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Abstract
Background: The genes for salivary androgen-binding protein (ABP) subunits have been evolving rapidly
in ancestors of the house mouse Mus musculus, as evidenced both by recent and extensive gene duplication
and by high ratios of nonsynonymous to synonymous nucleotide substitution rates. This makes ABP an
appropriate model system with which to investigate how recent adaptive evolution of paralogous genes
results in functional innovation (neofunctionalization).

Results: It was our goal to find evidence for the expression of as many of the Abp paralogues in the mouse
genome as possible. We observed expression of six Abpa paralogues and five Abpbg paralogues in ten
glands and other organs located predominantly in the head and neck (olfactory lobe of the brain, three
salivary glands, lacrimal gland, Harderian gland, vomeronasal organ, and major olfactory epithelium). These
Abp paralogues differed dramatically in their specific expression in these different glands and in their sexual
dimorphism of expression. We also studied the appearance of expression in both late-stage embryos and
postnatal animals prior to puberty and found significantly different timing of the onset of expression among
the various paralogues.

Conclusion: The multiple changes in the spatial expression profile of these genes resulting in various
combinations of expression in glands and other organs in the head and face of the mouse strongly suggest
that neofunctionalization of these genes, driven by adaptive evolution, has occurred following duplication.
The extensive diversification in expression of this family of proteins provides two lines of evidence for a
pheromonal role for ABP: 1) different patterns of Abpa/Abpbg expression in different glands; and 2) sexual
dimorphism in the expression of the paralogues in a subset of those glands. These expression patterns
differ dramatically among various glands that are located almost exclusively in the head and neck, where
the sensory organs are located. Since mice are nocturnal, it is expected that they will make extensive use
of olfactory as opposed to visual cues. The glands expressing Abp paralogues produce secretions (lacrimal
and salivary) or detect odors (MOE and VNO) and thus it appears highly likely that ABP proteins play a
role in olfactory communication.
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Background
Genome sequences of primates and rodents [1-3] now
allow genome-wide investigations of evolutionary rates
and selective processes. The aforementioned studies, and
earlier ones, show that mammalian protein-coding genes
vary dramatically in their rates of sequence divergence
[1,3-6] and that amino acid sequence divergence is great-
est for secreted proteins whose genes are expressed in few
tissues and least for intracellular proteins found widely in
all tissues [7]. These generalizations hold for the great
majority (~90%; [1]) of genes that are present in single
copies in both primate and rodent genomes. The remain-
ing genes have experienced at least one duplication in
either one or both of the primate and rodent lineages.

The process of gene duplication provides material for
functional diversification. A newly-duplicated gene may
subsequently acquire innovative function ("neofunction-
alization") or may retain some of its progenitor gene's
functional repertoire ("subfunctionalization"), or a com-
bination of both [8-11]. Such duplicated genes are also
rapidly diverging in sequence [1,3] and they are substan-
tially over-represented in functions relating to chemosen-
sation, reproduction, host defense and immunity, and
toxin metabolism. Innovation within these functional cat-
egories therefore can occur by sequence divergence and/or
gene duplication. Adaptive evolution however can also act
by modifying gene expression profiles, for example by
restricting expression to few tissues. Among genes con-
served as single orthologous copies among primate or
mouse species, expression variation appears to evolve
neutrally and approximately linearly with time [12,13].

We were interested in a related question: How rapidly can
expression profiles diverge among duplicated genes? For
example, Gu [14] showed an increase in expression diver-
sity in genes involved in Drosophila development. We wish
to ask about diversification during other evolutionary
process, to wit rapidly diverging duplicated genes
involved in the four functions listed above. Because
expression patterns appear to diverge substantially over
long time periods, such as since the primate-rodent (Euar-
chontoglires) common ancestor [15,16], it is necessary to
address this question using many related genes that arose
only in very recent times. The most closely-related verte-
brate genomes available currently are those of mouse and
rat; these lineages diverged approximately 12–24 million
years ago (Mya) [17,18]. Thus, by comparing these two
genomes we may be able to identify a gene family that is
extensively expanded in one, but not necessarily in the
other genome, with which to investigate recent expression
divergence.

Indeed, we recently identified two families of paralogous
genes, clustered together in a 1–2 Mb region of Mus mus-

culus chromosome 7 that each meet this criterion. We pre-
dict that the Euarchontoglires common ancestor, and the
rat and mouse common ancestor, each contained a single
member of both gene families; these family members
were proximally positioned in a tightly linked head-to-
head (bidirectional) gene pair [19,20]. In humans and
chimpanzees these genes have accumulated disruptive
mutations and are thus likely to be nonfunctional pseu-
dogenes. In the rat lineage, two gene pair duplications
have given rise to three gene versions in each family. In the
mouse lineage, an extraordinary and rapid burst of dupli-
cations has generated over a dozen members of each fam-
ily, some of which harbor inactivating mutations, whereas
others are full-length and apparently functional. Because
these mouse genes appear to have all arisen via duplica-
tion events since the mouse-rat divergence (12–24 Mya),
these are the genes we have chosen to investigate to
address the issue of expression divergence.

The two families are termed Abpa and Abpb/Abpg genes
(encoding ABPα and ABPβ/ABPγ proteins). They are
named according to their proteins that were first described
in the literature [21,22]. Androgen-binding protein α sub-
unit (ABPα) forms covalently linked heterodimers with
either β or γ subunits, and these are secreted into the saliva
following expression in the submaxillary gland. ABPα,
ABPβ and ABPγ proteins are secretoglobins, a family of
secreted proteins [23] that bind lipophilic ligands (for a
review, see [24]) and are present in mammals and birds
[25,26], but whose roles in cellular and physiological
function all remain obscure [27,28].

Much of the previous work on salivary ABP has focused on
determining its function [22]; reviewed briefly in [25].
Laboratory tests of female preference for males carrying
different genetic variants of salivary ABP have provided
evidence that the protein may mediate sexual preference
[29,30]. A role in sexual selection is consistent with the
evidence for positive selection in the microevolution of
the gene (Abpa) for the α subunit, which has a different
allele fixed in each of three subspecies of Mus musculus
[31,32]. These Abpa alleles show significantly reduced pol-
ymorphism both in their exons and introns and high
ratios of nonsynonymous to synonymous nucleotide sub-
stitutions (KA/KS) in the coding region [33,34]. Fixation of
different alleles of Abpa in the subspecies of Mus musculus
has been proposed to have occurred by selective sweeps
[33]. Abpb and Abpg also have high KA/KS values, suggest-
ing that their microevolution has also been driven by pos-
itive selection [19,20,22].

Here we investigate the expression of 17 predicted Abpa,
Abpb and Abpg genes in 23 mouse glands and other
organs. We chose organs and glands to obtain as wide a
representation of gene expression in the mouse as
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possible. We specifically included any tissues where
expression of other secretoglobins has been identified
(Harderian gland, lacrimal gland, lung, kidney, uterus,
skin/sebaceous glands, salivary glands and prostate; [25]).
In the head we surveyed the brain and (separately) olfac-
tory lobes, parotid glands, sublingual glands, submaxil-
lary glands, lacrimal glands, major olfactory epithelium
(MOE), vomeronasal organ (VNO) and Harderian glands;
in the body, we tested skin, adrenal gland, heart, spleen,
kidney, testis, lung, liver, pancreas, small intestine, blad-
der, prostate, ovary and uterus. To test for expression sim-
ilarity or divergence among paralogous genes we sought
to identify transcripts in spatially-distinct tissues and from
embryonic or adult individuals of different ages and/or
sexes. Our results show how adaptive evolution among
paralogous genes has led to expression divergence within
a relatively short (12–24 My) period of time. We use these
expression patterns to develop a model of paralogue
neofunctionalization.

Results
Our goal was to survey the glands and other organs of
male and female, embryonic, juvenile and adult mice for
expression of nine Abpa and eight Abpbg paralogues previ-
ously predicted from the mouse genome to be full-length
and apparently functional. Hereinafter Abpa and Abpbg
paralogous genes will simply be identified as "a" and "bg"
with numerical suffixes as described previously [19]. We
developed primer sets specific for each putative Abp gene
(Fig. 1), excluding those paralogues that are predicted to
be pseudogenes [19]. Forward and reverse primers of each
set fall in exons 2 and 3, respectively (see [20], for the
structures of the ABPα, β and γ subunit genes) in order
that a much larger product (ca. 1–1.2 kb) is obtained
when genomic DNA is the template, compared to that
obtained from cDNA templates (ca. 200–300 bp). This
design allowed us to test the primer sets, using genomic
DNA as templates. Each primer pair amplified a product
of the expected size from genomic DNA (not shown). In
preliminary experiments the RNA extracted from C3H/
HeJ tissues and subsequently used to make cDNA was
contaminated with genomic DNA (Fig. 2, Panel A). In
subsequent experiments we removed the contaminating
genomic DNA by RNase-free DNase treatment, as shown
in Fig. 2 (Panel B). In all cases where transcripts were
detected, they were of the expected sizes. We verified a rep-
resentative of each paralogue with DNA sequencing.

The quality of the cDNA made from RNA extracts was
tested using an internal control, a primer set designed to
amplify the housekeeping gene Gapdh [35]. Only cDNA
that showed the clear presence of a band of the expected
size with the Gapdh primers was subsequently tested for
Abpa/Abpbg transcripts (see Fig. 2, Panel B for an example
of Gapdh expression). Because RNA preparations were

treated with RNase-free DNase prior to their use as tem-
plates in PCR reactions, the product obtained with the
Gapdh primers could confidently be ascribed to amplifica-
tion of that transcript, rather than to the amplification of
pseudogenes of corresponding size [36].

Although it was not our purpose in this study to precisely
quantitate levels of expression of the individual para-
logues, we did note reproducible variation in intensity of
RT-PCR products. A series of dilutions of a typical tem-
plate indicated that we could detect expression over a
broad range. Most expressing tissues gave a negative result
between 104 and 106 dilution.

Detection of transcripts in adult tissues
cDNA from 23 glands and other organs of adult C3H/HeJ
mice was tested for the presence of transcripts of nine Abpa
paralogues and eight Abpbg paralogues. As detailed below,
we have found evidence of Abp expression in 10 of these
glands/organs, and we demonstrate that multiple mem-
bers of these gene families are differentially expressed.
Equivalent amounts of RNA were tested for each tissue. All
experiments in both male and female mice were repeated
using tissue independently isolated from a second animal.

Figure 2 compares the expression of these paralogues in
the major olfactory epithelium (MOE) of adult male (Fig.
2A) and female (Fig. 2B) mice. In both sexes, a11, bg11,
a10, and bg8 were expressed. As the female also expressed
a2 and bg2, whereas no expression was observed in the
male, this represents a likely example of sexual dimor-
phism of expression. Gene expression in the submaxillary
gland is shown in Fig. 3A and 3B. Expression of the a11,
bg11, and bg10 paralogues was found in both male and
female submaxillary glands. This was expected from pre-
vious findings on the ABPα, β and γ subunit genes, respec-
tively, in the submaxillary gland and its secretions
[21,22,37,38]. In addition, the female submaxillary gland
exhibits expression of a10, a13 (weak) and bg8, suggesting
that sexual dimorphism in Abp expression also occurs for
this gland.

Differential Abp expression and sexual dimorphism of Abp
expression was strikingly apparent in the lacrimal gland
where distinct arrays of Abp paralogue expressions are
seen (Fig. 3C and 3D). By contrast to the MOE and the
submaxillary glands, the lacrimal does not show expres-
sion of a11 or bg11 in both sexes. Rather, a2, a8, a13, bg2
and bg8 are expressed in both sexes, while the male, but
not the female, also expresses a5, a10, and bg12. It is also
striking that the female olfactory and accessory olfactory
lobes (O/AO combined) did not express Abp paralogues,
while the male O/AO lobes expressed a2, a13, bg2 and
bg8, as summarized in Fig. 4.
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Primer sets used in this studyFigure 1
Primer sets used in this study. The order of the Abpa/Abpbg paralogues in the mouse genome is shown at the top and the 
expected size of the PCR product obtained with each primer set is shown to the right of the reverse primer in that set. The 5-
to-3 orientations of the genes are shown by the direction of the arrowheads. Abpa-like genes are shown in blue and Abpbg-like 
genes in red. Filled arrowheads represent predicted functional genes whereas open arrowheads denote predicted pseudo-
genes. Gaps (>5 kb) in the genomic assembly of each species are shown as black boxes.

Abpa 1 2 3 12 4 13 5 6 7 8 9 10 11 14

Abpbg 1 2 12 3 4 13 5 6 7 8 9 10 11

Expected

Control primers (5' - 3') product size

Glyceraldehyde GAPDH F CAACGACCCCTTCATTGACC

phosphate GAPDH R1 CTCCACGACATACTCAGCAC 190 bp

dehydrogenase

Expected

Abpa primers (5' - 3') Mouse salivary androgen-binding protein alpha-like paralogues product size

Abpa1 F CATGATGTCCAACTATTTCTTTATG

Abpa1 R GCAAGTAACCAGGCAAGTGGC 238 bp

Abpa2 F CAGAAGAGTATGTTAATTATGTGGAG

Abpa2 R AAAGATGTAGCCATCAACATAACGG 174 bp

Abpa5 F AGGATGTTCACCTATTTTTAAACAG

Abpa5 R GCTGGCTGGCTTCTATTTTTC 185 bp

Abpa8 F GATGTTCATCTATTCTTTCACAGG

Abpa8 R AAGATGCAAACATCAACATGCTGGT 201 bp

Abpa10 F AAGAGTATGTTGAGTACCTGAAACC

Abpa10 R CTGGTGAGCAGGCAAATGG 203 bp

Abpa11 F ACAGAGAAAAGTTGATTTATTTTTGAATG

Abpa11 R GGAGGCAATTGGTTTCCG 234 bp

Abpa12 F GAGGAGGTTCGTCTATTTTTAAACG

Abpa12 R AAGTTAGAGCCATCAACATAGTGT 205 bp

Abpa13 F GAGGATGTTCGTCTATTTTTAAATG

Abpa13 R TAGGCAGGCAAGTGGCTTCC 232 bp

Abpa14 F AACAATACAATAATGACCCTCTCG

Abpa14 R ACTGGTGAGCAGCTAAGTGGC 183 bp

Expected

Abpbg primers (5' - 3') Mouse salivary androgen-binding protein beta/gamma-like paralogues product size

Abpbg1 F GGGTGTCGTCTCTGGATACA

Abpbg1 R CAAGACTTCTTTGGTATAATATGACT 205 bp

Abpbg2 F TTTGGGTATTCTCTCTGGAAACA

Abpbg2 R AGAATGTTCTTCAAGACTTCTTTG 216 bp

Abpbg5 F TGCAAGTGTTGTCTCTGGAAGT

Abpbg5 R GTCCTAATAGCTTCGAAAGAAGG 242 bp

Abpbg8 F GCTGGTGTTATCTCAGGAAGCA

Abpbg8 R CGTAAAGGTTTCTTCGGAATAGT 207 bp

Abpbg9 F GCAGTACTCTCTGGACTTAAGAT

Abpbg9 R CCATGTCTTGATAAATAGAAGCC 233 bp

Abpbg10 F CGGAGCAATACTTACTCTAAGG

Abpbg10 R CTTTAAGAGGTCATTGCCATAGT 208 bp

Abpbg11 F TAAAATACTGGGTGGAAATAGGC

Abpbg11 R CCGCCATTTTGTTTACAGAATCT 215 bp

Abpbg12 F TTGAGCACTGTCTCTGGGAAAA

Abpbg12 R CATCCATTTCTTGGTAATCACAC 240 bp
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Detection of transcripts in the major olfactory epithelium (MOE) of the mouseFigure 2
Detection of transcripts in the major olfactory epithelium (MOE) of the mouse. RNA purified from the MOE of C3H/HeJ mice 
was used to make cDNA, which was used as template in PCR reactions that included, separately, the nine Abpa primer sets, 
the eight Abpbg primer sets and the Gapdh control primer set. The left-hand lane in all gels contained DNA size markers. Panel 
A: MOE from a male, where the RNA preparation was used to make cDNA without first being treated with RNase-free 
DNase. The larger band (>1 kb) that appears in most lanes is the amplification product from genomic DNA that contaminated 
the RNA preparation. Panel B: MOE from a female, where the RNA preparation was treated with RNase-free DNase before it 
was used to make cDNA. No genomic amplification products appear on this gel.
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Detection of transcripts in the submaxillary and lacrimal glands of the mouseFigure 3
Detection of transcripts in the submaxillary and lacrimal glands of the mouse. Expression testing was done as described in the 
text and in the legend of Fig. 2. Panel A: Submaxillary gland expression in males; Panel B: Submaxillary gland expression in 
females; Panel C: Lacrimal gland expression in males; Panel D: Lacrimal gland expression in females.
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The expression patterns for all the glands and other organs
that tested positive for Abp expression are summarized in
Fig. 4 (the Harderian gland showed only faint bands for a
few paralogues in one sex and thus is not included in the
figure). We previously suggested that pairs of adjacent a
and bg genes (i.e. those that are identically numbered)
might be co-expressed in single tissues or organs [19]. Cer-
tainly, the expression of a2 and bg2 paralogues appears
correlated. The most commonly expressed paralogues are
a11 and bg11 and, although their expression is not ubiq-
uitous, in all cases they are co-expressed. In female sub-

maxillary and sublingual glands, a10 and bg10 are both
expressed, along with a11 and bg11, while only bg10 is
expressed with a11 and bg11 in males. The bg10 paralogue
is co-expressed with a11 and bg11 only in submaxillary
and sublingual glands, but not in parotid glands. The
parotid gland data are consistent with other findings [38].
bg10 is co-expressed with its genomic partner a10 only in
the female submaxillary gland. The a10 paralogue is
expressed in a sexually dimorphic manner in the lacrimal,
submaxillary and sublingual glands and in both sexes in
the vomeronasal organ (VNO) and the MOE (Fig. 4).

Abp paralogue expression shown on a diagram of the glands/organs of a mouse, with expression in males and females differentiatedFigure 4
Abp paralogue expression shown on a diagram of the glands/organs of a mouse, with expression in males and females differen-
tiated. Paralogues which exhibited sexually dimorphic expression are shaded in grey.
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Other paralogues (a5, a8, a13, bg8, and bg12) are
expressed sporadically in various glands. Of these, only a5
and bg8 are members of a-bg pairs in the genome assembly
(Fig. 4), but expression of a5 only occurs once (male lac-
rimal), while expression of its partner (bg5) was never
observed; bg8 expression often occurs without that of its
partner, a8. Notable for the absence of expression in any
glands or other organs tested were a1, a12, a14, bg1, bg5
and bg9; of these, a12, a14 and bg9 are not paired with
full-length a/bg genes, and thus might be pseudogenes
despite their full-length coding sequences. On the other
hand, a1 and bg1 and a5 and bg5 are paired in the genome
so there appears to be no absolute rule determining
whether paired or unpaired paralogues are expressed.

Thirteen glands and other organs tested negative for Abp
expression, including brain, skin, adrenal gland, heart,
spleen, kidney, testis, lung, liver, pancreas, small intestine,
bladder and uterus. With the exception of skin and brain,
these are mostly of endodermal and mesodermal origin
and are located in the body cavity. By contrast, the glands
that show Abp paralogue expression are mostly ectoder-
mal in their origins, with the exception of the submaxil-
lary and sublingual glands, which are endodermal.

Figure 5 provides another perspective where the Abp
expressions for the two sexes are arrayed on phylogenetic
trees of the Abpa and Abpbg paralogues with the intent of
discovering possible correlations of expressions of these
genes with their evolutionary history. Whilst, this treat-
ment does not reveal any such correlations, it does high-
light the sex-limited feature of the expression of many of
these Abp paralogues.

Detection of transcripts in embryos and early postnatal 
stages
We were interested in determining when the transcripts
seen in adult tissues first appear in development. For ref-
erence, embryo day 21 (e21) is the day before birth in an
average gestation period; the eyes open at day six-seven on
average, and the animal goes through puberty at day 30–
32 on average in this strain. Therefore we examined
embryos at days 13, 17 and 21 of gestation and animals at
postnatal days one, six and 15 for expression. RNA was
extracted from the entire heads of embryos at 13, 17 and
21 days of gestation, as well as a postnatal day one animal.
In the case of days six and 15, we could dissect the com-
bined submaxillary/submandibular region, the brain, the
lacrimal glands and the combined MOE/VNO region and
for each we were able to generate cDNA. The results for the
submaxillary gland and lacrimal gland in the day 15 male
are shown in Fig. 6; identical results were observed for the
same tissues from day 15 females. The submaxillary gland
showed expression of two pairs of paralogues: a10/bg10
and a11/bg11, as well as the individual paralogues bg8 and

a13. The lacrimal gland showed expression of four pairs of
genes: a2/bg2, a8/bg8, a10/bg10 and a11/bg11, and three
unpaired paralogues: a5, a13 and bg12.

The results over the whole developmental time period are
shown in Fig. 7, where they are also compared to the
expression data observed in the adult tissues. We find that:

1) The a11/bg11 pair and bg10 are expressed in the head
between e13 and birth;

2) Immediately following birth (i.e., day one), expression
of bg10, and a11/bg11 appears but there is no evidence of
any of the other paralogues that eventually are expressed
in various tissues in the head (Fig. 5);

3) By day six, however, expression of other paralogues
(i.e., in addition to bg10, and a11/bg11) appears in the
submaxillary glands (a2/bg2, bg8, a10, and a13) and the
lacrimal glands (a2/bg2, a5, a8/bg8, a10, a13 and bg12);

4) By contrast, the MOE/VNO region only expresses a11
and bg11 at day six, and bg10 and a11/bg11 at day 15. By
this time point, there is no evidence as yet of paralogues
(i.e., a2/bg2, a13, a8/bg8 and bg12) that are expressed in
these tissues in adults;

5) It is also evident that the sexual dimorphism in expres-
sion of some of these paralogues has yet to occur by day
15.

Discussion
The recent sequencing of numerous genomes has made
possible comparative studies aimed at enhancing our
understanding of gene evolution. It is clear from studies of
mammalian genomes that the vast majority of genes have
strongly conserved their coding sequences, and generally
occur only in single copies [1-3]. Genes involved in adap-
tation and functional innovation, on the other hand,
often show the footprints of positive selection in elevated
ratios of nonsynonymous to synonymous nucleotide sub-
stitutions rates (KA/KS; [39]) in their coding regions. In
addition, they are subject to frequent duplication, dele-
tion and pseudogene formation [40]. Prevalent amongst
rapidly evolving genes are those involved in immunity,
reproduction, chemosensation and toxin metabolism
[40].

Mouse salivary androgen-binding protein genes Abpa and
Abpbg have evolved under strong positive selection
[19,31,33,34,41] and they have been duplicated exten-
sively, mostly in pairs of Abpa/Abpbg genes, across a 1–2
Mb region of mouse chromosome 7 [19]. This has been a
recent expansion peculiar to the mouse, since the rat
genome contains only three pairs of Abpa/Abpbg para-
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Expressions of Abp paralogues painted onto 5' trees which represent phylogenetic relationships among the 5' regions of rodent Abpa-like and Abpbg-like genes 19Figure 5
Expressions of Abp paralogues painted onto 5' trees which represent phylogenetic relationships among the 5' regions of rodent 
Abpa-like and Abpbg-like genes 19. For simplicity, the expression in parotid and prostate/ovary, which is identical in the two 
sexes (a11 and bg11 only), has been omitted. The trees were generated with repeat-masked genomic DNA sequences 300 bp 
and 1 kb, respectively, 5' to the translational start sites of Abpa and Abpbg genes (see 19 for details). The lineages containing the 
proposed roots of the trees are shown by black dots and bootstrap values >80% are shown. The key to the expressions in var-
ious tissues in the two sexes is shown at the upper right (abbreviations: O/AO = olfactory/accessory olfactory bulbs; MOE = 
major olfactory epithelium; VNO = vomeronasal organ; Sbln = sublingual gland; Sbm = submaxillary gland; Lac = lacrimal gland).
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logues, and the human and chimpanzee genomes contain
only a single pair whose members are both pseudogenes.
These and other observations led to the hypothesis [19]
that the common ancestor of mice and rats possessed only
a single Abpa/Abpbg gene pair.

The recently released dog genome contains a single full-
length Abpa/Abpbg pair, a finding which supports our pro-
posal that this is the ancestral state in eutherian mammals
[19]. The cat genome also contains at least one Abpa/Abpbg
pair and these are expressed as the subunits of the Fel dI

Detection of transcripts in the submaxillary and lacrimal glands of the postnatal day 15 mouseFigure 6
Detection of transcripts in the submaxillary and lacrimal glands of the postnatal day 15 mouse. Expression testing was per-
formed as described in the text and in the legend of Fig. 2. Panels A and B: Submaxillary gland expression of Abpa and Abpbg, 
respectively, in males; Panels C and D: Lacrimal gland expression of Abpa and Abpbg, respectively, in males. Expression in 
female submaxillary and lacrimal glands was identical to the male glands at this stage of development.
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dimer, the major allergen in the cat [42]. We argue, based
on the evolutionary distances (KS values) of the genes, that
the alpha and beta/gamma-like genes of cat Fel dI are
likely to be the orthologues of the Abpa and Abpbg genes.
The median KS values between rodent Abpa or Abpbg genes
and cat Fel dI are 1.25 and 0.87, respectively which are
consistent with the reported substitution rate between
rodent and cat orthologous sequence of 0.60 [43] given
that neutral rates typically vary within the genome by up
to 3 fold. Since the cat orthologue, like a number of
Abpabg orthologues, is expressed mainly in salivary glands
[29,42] it is possible that the original function of the
ancestral Abpa/Abpbg genes involves secretion from sali-
vary glands and subsequent application to the pelt of the
animal.

The large cluster of mouse Abp paralogues qualifies in
three respects as genes that are rapidly evolving under
strong positive selection, namely elevated KA/KS and a fast
duplication rate, and now data showing rapid diversifica-
tion of gene expression following duplication. The ques-

tion is which of the four most likely adaptive functions
best fits our current understanding of ABP: immunity,
reproduction, chemosensation or toxin metabolism? Karn
and Dlouhy [32] showed that salivary ABP is ubiquitous
in Old World and New World rodents, regardless of their
diets, and noted that ABP binds androgens specifically
and with relatively high affinity (see also [44] and [41]).
They speculated that the function of ABP must be one
general to rodents, such as mate recognition, rather than a
diet-specific one, such as toxin metabolism. The expres-
sion patterns we report here also augur against a role in
toxin metabolism because we could not find expression of
any of the Abp paralogues in mouse liver or spleen, where
detoxification of toxic metabolites might be expected to
occur.

The developmental sequence of expression of these genes
provides clues that help further narrow the choices of
functional role for ABP. Abpa/Abpbg expression begins in
the head of the embryo as early as 13 days of gestation,
comprised of a relatively simple pattern of a11/bg11 and

Summary of expression in mouse embryos (e) and early postnatal animals, compared to expression in adultsFigure 7
Summary of expression in mouse embryos (e) and early postnatal animals, compared to expression in adults.

a1 a2 a3 a12 a4 a13 a5 a6 a7 a8 a9 a10 a11 a14

bg1 bg2 bg12 bg3 bg4 bg13 bg5 bg6 bg7 bg8 bg9 bg10 bg11

Head

e-day 13 - - - - - . . - . . - . - - . . . . - - - . + - + + -

e-day 17 - - - - - . . - . . - . - - . . . . - - - . - - + + -

e-day 21 - - - - - . . - . . - . - - . . . . - - - . - - + + -

pn-day 1 - - - - - . . - . . - . - - . . . . - - - . + - + + -

Submaxillary

pn-day 61 - - + + - . . - . . + . - - . . . . + - - . + + + + -

pn-day 15 ♂ - - - - - . . - . . + . - - . . . . + - - . + + + + -

♀ - - - - - . . - . . + . - - . . . . + - - . + + + + -

Adult ♂ - - - - - . . - . . - . - - . . . . - - - . + - + + -

♀ - - - - - . . - . . + . - - . . . . + - - . + + + + -

Lacrimal

pn-day 6 - - + + + . . - . . + . - + . . . . + + - . + + + + -

pn-day 15 ♂ - - + + + . . - . . + . - + . . . . + + - . + + + + -

♀ - - + + + . . - . . + . - + . . . . + + - . + + + + -

Adult ♂ - - + + + . . - . . + . - + . . . . + + - . - + - - -

♀ - - + + - . . - . . + . - - . . . . + + - . - - + + -

MOE/VNO

pn-day 6 - - - - - . . - . . - . - - . . . . - - - . - - + + -

pn-day 15 ♂ - - - - - . . - . . - . - - . . . . - - - . - + + + -

♀ - - - - - . . - . . - . - - . . . . - - - . - + + + -

Adult ♂ VNO - - + + + . . - . . + . - - . . . . + - - . - + + + -

Adult♀ VNO - - + + + . . - . . + . - - . . . . + + - . - + + + -

Adult ♂ MOE - - - - - . . - . . - . - - . . . . + - - . - + + + -

Adult♀ MOE - - + - - . . - . . - . - - . . . . + - - . - + + + -

1pn=postnatal; the sex was unknown for e13, e17, e21, pn1 and pn6
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bg10. By the first day of life, this has changed little, but by
six days many other paralogues are expressed in the
submaxillary and lacrimal glands. Expression proceeds to
15 days of life without yet revealing the sexually dimor-
phic patterns seen in several glands in adult mice. The
transition to sexually dimorphic expression following
puberty appears incompatible with roles for these in host
immune defense.

It is fascinating that the MOE and VNO are the last tissues
to achieve an adult expression pattern. Unlike the lacrimal
gland and the salivary glands, these are not secretory tis-
sues. It may be that early expression in the pups' secretory
tissues provides signals by which the female parent recog-
nizes her offspring. The pups would not need MOE and
VNO expression themselves at this early stage. This dis-
tinction hints at a role for ABP in chemosensation, per-
haps by participating in detection and recognition of ABP
subtypes. Paralogues expressed in the MOE and VNO
could be involved in phenotype matching and/or in a sys-
tem whereby a bound ligand is transferred between para-
logues to augment the signal of a proteinaceous
pheromone.

Recently, Grus et al. [45] studied V1R genes expressed in
the VNOs of the dog, cow and opossum, reporting 8, 32
and 49 intact V1R genes, respectively, in these three spe-
cies. The numbers of V1R genes in the genomes of mice
and rats had been previously reported to be 187 and 102,
respectively [46] while the human genome contains about
200 V1R genes, all but 4 of which appear to have been
pseudogenized [47,48]. Grus et al. [45] showed a con-
cordance between V1R repertoire size and the complexity
of VNO morphology and suggested that these characteris-
tics of the VNO are indicative of the sophistication of phe-
romone communications within species. These findings
are particularly interesting in the context of Abp evolution.
We previously reported finding a single, pseudogenized
Abp gene pair in both the human and the chimpanzee
genomes, while the genomes of the mouse and rat had
approximately 14 and 3 pairs of Abp genes, respectively,
most of which had full-length ORFs [19]. A single, full-
length Abp gene pair in each of the dog and cat genomes
would be consistent with a pattern of increasing impor-
tance of Abp genes in conspecific communication, pro-
ceeding from potentially no importance in primates to
low importance in carnivores to relatively high impor-
tance in murid rodents, with the mouse utilizing the most
number and diversity of Abp gene pairs.

In our recent paper [19], we demonstrated extensive
sequence diversification in the numerous Abpa/Abpbg par-
alogues we predicted. In this report, we have shown that
Abp genes have evolved multiple, often distinct, expres-
sion patterns. Once these patterns are mapped to these

genes' proposed phylogenetic tree a surprising lack of con-
gruency is observed (Fig. 5): the evolution of gene expres-
sion appears not to recapitulate the evolution of coding
sequence. Thus it appears that neofunctionalization,
rather than neutral drift, has driven the evolution of these
genes' expression patterns over relatively short time
periods.

The extensive diversification in expression of this family
of proteins provides two lines of evidence for a pheromo-
nal role for ABP: 1) different patterns of Abpa/Abpbg
expression in different glands; and 2) sexual dimorphism
in the expression of the paralogues in a subset of those
glands. It is clear from our observations that expression
patterns of many of the Abp paralogues differ dramatically
among various glands that are located almost exclusively
in the head and neck, where the sensory organs are
located. Since mice are nocturnal, it is expected that they
will make extensive use of olfactory as opposed to visual
cues. The glands expressing Abp paralogues produce secre-
tions (lacrimal and salivary) or detect odors (MOE and
VNO) and thus it appears highly likely that ABP proteins
play a role in olfactory communication. This supports the
earlier suggestion, based on behavioral testing, that sali-
vary ABP (the Abpa gene, now Abpa11) mediates mate
preference [29,30]. In the studies of Laukaitis et al., [29],
females showed a stronger preference in experiments
where the choice was between males tethered to the ends
of the test chamber, than they did for the males' territories
when the males were absent. Sniffing the face of the male
would present the female with much more information
(Fig. 4) than the male might leave in his territory in the
form of shed skin flakes or hair which had been coated
with saliva during grooming [29].

If the variety of proteins produced by expression of the
mouse Abp paralogues act as components of a complex
pheromone system, then the secretions of the lacrimal
gland and salivary glands provide a constellation of
olfactory information, such as an animal's age and sex.
Indeed it has been proposed previously that polymor-
phism in salivary ABP communicates the species/subspe-
cies of the animal [29-32,49]. Thus we suggest that the
strong evidence for involvement of Abp paralogous genes
in adaptive evolution is consistent with a pheromonal
role for their protein products.

Laukaitis et al. [20] proposed that the region between
Abpa and Abpb (a11 and bg11 in [19] and in this study)
could contain a sequence that coordinately regulates their
expression. Emes et al. [19] suggested that this was possi-
bly true of the bidirectional 5'-5' paired Abpa and Abpbg
paralogue sets in general. The expression data we report
here for a11 and bg11 is consistent with this idea since we
have not seen either expressed independently of the other.
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However, it does not appear to hold true generally, since
we observed independent expression of the members of a
number of other pairs (e.g., bg10 in submaxillary and sub-
lingual glands; a10 in VNO and MOE, etc.). Thus, regula-
tion of the expressions of Abpa and Abpbg members of
pairs must be more complex than simple coordinate up-
or down-regulation of pairs. The lack of correlation
between the evolutionary relationships of the Abpa/Abpbg
paralogues [19] and their expression patterns (summa-
rized in Fig. 5) support this notion, suggesting that
sequences regulating expression of these genes have
evolved in a manner that did not parallel the evolution of
the structural genes. This implies rapid evolution of
expression diversity in the Abpa/Abpbg paralogues.

Huminiecki and Wolfe [50] studied divergence of tran-
scription profiles of genes in homologous tissues between
human and mouse. They focused on loci where recent
species-specific gene duplication occurred within one or
the other species, allowing them to compare the transcrip-
tion profiles of young paralogues in one species with a
single orthologue in the other. They found that the pres-
ence of species-specific gene duplication accelerates the
rate of expression divergence and that the recent dupli-
cates are subject to reduced constraints on their protein
sequences. In most cases, they observed that multiple
changes in the spatial expression profile have occurred
and they concluded that the expression in a new tissue
suggests neofunctionalization. These results are consistent
with those we reported earlier [19] and those that we
report here for the recently and extensively duplicated
Abpa/Abpbg genes in mice. This is perhaps an even more
striking example because the single orthologous pair of
Abpa/Abpbg genes in primates both degenerated into pseu-
dogenes while expression in rodents has expanded into at
least 9 tissues from the 2 tissues reported for the cat [42].

Conclusion
The multiple changes in the spatial expression profile of
these genes resulting in various combinations of expres-
sion in glands and other organs in the head and face of the
mouse strongly suggest that neofunctionalization of these
genes, driven by adaptive evolution, has occurred follow-
ing duplication. Primates represent an interesting contrast
insofar as their single Abpa/Abpbg gene pair was pseudog-
enized, suggesting that its function has become dispensa-
ble. Many genes involved in olfactory and pheromonal
cues have become pseudogenes in primates [40]. Evolu-
tionary and expression information thus both indicate a
role for ABP and its paralogues in pheromonal communi-
cation among mice and, perhaps in other animals, one
that is likely to be less important in the primate line, at
least in the great apes.

Methods
Materials
The C3H/HeJ inbred strain of mice was purchased from
Jackson Laboratory (Bar Harbor, ME). Mice at age 75–80
days were sacrificed by cervical dislocation; tissues and
organs were removed and frozen immediately in liquid
nitrogen and thereafter stored at -80°. Emes et al. [19]
published the sequences of 14 Abpa paralogues and 13
Abpbg paralogues in mouse strain C57BL/6. Five of the
Abpa paralogues and five of the Abpbg paralogues were
predicted to be pseudogenes because of frameshifts and/
or termination codons occurring early in their sequences.
Primer sets were designed to specific forward and reverse
sequences for the remaining nine Abpa and eight Abpbg
paralogues. Primers were designed to avoid cross-hybridi-
zation between paralogues' sequences. Primer sets were
purchased from Sigma-Genosys (St. Louis, MO). DNA
from strain C57BL/6 was obtained from Jackson Labora-
tory for use in testing the primer sets.

RNA extraction, cDNA production and polymerase chain 
reaction (PCR)
RNA was purified from mouse tissues with a Sigma total
RNA purification kit (Sigma Biochemicals, St. Louis, MO).
Absorbances at 260 and 280 nm were determined and
used to calculate yield, purity and concentration of RNA
from tissue extractions. In some instances, the RNA was
treated with RNase-free DNase (Sigma Biochemicals).
Oligo-dT was used to prime first-strand synthesis from 1
µg of total RNA per 20 µl RT reaction essentially as
described in [31] using Sigma AMV reverse transcriptase
(Sigma Biochemicals). PCR was performed using Biolase
(MidWest Scientific, St. Louis, MO) with 1µl of the RT
reaction as previously described [31,33], using a 61°
annealing temperature and 20 sec denaturing, annealing
and extension times for 30 cycles. The products were sep-
arated on 2% agarose gels.

DNA sequencing
Clean-up of PCR templates was performed using
QiaQuick PCR clean-up spin columns (Qiagen Incorpo-
rated, Valencia, CA) according to the manufacturers pro-
tocol (Qiagen Incorporated) and automated sequencing
was performed by ACGT, Inc. (Chicago, IL).
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