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Abstract: The kinetics of reactions of dehydrogenation of polycyclic naphthenes (cyclohexane, decalin,
bicyclohexyl, ortho-, meta-, and para-isomers of perhydroterphenyl) is modeled on the basis of a formal
comparison of kinetic equations of the 1st and 2nd orders based on real experimental data. It is
shown that the reaction of the 1st order is predominating in the series of cyclohexane–bicyclohexyl–
perhydroparatherphenyl. For all other substrates, the probability of describing the reaction in
accordance with the equation of the 2nd order increases markedly, and for trans-decalin it becomes
the predominant form of describing the kinetics of the reaction.
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1. Introduction

The modern transport systems are based on oil and gas fuel, the widespread use of
which contributes significantly to air and environmental pollution. In this regard, many
alternative solutions have been proposed recently to replace or modify conventional fuels
aimed at reducing the environmental footprint. One of the most well-known concepts is the
use of hydrogen gas as fuel and its combustion in an internal combustion engine or fuel cell.
One of the reasons that hinder the practical implementation of this approach is the lack of
modern systems capable of providing compact storage of hydrogen and its transportation,
since hydrogen under normal conditions is a flammable gas. It is shown [1–10] that systems
based on liquid organic hydrogen carriers (LOHC), in particular, polycyclic hydrocarbons
(PH), are a safe and economical way of storing and transporting hydrogen. However, the
efficiency of PH-based systems largely depends on the development of a highly active,
selective, and stable catalyst. At the same time, analysis of the literature shows that the
difficulty of achieving the equilibrium due to the reversible nature of the dehydrogenation
reaction of polycyclic naphthenes causes great differences in the description of kinetic
mechanisms, as well as the determination of the order of these reactions. Among the
studied substrates, the kinetics of dehydrogenation is understood only for cyclohexane, in
the description of which the 1st reaction order is established [11–15]. There is no reliable
information in the literature for more complex naphthenic substrates. At the same time,
understanding the kinetics of reactions helps to choose the right conditions for their imple-
mentation. This contributes to an increase in the efficiency of using LOHC for the purposes
of storage and release of hydrogen. This work is devoted to kinetic modeling of reactions of
hydrogen production by dehydrogenation of polycyclic naphthenes with different degrees
of condensation (cyclohexane, bicyclohexyl, cis- and trans-isomers of decalin, ortho-, meta-,
and para-isomers of perhydroterphenyl) at 300–340 ◦C and atmospheric pressure.
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2. Results and Discussion

Analysis of the experimental data obtained showed that the products of complete
hydrogenation of aromatic hydrocarbons used in this work (benzene, C6H6; naphthalene,
C10H8; biphenyl, C12H10; ortho-, meta-, and para-isomers of terphenyl, C18H14) are the
corresponding naphthenic substrates (cyclohexane, C6H12; decalin, C10H18; bicyclohexyl,
C12H22; ortho-, meta-, and para-isomers of perhydroterphenyl, C18H32). At the same time,
steric cis- and trans-isomers are formed for decalin and isomers of perhydroterphenyl
during the formation of final polycyclic naphthenes, the quantitative ratio between the
isomers is indicated in Table 1. It was also established that the rate of formation of trans-
isomers exceeds the rate of formation of cis-isomers, as well as the preceding intermediate
products of the reaction [8–10].

Table 1. Comparison of steric isomers of decalin and perhydroterphenyl (C is the content in the mixture).

Hydrocarbon Cis- Trans-

C, % m. p., ◦C C, % m. p., ◦C

Decalin 39 195 61 186
Perhydro-o-terphenyl 25 16–19 75 47
Perhydro-m-terphenyl 20 20–25 80 62
Perhydro-p-terphenyl 55 48 45 164

It is known that the catalytic reaction consists of a number of successive stages, such
as adsorption, desorption, diffusion, dissociation, and the reaction itself. The reversible
reactions of hydrogenation of polycyclic aromatic substrates with a different extent of con-
densation and the reactions of dehydrogenation of the corresponding polycyclic naphthenic
molecules represent multi-stage processes with a general scheme: X-H2n ↔ X + H2n. Since
there are no objectively developed criteria for comparing the kinetics of such different
substrates, the determination of the kinetic model of the reaction requires numerous experi-
ments to establish the contribution of each of the components. At the same time, a formal
comparison method is known, which is based on the selection of the kinetic equation
that best corresponds to the experimental data obtained [16]. In this work, the values
of the rate constant were determined by substituting experimental data of the substrate
concentration dependence into the kinetic equations of the 1st and 2nd orders, most typical
for the naphthene dehydrogenation reaction (Table 2).

Table 2. Rate constant equations (C—concentrations of substrates; Co—initial; C—current).

Reaction Order Formula for the Rate Constant

1 kI = 1/t × ln(Co/C)

2 kII = 1/t × (Co − C)/(Co × C)

Common features for the calculated values of the rate constants k(I) and k(II) were
determined using the Pearson linear correlation coefficient (RI and RII) [17]:

RX,Y = (M[X,Y] −M[X] ×M[Y])/((
√

(M[X2] − (M[X])2) × (
√

M[Y2] − (M[Y])2)) (1)

where M denotes the mathematical expectation.
Table 3 shows the parameters of cyclohexane dehydrogenation on a 3 Pt/C catalyst.

The values of the correlation coefficients calculated on the basis of the data presented
in Table 3 are equal to RI = 0.9558 and RII = 0.7717, respectively. The ratio between the
values of RI/RII = 1.24 indicates an obvious advantage in describing the kinetics of the
cyclohexane dehydrogenation reaction using the 1st order equation, compared with the
2nd order equation, which is consistent with the literature data [6–8].
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Table 3. Parameters for the reaction of cyclohexane dehydrogenation (LHSV = 1 h−1, P = 1 atm).

T, ◦C

250 270 280 290 300 310 320 330 340

X, % 29 40 55.8 62 81 82 97 98.4 99
kI, h−1 0.223 0.511 0.816 0.968 1.661 1.714 3.506 4.135 4.605
kII, h−1 0.025 0.007 0.013 0.016 0.043 0.046 0.323 0.615 0.990

Figure 1 shows the temperature dependences of the dehydrogenation conversion
of the investigated polycyclic naphthenic substrates on a 3 Pt/C catalyst. It is obvious
that the presence of steric isomers with an increase in the condensation degree of the
naphthenic substrates under study leads to an increase in the number of reaction routes
compared with the hydrogenation process and, accordingly, to a difference in the characters
of the temperature dependences of the dehydrogenation conversion. Thus, in the case
of decalin, the conversion in the cis-isomer dehydrogenation in the temperature range
300–340 ◦C approaches the maximum values, while the highest conversion of trans-decalin
in this range barely reaches 70%. At the same time, the calculation of the equilibrium
constants of all elementary acts occurring during the dehydrogenation of decalin and
perhydroterphenyl indicates that the cis-isomer has a tendency to transition to a more stable
trans-isomer over the entire temperature range under study [18,19]. Taking into account the
cis-trans transition during dehydrogenation of decalin, this leads to a decrease in the overall
reaction rate and affects the completeness of hydrogen release. Because of the smaller
differences in the structure of cis- and trans-conformations from linear-jointed molecules of
perhydroterphenyl, dehydrogenation curves for their ortho-, meta-, and para-isomers in the
investigated range of temperatures differ not so much [9,10].
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Figure 1. Temperature dependences of the dehydrogenation conversion of decalin: (a) bicyclo-
hexyl; (b) perhydro-para-terphenyl; (c) perhydro-meta-terphenyl; (d) and perhydro-orto-terphenyl;
(e) LHSV = 1 h−1, P = 1 atm, t = 1 h.

Table 4 shows the values of the rate constants for the dehydrogenation of the studied
polycyclic naphthenes calculated on the basis of equations given in Table 2. The values of
the calculated correlation coefficients for each of the substrates are given in Table 5.

Table 4. Parameters for dehydrogenation of naphthenic substrates (LHSV = 1 h−1, P = 1 atm).

Substrate
T, ◦C

300 310 320 330 340

Bicyclohexyl kI, h−1 1.152 2.813 4.605 5.298 6.908
kII, h−1 0.022 0.157 0.990 1.990 9.990

cis-Decalin
kI, h−1 0.800 3.000 3.219 3.507 4.605
kII, h−1 0.012 0.190 0.240 0.323 0.990

trans-Decalin
kI, h−1 0.261 0.777 0.916 0.968 1.171
kII, h−1 0.003 0.012 0.015 0.016 0.022

cis-Perhydro-para-terphenyl kI, h−1 2.501 2.303 2.733 3.507 4.605
kII, h−1 0.090 0.112 0.144 0.323 0.990

trans-Perhydro-para-terphenyl kI, h−1 1.966 2.526 3.000 3.507 3.912
kII, h−1 0.061 0.115 0.190 0.323 0.490

cis-Perhydro-meta-terphenyl kI, h−1 1.514 1.966 3.507 3.912 4.605
kII, h−1 0.035 0.061 0.323 0.490 0.990

trans-Perhydro-meta-terphenyl kI, h−1 1.427 1.833 3.219 3.689 4.200
kII, h−1 0.032 0.053 0.240 0.390 0.657

cis-Perhydro-ortho-terphenyl kI, h−1 1.897 1.833 1.772 1.743 1.715
kII, h−1 0.057 0.053 0.049 0.047 0.046

trans-Perhydro-ortho-terphenyl kI, h−1 1.599 1.619 1.660 1.687 1.714
kII, h−1 0.040 0.041 0.043 0.044 0.046
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Table 5. Empirical values of correlation analysis.

Substrate
Correlation Coefficients

RI RII RI/RII

Cyclohexane 0.956 0.772 1.24
cis-Decalin 0.924 0.881 1.05

trans-Decalin 0.929 0.963 0.97
Bicyclohexyl 0.992 0.822 1.21

cis-Perhydro-para-terphenyl 0.941 0.839 1.12
trans-Perhydro-para-terphenyl 0.979 0.975 1.02
cis-Perhydro-meta-terphenyl 0.979 0.948 1.03

trans-Perhydro-meta-terphenyl 0.978 0.968 1.01
cis-Perhydro-ortho-terphenyl −0.981 −0.976 1.004

trans-Perhydro-ortho-terphenyl 0.996 0.996 1.00

From the data given in Table 5, it can be seen that for all substrates, the values RI
and RII calculated using the rate constants have signs of a strong correlation dependence:
[RXY] > 0.7. At the same time, it is also clear that for all substrates studied in the work,
the correlation coefficient RI, when describing the reaction kinetics using the 1st order
equation, is higher than when describing the reaction kinetics using the 2nd order equation.
This indicates the similarity of the mechanisms of dehydrogenation within the groups
under consideration. In particular, for all the studied substrates, a predominantly terminal
character of dehydrogenation was observed, when first of all the terminal cyclohexane
cycles participated in the reaction and only then the cycles associated with them [4,5]. The
exceptions are trans-decalin and, to a lesser extent, cis- and trans-isomers of perhydro-orto-
therphenyl.

In the series of cyclohexane–bicyclohexyl–perhydro-para-therphenyl, there is an ob-
vious predominance of the reaction of the 1st order. In the case of condensed decalin
cycles, the presence of the cis-trans transition complicates the description of reactions: if
the cis-isomer demonstrates features belonging to the group with the 1st reaction order,
then for trans-decalin, the equation of the 2nd order becomes the predominant form of
describing the reaction kinetics. This is probably due to the excessive accumulation of the
trans-isomer from the cis-isomer during the dehydrogenation reaction [15].

For linearly connected molecules of perhydroterphenyl isomers, the effect of the
cis-trans transition also occurs, but not as strong as for decalin. Thus, for cis-perhydro-
para-terphenyl, there is an obvious predominance of the reaction of the 1st order. For
trans-perhydro-para-therphenyl, the probability of the reaction scenario in accordance
with the 1st and 2nd order equations is noticeably leveled, but unlike trans-decalin, some
prevalence of the 1st order reaction remains. For meta- and ortho-isomers, this ratio is
preserved, but the difference between the description of the reaction using the 1st and 2nd
order equations is even more leveled, especially for perhydro-ortho-terphenyl, for which
side condensation reactions into cyclic triphenylene derivatives were detected during
dehydrogenation [20].

3. Materials and Methods
3.1. Methods of Conducting Catalytic Dehydrogenation Reactions

For the dehydrogenation reaction, substrates obtained by complete hydrogenation of
the corresponding commercial aromatic hydrocarbons were used: benzene, 99.5% (Acros
Organics, Geel, Belgium), biphenyl, 99% (Acros Organics), as well as a mixture of terphenyl
isomers of the Santowax-R brand (11.03 wt. % o-C18H14, 59.22 wt. % m-C18H14 and
29.75 wt. % p-C18H14). Hydrogenation was carried out in a high-pressure autoclave PARR-
5500 (Moline, IL, USA) with an internal volume of 600 mL at a temperature of 180 ◦C and a
pressure of 70 atm. The reaction mass obtained after hydrogenation was carefully separated
from the catalyst and analyzed. For dehydrogenation, substrates were used which had
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a selectivity for the main product of at least 99.5% and did not contain products of side
reactions [9,10]. The completeness of the reaction was determined chromatographically.

The substrates completely saturated with hydrogen, i.e., the naphthenic compounds
prepared by exhaustive hydrogenation of the aromatic substrates, were used for dehy-
drogenation, which was carried out in a flow-through catalytic reactor (LHSV = 1 h−1,
P = 1 atm, t = 1 h). All communications of the setup were thermostated at temperatures
of 90–120 ◦C. Saturated substrates in the liquid state were fed into the reactor using a
high-pressure pump of the HPP 5001 type. At the exit of the reactor, hydrogen and reaction
products were separated. Sampling for analysis was carried out every hour of the reaction.

A prepared sample of 3 wt. % Pt/C [14] was used as a catalyst for both hydrogenation
and dehydrogenation reactions. Platinum was dispersed onto the surface of a carbon carrier
of Sibunit (Omsk, Russia, bulk density = 0.62 g/cm3) by incipient wetness impregnation of
the carrier with an aqueous solution of [H2PtCl6] (wt. % Pt = 36.3%) in accordance with the
procedure [14]. The specific surface area of the catalyst was SBET = 304 m2/g, the average
particle size of Pt d(Pt) = 2–3 nm, the dispersion of Pt D = 49%, and the average pore size
R = 4 nm. The catalyst was activated immediately before the reaction at a temperature of
320 ◦C in a hydrogen flow of 30 mL/min for 2 h.

3.2. Chromatographic Analysis

The products of hydrogenation and dehydrogenation reactions were analyzed us-
ing a CrystaLlux-4000M chromatograph with a flame-ionization detector using a ZB-5
(Phenomenex, Torrance, CA, USA) and TR-FFAP capillary columns (Thermo Scientific,
Waltham, MA, USA). The analysis was performed in a programmable mode of 70–220 ◦C
at a heating rate of 6 ◦C/min. For more detailed identification of semi-hydrogenated
products and reaction by-products, separate liquid samples were analyzed using a FOCUS
DSQ II chromate-mass-spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) with a
TR-5MS capillary column (Thermo, Waltham, MA, USA). The conversion in hydrogenation
and dehydrogenation (X) was calculated by the formula: X = (c0 − c)/c0 × 100%, where c0
and c are the initial and final concentrations of the substrate.

The selectivity (S) was calculated by the formula: S(i) = ∑ c(i)/∑ c(k) × 100%, where
∑ c(i) and ∑ c(k) are the sums of concentrations of a group of products and all the products,
respectively.

4. Conclusions

Thus, the modeling of the kinetics of dehydrogenation reactions of polycyclic naph-
thenes (cyclohexane, decalin, bicyclohexyl, ortho-, meta-, and para-isomers of perhydroter-
phenyl) demonstrates that their features are determined by the structure, configuration, and
degree of condensation. The use of the modeling method based on a formal comparison
of kinetic equations has shown that for all polycyclic naphthenic substrates studied, the
equation of the 1st order best corresponds to the experimental data obtained. In the series
of cyclohexane–bicyclohexyl–perhydro-para-terphenyl, the signs of the reaction of the 1st
order are predominant. For all other substrates, the probability of a reaction scenario in
accordance with the 1st and 2nd order equations is noticeably leveled. For trans-decalin,
the predominant form of describing the reaction kinetics is the 2nd order equation, which
is apparently due to the excessive accumulation of the trans-isomer via isomerization of the
cis-isomer during the dehydrogenation reaction.
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