effect against devel-
opment of T2D in the long term.

Among the inflammation-related markers studied in
PBMCs, we were not able to find any other diet-induced
response in mRNA expression other than the ones related
to ICAM1I and IFNG. An omega-3 index of >8% (EPA +
DHA in red blood cells) is considered cardioprotective®.
In the present study, the omega-3 index was relatively
high at baseline, >8% for all groups®. Therefore, it is
possible that a higher baseline content of these FAs in the
common diet of the study participants have masked
additional findings. Furthermore, previous studies with
similar length investigating the response of immune-
inflammatory genes in SAT have used much higher doses
of EPA and DHA that are usually given as fish oil®' =%, It
is possible that lowering inflammation in SAT by
increasing n-3 FAs would be more evident with
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concomitant weight loss or if studied in a more obese
population®®. Specifically related to ADIPOQ, EPA
appears to regulate adiponectin levels at the translational
or posttranslational level rather than at the transcriptional
level™.

The strengths of the present study are the randomized
controlled design and careful monitoring of the diet by
both repeated food records, consumption records and
relevant biomarkers. However, as power calculations were
based on differences in DHA in plasma phospholipids, the
small sample size of the present study, especially regard-
ing the SAT sub-population, could have obscured broader
and stronger findings at the mRNA expression levels.
Moreover, the results are not generalizable to subjects
with normal body weight and glucose metabolism. Fur-
thermore, the significant within-group findings of IFGN
in PBMCs and ILIRN in SAT should be taken cautiously
due to lack of power to detect a group effect on these
changes among the study groups in conventional statis-
tical analyses.

In conclusion, we propose that CSO intake may exert its
benefit through a molecular mechanism related to
immunoregulatory function, since we observed decreased
mRNA expression levels of IFN-y after a 12-week diet
enriched in CSO. Furthermore, an intake of lean fish four
times per week may benefit cardiovascular health since we
found reduced levels of ICAM1 expression induced by a
LF diet, when compared to a FF or a control diet.
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