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On-chip wavefront shaping with dielectric
metasurface
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Metasurfaces can be programmed for a spatial transformation of the wavefront, thus allowing

parallel optical signal processing on-chip within an ultracompact dimension. On-chip meta-

surfaces have been implemented with two-dimensional periodic structures, however, their

inherent scattering loss limits their large-scale implementation. The scattering can be mini-

mized in single layer high-contrast transmitarray (HCTA) metasurface. Here we demonstrate

a one-dimensional HCTA based lens defined on a standard silicon-on-insulator substrate,

with its high transmission (<1 dB loss) maintained over a 200 nm bandwidth. Three layers of

the HCTAs are cascaded for demonstrating meta-system functionalities of Fourier trans-

formation and differentiation. The meta-system design holds potential for realizing on-chip

transformation optics, mathematical operations and spectrometers, with applications in areas

of imaging, sensing and quantum information processing.
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Metasurfaces are arrays of subwavelength structures
capable of imposing a localized and spatially varying
phase shift onto the transmitted or reflected electro-

magnetic (EM) wave1–3. Gradient variations of nanostructures in
a subwavelength thin layer are capable of manipulating an out-of-
plane EM wave in free space, leading to numerous applications
from simple components of miniaturized flat lenses4–8 and
holograms9–11, to more complicated systems of analog12,13 signal
processing and spectrometers14,15. Metamaterials have also been
used for manipulating in-plane waves16–28. Periodic structures,
such as dielectric photonic crystals29 and metallic hyperbolic
metasurfaces30, control the delay and momentum of in-plane
light propagation. The inverse design method significantly
reduces the footprint of functional simple components19,20.
Optimization toward functions with multi-input/output for par-
allel signal processing can be of a significant computational cost,
as the inverse design is numerically driven. Gradient varying on-
chip metasurface based on plasmonics23,24 or dielectric meta-
materials16–18,25–28 have been demonstrated for the on-chip lens.
Compared with the two-dimensional metasurface-based image
processors12, the on-chip meta-system can operate without an
alignment step, but limited to process one-dimensional (1D) data
represented through the wavefront in x–y plane16,23,31,32. The
insertion loss of reported on-chip metasurfaces (ranges from a
few dB to tens of dB)16,23 is not suitable to meet the requirements
for standard passive optical components (<1 dB), and their small
critical dimensions (<100 nm) makes them incompatible with
foundry process and more vulnerable to fabrication related geo-
metric distortions (Supplementary Table 1).

As an analogy of electronic circuits, current photonic micro-
system’s complexity and capability33–35 will be eventually limited
by the individual components’ size and energy consumption. In
this work, we explore parallel signal processing through on-chip
1D high-contrast transmitarray (HCTA). By slightly adjusting the
dimension of the void slots defined in the device layer, we can
control the coherent inference of the parallelly transmitted
wavefront with low loss. We design, fabricate and characterize the
on-chip metasurface lens (metalens) made of HCTA. The 1D
HCTAs maintain less than 1 dB insertion loss across the S, C, and
L telecommunication bands (>200 nm bandwidth) while main-
taining a good tolerance to fabrication variation. The HCTA
exhibits low insertion loss, which is feasible for parallel and multi-
stage on-chip signal processing. Based on the 1D HCTA design,
we experimentally demonstrate ultra-short, low loss and broad-
band mode size convertors and metasystems performing Fourier
transform and spatial differentiation. With minimal feature size
of 140 nm, the 1D HCTA is compatible with current deep UV
photolithography technique used in silicon photonics foundry,
and thus feasible for large-scale silicon photonic computational
chips operating at the speed of light.

Results
Low loss 1D on-chip HCTAs. The designed HCTAs are 1D
rectangular etched slot arrays defined in the silicon-on-insulator
(SOI) substrate (Fig. 1a). Here we fix the lattice constant (a) of the
HCTAs to be less than half of the wavelength (500 nm), and
sweep the length (L) and width (w) to get the transmission and
phase shift of the HCTA. The large refractive index contrast
between silicon and silicon dioxide (>2) allows for a 2π phase
shift to be achieved with high transmission36. The phase shift is
introduced through the wave number differences in the slot and
slab waveguides37 (Supplementary Figure 1). The optical mode
profiles of the transmitted transverse electric (TE) wave tunneling
through the slot are illustrated in Fig. 1b, c. The transmission and
the phase shift can be controlled by varying the width and length

of the slots (Fig. 1d, e). A phase shift from 0 to 2π combined with
a transmission larger than 94% can be simultaneously achieved by
fixing the slot width to be 0.14 µm while varying the slot length
from 0.2 to 2.5 μm (Fig. 1f). It is noted that with a wider slot, a 2π
phase shift can be achieved with a smaller slot length variation,
but the transmission drops dramatically (Fig. 1d).

Compact HCTA metalens. Here we use a gradient varying
HCTA for on-chip wavefront control. The 1D HCTA along the y
direction imposes a space-dependent phase shift on the imping-
ing light (TE polarized) along the x direction. The phase shift of
the transmitted wave is defined in the following equation for
achieving the on-chip wave focusing:

ϕ yð Þ ¼ 2π
λd

neff f �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 þ y2

p� �
ð1Þ

where λd is the design wavelength in free space, neff is the effective
refractive index of the guided light confined in the silicon slab,
and f is the focal length. Here we fix the lattice constant (a= 500
nm) and slot width (w= 140 nm) for ensuring high transmission,
and vary the slot length along the y direction for achieving the
desired wavefront.

The analytically designed metalens is then numerically
evaluated (see method) (http://www.lumerical.com/tcad-
products/fdtd/). Figure 2a shows the optical intensity distribution
at the x–y plane in the middle of the 250-nm-thick silicon slab
(z= 125 nm). The input light is centered at the wavelength of
1550 nm along the +x direction. The designed metalens is 11 µm
wide in the y direction, with a focusing length of 25 µm and a spot
size of 1.07 μm. The spot size is marked as the full width half
maximum (FWHM) in the cross section of the mode profile
(inset of Fig. 2a). Figure 2b shows the detailed in-plane electric
field distribution of Ey across the metalens. With a gradient
varying phase shift, the interference between the transmitted wave
‘bends’ the off-axis light toward the central axis. The focusing
length of the metalens can be controlled by varying the gradience
of the slot length. The simulated focal length is 6.7% shorter than
the analytically design, due to the finite phase shift between
adjacent slots. The focusing lengths can be adjusted from a few
µm to sub-mm by controlling the step size of slot length in y
direction. Figure 2c plots the focusing efficiency, transmission,
and spot size versus focal lengths, indicating a trade-off between
the focusing efficiency and spot size. At a fixed lattice constant, a
short focusing length demands a larger gradient of the slot length,
which increases the deviation of the transmitted wavefront
compared with that of the ideal lens. As the focusing length
reduces from 28 to 8 µm, the focusing efficiency reduces from
80% to 40%. The focusing efficiency is defined as the fraction of
the incident light that passes through a rectangular aperture at the
focal plane, with its width equals to three times the spot size and a
height of 0.5 μm. For metalens with focusing lengths longer than
25 µm, a maximum focusing efficiency of 79% can be achieved
(Fig. 2c). The spot size can be reduced to 0.4 µm at a shorter
focusing length of 8 µm.

We also verify the broadband operation of the on-chip
metalens. The focusing efficiency is above 74% and transmission
is above 88% within a 200 nm bandwidth centered at 1550 nm
(Fig. 2d). The focusing efficiency and transmission of the
metalens varies less than 3% across the whole wavelength range.
The spot size is about 1.08 µm in the wavelength range from 1550
to 1650 nm, and slightly increases (~0.05 µm) at shorter
wavelengths (near 1450 nm). The strong light confinement in
the slots minimizes the material dispersion in the HCTA (Fig. 1b,
c), as silicon dioxide’s chromatic dispersion is an order of
magnitude smaller than silicon. The broadband low dispersion

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11578-y

2 NATURE COMMUNICATIONS |         (2019) 10:3547 | https://doi.org/10.1038/s41467-019-11578-y | www.nature.com/naturecommunications

http://www.lumerical.com/tcad-products/fdtd/
http://www.lumerical.com/tcad-products/fdtd/
www.nature.com/naturecommunications


(Supplementary Figs 2 and 3) is attributed to the geometric
dispersion (with details discussed in Supplementary note 3). At
oblique incidence, the metalens retains its transmission efficiency
of 90% and focusing efficiency of 82% as the tilting angle is tuned
from −5o to 5o. The focusing efficiency then gradually decreases

down to 65% at 20o incidence angle, along with an increase in
spot size (Fig. 2e).

The numerically evaluated performance of the on-chip
metalens is then experimentally verified. The on-chip mode
conversion is mapped in both the x and y directions. In the y
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Fig. 2 HCTA based on-chip metalens. a In-plane light distribution of |Ey|2 in the middle of the silicon slab with incident light parallel to its optical axis. Inset:
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direction, 11 waveguides are parallelly placed on the output plane
to obtain the optical intensity distribution. Their center-to-center
distances are set at 1 µm to avoid interference. The optical field
variation in the x direction is sampled by 67 devices with their
metalens and output plane distance (Δx) arranged from 3 to 18.9
μm. Figure 3a shows a scanning electron microscope (SEM)
image of a device. The focal length f of the metalens under test is
designed to be 8 μm. A 44-µm-long exponential taper guides the
input light from a single mode waveguide (0.5 µm width) to the
metasurface with a diameter of 11 µm. The metalens converges
the beam width down to a spot size of 0.75 μm (FWHM) at the
image distance of Δx ¼ 10:1 μm (Fig. 3b–c). The simulated and
measured optical intensity distribution along the x-axis at
different y positions are compared in Fig. 3b. The measured
cross-sectional light intensity profiles (dots in Fig. 3c) align well
with the simulated profiles (curves in Fig. 3c). The beam FWHM
decreases to its minimum at Δx ¼ 10:1 μm, where the light
intensity increases an order of magnitude compared with the
input wave.

With metalens assisted light focusing, a 13.7-μm-long linear
taper can efficiently convert the mode from an 11-μm width

down to a 0.5 µm width (Inset of Fig. 3d). Figure 3d compares the
transmission spectra of the 13.7-μm-long taper with and without
the metalens. The metalens is placed beside the grating coupler, as
shown in the SEM image of the device (inset of Fig. 3d). The
measured insertion loss of the metalens is less than 0.8 dB in the
C band and increases to 2 dB in the S-band, which is comparable
to the simulated results (transmission above 79% in the
wavelength band from 1480 to 1580 nm). An extra 18 dB loss is
observed for the same device design without a metalens (gray
curve in Fig. 3d). This result experimentally demonstrates the
broadband high transmission of the metalens, a critical feature
required for multi-stage system integration.

Mathematical operation with cascaded meta-system. Compared
with conventional free-space optical information processing
metasystems, the advanced lithography technique allows for easy
alignment of the on-chip metasurface for a cascaded multilayer
system with precise spacings. Here we use the designed metalens
for implementing spatial Fourier transformations (FT). For a
proof-of-concept demonstration, a device with 2 input ports and
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11 output ports are fabricated on an SOI substrate (Supplemen-
tary Fig. 4a, b). The input and output planes are placed on the
focal plane of the metalens (Inset of Fig. 4a). On the input port,
light is coupled from single mode waveguides to the slab (profile
is shown in Fig. 4a). On the output plane, the optical field dis-
tribution is sampled by densely spaced single mode waveguides
with 1 μm center-to-center spacing. The transmitted power from
those ports is measured and compared with the numerical and
analytical results (Fig. 4b). The output intensity distribution can
be directly converted to the FT of input intensity profile, by
converting the y axis to spatial frequency ξ ¼ y=ðλf Þð Þ. Here, λ is
the wavelength in the slab waveguide and f is the focal length. The
design principle of the FT system is introduced in Supplementary
Note 4.

Based on the FT element, the spatial differentiation system is
then developed to perform the spatial differentiation on the input
signal (Supplementary Note 4). The differentiation meta-system
is composed of three layers (Insets of Fig. 4c). The first and third
layers of the meta-system are metalens, and the second layer is an

HCTA mask layer with a specific transmission coefficient t yð Þ /
jy � exp �jπ y2

λf

� �h i
(Supplementary Fig. 4c, d). The spatially

varying transmission coefficient is programed onto the middle
HCTA mask layer by varying the width and the length of the slot
(Fig. 1d, e). As shown in the left inset of Fig. 4c, the three stage
system only has a footprint of 15 µm by 45 µm. A 2.5 µm wide
waveguide guides light to the input plane of the metasystem. On
the output plane, 11 waveguides are parallelly connected with a 1-
µm center-to-center distance (Fig. 4c). Combining results from
two identical devices with output waveguides arrays shifted 0.5
µm long the y direction, a spatial resolution of 0.5 µm can be
achieved (red squares in Fig. 4b, d). The measured spatial spectra
align with the numerically simulated and analytical results
(Fig. 4d). We should note that the output has reversed
coordinates, as the FT is applied twice. More results of Fourier

transform and spatial differentiation can be found in Supple-
mentary Figs. 6–8. It is noted that the focusing efficiency and
focal distance vary less than 9% at incident angle from −16o to
16o (Fig. 1e and Supplementary Fig. 9). In our meta-systems
(Fig. 4), the incident angle is confined within ±16°, resulting in
accurate FT (Supplementary Note 5 and Supplementary Fig. 10).

With lithography defined metasurface orientation and spacing,
the on-chip meta-system possesses a small footprint and high
stability. We also verify the scalability and Foundry compatibility
of our metasystem. Supplementary Note 4 includes results of the
AIM photonics manufactured metasystems, including FT and
spatial differentiation functions (Supplementary Fig. 5).

Discussion
Here we presented a foundry fabrication compatible, ultra-
compact metasurface designed to achieve on-chip wavefront
transformation with low insertion loss and broadband operation.
An HCTA based metalens is analytically designed, numerically
verified and experimentally demonstrated. The 1D metalens has a
numerical aperture up to 2.14, which can focus light to within 10
µm with less than 1 dB loss. It can significantly shrink the length
of tapers for mode size conversion. The spatial FT of the input
signal is achieved by placing the input and output on the focal
plane of a metalens. More complicated computational tasks based
on FT can be performed by cascading multiple layers of HCTA.
As an example, we demonstrate a three-layer metasystem for
performing spatial differentiation.

The experimental demonstration of the functional HCTAs
opens new directions for on-chip diffractive optical systems,
which is distinguished from conventional waveguide based inte-
grated photonic devices. The on-chip metasurface can be inte-
grated with multimode waveguides38,39, to perform mode
transformation in mode division multiplexing systems. Also, the
1D metasurface design enables many novel on-chip systems with
low power consumption and ultracompact dimension, including
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diffractive optical computational circuits, on-chip spectrometers
and light detection and ranging devices.

Methods
Device fabrication. The on-chip metasurface is fabricated on an SOI (100)
substrate from Soitec, with the 250 nm device layer on 3 μm silicon dioxide layer.
The designed patterns (e.g., HCTA, waveguides, grating couplers) are defined in
CSAR 6200.09 positive resist using a Vistec EBPG5200 electron beam litho-
graphy system with 100 kV acceleration voltage, followed by resist development
and a single step dry etch procedures. A 300-nm-thick silicon dioxide protection
layer is deposited on the device layer by plasma-enhanced chemical vapor
deposition. Part of the metasystem structure is manufactured through a multi-
project wafer run at The American Institute for Manufacturing Integrated
Photonics (AIM Photonics).

Optical measurements. Continuous-wave tunable semiconductor lasers
(AQ4321D) with a polarization controller is used for launching light onto the chip.
The fiber-grating coupler loss is optimized to be 5 dB per input/output facet. The
propagation loss in the channel waveguides is less than 1 dB. The output is
monitored by a Newport InGaAs photodiode (818-IG-L-FC/DB) and an optical
power meter (1830-R-GPIB).

Numerical simulations. A three-dimensional finite-difference-time-domain
method (http://www.lumerical.com/tcad-products/fdtd/) is used to simulate the
optical field distribution and transmission spectra of the periodic HCTA, metalens,
and the meta-systems. The conformal mesh with spatial resolution less than 1/10 of
the smallest feature size is applied. For calculating the transmission of HCTAs, a
y–z plane monitor is placed at Δx= 3 μm to collect the transmitted power. Δx is the
distance to the left aligned side of the HCTA.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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