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Abstract

Mutation of the p53 gene is the most common genetic alteration in human malignances and associated clinically with
tumor progression and metastasis. To determine the effect of mutant p53 on epithelial differentiation, we developed
three-dimensional culture (3-D) of Madin-Darby canine kidney (MDCK) cells. We found that parental MDCK cells
undergo a series of morphological changes and form polarized and growth-arrested cysts with hollow lumen, which
resembles branching tubules in vitro. We also found that upon knockdown of endogenous wild-type p53 (p53-KD),
MDCK cells still form normal cysts in 3-D culture, indicating that p53-KD alone is not sufficient to disrupt cysts
formation. However, we found that ectopic expression of mutant R163H (human equivalent R175H) or R261H
(human equivalent R273H) in MDCK cells leads to disruption of cyst polarity and formation of invasive aggregates,
which is further compounded by knockdown of endogenous wild-type p53. Consistently, we found that expression of
E-cadherin, β-catenin, and epithelial-to-mesenchymal transition (EMT) transcription factors (Snail-1, Slug and Twist)
is altered by mutant p53, which is also compounded by knockdown of wild-type p53. Moreover, the expression level
of c-Met, the hepatocyte growth factor receptor and a key regulator of kidney cell tubulogenesis, is enhanced by
combined knockdown of endogenous wild-type p53 and ectopic expression of mutant R163H or R261H but not by
each individually. Together, our data suggest that upon inactivating mutation of the p53 gene, mutant p53 acquires its
gain of function by altering morphogenesis and promoting cell migration and invasion in part by upregulating EMT
and c-Met.
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Introduction

Wild-type p53, a tumor suppressor, plays an important role in
cell-fate determination through the regulation of the cell cycle,
programmed cell death, differentiation or senescence [1,2].
Thus, inactivation of p53 leads to many alterations, including
cell transformation [3,4] and developmental abnormalities [5,6].
Wild-type p53 can be inactivated by a number of mechanisms
including deletion, translocation, point mutation and through
interaction with viral and cellular oncoproteins [7-10]. Among
these, mutation of the p53 gene is the most common genetic
alteration in a wide spectrum of human malignancies [11-13].
The majority (75%) of p53 mutations is missense mutations,
many of which are clustered at the DNA-binding domain [14].
Six p53 mutations are described as “hot-spot” because they
are the most frequent mutations in human cancers [15]. These
mutants are defective in binding to consensus wild-type p53

responsive element and also defective in transactivation of
wild-type p53 target genes [16]. Based on the effect on the
core DNA-binding activity, these mutations can be classified
into two main groups, conformational mutation and contact-site
mutation. The conformational mutants, such as R175H and
R249S, have an altered conformation of the core DNA-binding
domain [17]. The contact-site mutants, such as R273H and
R248W, have mutations at residues that directly contact target
DNA [18].

Mutant p53 can form a heterotetramer with wild-type p53 and
inhibit wild-type p53 to act as a tumor suppressor [19,20]. In
addition, increasing evidence demonstrates that p53 mutants
gain new transforming abilities and promote tumorigenesis
independent of wild-type p53 [21]. For example, mutant p53 is
capable of promoting tumor cell proliferation [22], enhancing
chemo-resistance [23] and inducing gene amplification [24].
Additionally, cells carrying a germline p53 mutation are prone
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to reprogramming and exhibit properties of cancer cells instead
of normal stem cells [25]. Moreover, knock-in mice harboring
mutant R175H or R273H are prone to metastatic tumors [26].
Recently, we and others showed that mutant p53 is found to
acquire gain of function activities via induction of epithelial-to-
mesenchymal transition (EMT) [3,5,27-29].

To determine mutant p53 gain of function in morphogenesis
and tumorigenesis, we examined mutant p53 activity using 3-D
culture model of Madin-Darby canine kidney (MDCK) cells.
MDCK cells in 3-D culture undergo a series of morphological
changes and form polarized and growth-arrested cyst
structures with hollow lumen, which re-differentiates into
normal tubules upon induction by hepatocyte growth factor
(HGF) [30,31]. Here, we found that ectopic expression of
mutant R163H or R261H disrupts normal tubular architectures,
which is enhanced by knockdown of endogenous wild-type
p53. We also found that mutant p53 induces EMT and c-Met
expression. Collectively, our results suggest that upon
inactivating mutation of the p53 gene, mutant p53 disrupts
normal cell morphogenesis at least in part via induction of EMT
and c-Met.

Materials and Methods

Reagents
Bovine collagen solution (3.2 mg/mL) was purchased from

Advanced Biomatrix (Poway, CA). MEM medium and non-
essential amino acid were purchased from Invitrogen
(Carlsbad, CA). Recombinant human hepatocyte growth factor
(HGF) was purchased from Sigma (St. Louis, MO).

Plasmid Construction and Cell Line Generation
To generate vectors expression a shRNA against canine p53

under the control of the U6 promoter, two 62-base oligos were
annealed and then cloned into pBabe-U6 shRNA expression
vector. The resulting plasmids were designed as pBabe-U6-
shp53, which carries a puromycin selection marker [32]. To
generate a construct expressing siRNA-resistant mutant p53,
an 1,145-bp DNA fragment containing the entire open reading
frame of p53, in which four nucleotides (underlined) within
siRNA targeting region (5′- GCAATCTACCTCTCGCCAT-3′)
was replaced with 5′- GCAATCAACATCACGACAT-3′, was
amplified with forward primer P1, 5′-
AAGCTTACCATGCAAGAGCCACAGTCAGAG-3′, and reverse
primer P2, 5′- CTCGAGCACATCTGTACCATGCAAAGT-3′.
The resulting fragment encoding siRNA-resistant p53 was
confirmed by sequencing and cloned into pcDNA4, and the
resulting plasmid was designated as pcDNA4-siRNA-resistant
mutant p53 (Figure S3). Next, this plasmid was used as
template to generate pcDNA4 plasmids expressing siRNA-
resistant tumor-derived hot-spot p53 mutants (R163H and
R261H), in which residue arginine was replaced by histidine.
For p53 (R163H), fragment 1 was amplified with forward primer
P1, and reverse primer P3, 5′-
CATGGTGGGGGCAGTGCCGCACAAC-3′; fragment 2 was
amplified with forward primer P4, 5′-
GTTGTGCGGCACTGCCCCCACCATG-3′, and reverse primer
P2. Then, fragments 1–2 were mixed together as a template

and amplified with primers P1 and P2. For p53 (R261H),
fragment 1 was amplified with forward primer P1, and reverse
primer P5, 5′- GGCACAAACGTGTACCTCAAAGCTG-3′;
fragment 2 was amplified with forward primer P6, 5′-
TTGAGGTACACGTTTGTGCCTGTCC-3′, and reverse primer
P2. Then, fragments 1–2 were mixed together as a template
and amplified with primers P1 and P2. The resulting fragments
encoding p53 (R163H) and p53 (R261H) were confirmed by
sequencing and cloned into pcDNA4. To generated mutant
p53-producing cell lines, pcDNA4-mutant p53 was transfected
into MDCK cells. The resulting mutant p53-producing cell lines
were selected with Zeocin and confirmed by Western blot
analysis. To generate stable p53-KD cell lines with mutant p53
overexpression, pBabe-U6-siRNA was co-transfected with
pcDNA4-mutant p53 into MDCK cells. The resulting cell lines
were selected with puromycin and Zeocin. Both p53-KD and
mutant p53 expression were confirmed by Western blot
analysis and RT-PCR assay.

Cell culture
The MDCK cell line was obtained from American Type

Culture Collection (ATCC, Manassas, VA) and cultured in MEM
medium supplemented with 10% fetal bovine serum and 1%
non-essential amino acid. The overlay 3-D culture was carried
out as described previously with some modifications [33].
Briefly, 12-well culture plates were pre-coated evenly with 1.0
mg/mL pre-mixed collagen gel and then incubated at 37 °C for
30 min to allow the collagen gel to solidify. MDCK cells or
MDCK cells with p53-KD, p53-R163H, p53-R261H, p53-KD-
R163H and p53-KD-R261H (5,000 cells) suspended in 1.0 mL
collagen gel mixture were seeded on the top of pre-gelled
layer, and then incubated for 30 min at 37 °C to solidify.
Complete growth medium was gently added to the top of each
gel and incubated at 37 °C in a humidified 5% CO2. Culture
medium was renewed every third day. For induction of
tubulogenesis, culture medium plus 10 ng/mL of HGF was
added to the culture plate.

Western blot analysis
Western blot was performed as described [5]. Antibodies

used were purchased from Santa Cruz Biotechnology (anti-p53
(FL393), anti-β-catenin (E-5), anti-Snail-1, anti-Twist, and c-
Met, Santa Cruz, CA), Cell Signaling (anti-Slug, Danvers, MA),
BD Transduction Laboratories (anti-E-cadherin, San Jose, CA),
Sigma (anti-actin, St. Louis, MO), and BioRad (secondary
antibodies against rabbit or mouse IgG conjugated with HRP,
Life Science Research, Hercules, CA). Experiments were
repeated at least three times.

RT-PCR analysis
Total RNA was extracted from cells using TRIzol (Invitrogen

Life Technoloogies, Grand Island, NY). cDNA was synthesized
using M-MLV Reverse Transcriptase Kit (Promega
Corporation, Madison, WI) according to manufacturer’s
protocol. The mRNA level of wild-type p53 was measured by
PCR. The special primers to detect wild-type p53 are sense 5′-
GTGCCTCACAGAGTGCAAAA-3′, and antisense 5′-
CCTGAATGTTGGGAGCATTT-3′. The Actin gene was chosen
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as a loading control and detected with primers 5´-
ctgaagtaccccatcgagcacggca-3´ (sense) and 5´-
ggatagcacagcctggatagcaacg-3´ (antisense).

Colony formation assay
MDCK cells were cultured in a 6-well plate for ~12 d and

then fixed with methanol/glacial acetic acid (7:1) followed by
staining with 0.1% crystal violet. Experiments were conducted
in triplicate.

Wound healing assay
Cells were grown in a 6-well plate for 24 h. The monolayers

were wounded by scraping with a P200 micropipette tip and
washed two times with PBS. At specified time points after the
scraping, cell migration was captured using phase contrast
microscopy and cell monolayers were photographed using a
Canon EOS 40D digital camera (Canon, Lake Success, NY).
Migration rate of cells was measured by averaging the time
required to close the borders of cells. Six regions were
analyzed in each well, and the result was expressed as the
mean ± SD.

Statistical analysis
Data were presented as Mean ± SD. Statistical significance

was determined by Student’s t test. Values of P < 0.05 were
considered significant.

Results

Ectopic expression of conformational mutant p53
R163H disrupts normal cyst formation in 3-D culture

MDCK cell line contains wild-type p53 and possesses the
ability to form cyst structures when cultured in 3-D collagen gel
[30]. Upon induction with HGF, these cysts develop into
branching tubules through partial-EMT, cell proliferation, and
re-differentiation, a process that resembles kidney
tubulogenesis in vivo [30,31]. We showed that when cultured in
a 3-D collagen gel, MDCK cells formed a polarized cyst
structure, which then formed tubular networks upon stimulation
with HGF (Figure S1), which is consistent with our published
studies [32]. In addition, we showed that knockdown of
endogenous wild-type p53 led to increased cell proliferation
and migration in 2D culture, but p53 knockdown alone was
insufficient to alter tubulogenesis in 3-D culture (Figure S2),
which is also consistent with our published studies [32].

Mutation of p53 is a frequent event in renal cell carcinomas
(RCC) and mutant p53 is a prognostic indicator in RCC [34,35].
Consistent with that in human, p53 “hot-spot” mutations were
also found in canine TP53 gene, such as R163H (equivalent to
R175H in human) and R261H (equivalent to R273H in human)
[36]. To examine whether conformational p53 mutant R163H
affects cyst formation in MDCK cells, we generated multiple
MDCK cell lines in which R163H mutant was ectopically
expressed (Figure 1A). To detect the level of wild-type p53 in
these cell lines, RT-PCR was performed by using special
primers that located in 3’UTR of wild-type p53. We found that
the mRNA level of wild-type p53 decreased in MDCK-p53-KD

cells, but remain unchanged in MDCK-R163H cell lines
compared to that in MDCK cells (Figure 1B). In addition, we
found that MDCK cells with R163H mutant exhibited spindle-
shaped morphology in 2-D culture, which represents the
property of mesenchymal cells (Figure 1C). We also found that
in 3-D culture, the frequency of normal cyst formation was
decreased and the orientation of cell division became random
in mutant R163H-producing MDCK cells (Figure 1D).
Additionally, we found that accompanied with the spindle-like
cyst structures, R163H-producing MDCK cells exhibited
increased cell growth based on clone number and size by
colony formation assay (Figure 1E) and cell migration by
wound healing assay (Figure 1F). Given that the orientation of
cell division is extremely important in influencing the formation
and number of lumens within a cyst [37], our data implicated
that ectopic expression of mutant R163H disrupts cell polarity
in 3-D culture and promotes cell growth and migration in 2-D
culture.

Ectopic Expression of Contact-Site Mutant p53 R261H
Disrupts Normal Cyst Structures in 3-D Culture

Next, to determine the effect of contact-site mutant R261H
on MDCK cell morphogenesis, we generated multiple MDCK
cell lines in which R261H mutant was ectopically expressed
(Figure 2A). The mRNA levels of wild-type p53 remain
unchanged in MDCK cell lines in which R261H mutant was
ectopically expressed (Figure 2B). Compare to the parental
MDCK cells (Figure 2C, left panel), we found that MDCK cells
with R261H mutant showed remarkable spindle-shaped
morphology in 2-D culture (Figure 2C) and grew randomly to
form irregular cyst structures in 3-D culture (Figure 2D). In
accordance with this, we found that ectopic expression of
mutant R261H in MDCK cells significantly enhanced cell
growth by colony formation assay (Figure 2E) and cell
migration by wound healing assay (Figure 2F). These data
indicated that contact-site mutant R261H and conformational
mutant R163H shares similar properties in altering cell
morphogenesis and in promoting cell growth and migration.

Ectopic expression of mutant p53 R163H or R261H
cooperates with knockdown of endogenous wild-type p53 to
alter cell polarity

To determine the effect of mutant R163H or R261H on the
morphological alterations in p53-deficient MDCK cells, we
generated multiple MDCK cell lines in which R163H or R261H
was ectopically expressed individually along with knockdown of
endogenous wild-type p53 (Figures 3-4A). Both cell lines
expressed high levels of mutant p53 proteins and exhibited low
or undetectable levels of endogenous wild-type p53 (Figures
3-4A). The mRNA level of wild-type p53 was efficiently knocked
down in MDCK-p53-KD cells, MDCK-R163H-p53-KD cell lines
and MDCK-R261H-p53-KD cell lines compared to that in
MDCK cells (Figures 3-4B). We found that upon ectopic
expression of an individual p53 mutant along with p53-KD,
MDCK cells exhibited elongated spindle-shaped phenotype in
2-D culture (Figures 3-4C). In addition, compare to the parental
MDCK cells (Figure 3D, left panel), these MDCK cells formed
scattered/unordered structures with extensions in 3-D culture
(Figures 3-4D). These structures were randomly oriented
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Figure 1.  Overexpression of mutant p53 R163H disrupted tubular formation in 3-D culture.  A, Generation of MDCK cell lines
in which siRNA-resistant mutant p53-R163H was stably overexpressed (clones 3 and 5). The level of p53-R163H was determined
by Western blotting. B, The level of wild-type p53 transcripts was determined by RT-PCR. C, Representative images of MDCK cells,
MDCK cells with p53 knockdown, or MDCK cells with mutant p53 (R163H) in 2-D culture (200×). D, Representative images of
MDCK cells, MDCK cells with p53 knockdown, or MDCK cells with mutant p53-R163H in 3-D culture for 6 d or 12 d. Scale bar: 100
µM. E, Top panel: colony formation assay was performed with MDCK cells, MDCK cells with p53 knockdown, or MDCK cells with
mutant p53-R163H. Bottom panel: the number of colonies was counted and presented as Mean ± SD from three separate
experiments. F, Wound healing assay was performed with MDCK cells, MDCK cells with p53-KD, or MDCK cells with mutant p53-
R163H. Top panel: cell migration was determined by visual assessment of cells migrating into the wound for 24 h using a phase-
contrast microscopy. Bottom panel: the time required for wound closure was measured and presented as mean ± S.D. from three
separate experiments.
doi: 10.1371/journal.pone.0085624.g001

Mutant p53 Regulates Tubulogenesis via EMT

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e85624



Figure 2.  Overexpression of mutant p53-R261H disrupted tubular formation in 3-D culture.  A, Generation of MDCK cell lines
in which siRNA-resistant mutant p53-R261H was stably overexpressed (clones 1 and 2). The protein levels of mutant p53-R261H
and actin were measured by Western blotting. B, The level of wild-type p53 transcripts was determined by RT-PCR. C,
Representative images of MDCK cells, MDCK cells with p53 knockdown, or MDCK cells with mutant p53-R261H in 2-D culture
(200×). D, Representative images of MDCK cells with mutant p53-R261H in 3-D culture. Scale bar: 100 µM. E, Top panel: colony
formation assay was performed with MDCK cells or MDCK cells with mutant p53-R261H. Bottom panel: the number of colonies was
counted and presented as Mean ± SD from three separate experiments. F, Wound healing assay was performed with MDCK cells,
MDCK cells with p53-KD, or MDCK cells with mutant p53-R261H. Top panel: cell migration was determined by visual assessment of
cells migrating into the wound for 24 h using a phase-contrast microscopy. Bottom panel: the time required for wound closure was
measured and presented as mean ± SD from three separate experiments.
doi: 10.1371/journal.pone.0085624.g002
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instead of being perpendicular to the culture plate as in the
normal MDCK structures (Figures 3-4D, middle and right
panels). Consistently, we found that in p53-KD MDCK cells,
ectopic expression of mutant R163H-/R261H further enhanced
cell growth and migration (Figures 3-4, E-F). These
observations suggest that ectopic expression of mutant R163H
or R261H cooperates with knockdown of endogenous wild-type
p53 to alter cell polarity in MDCK cells.

Ectopic expression of mutant R163H or R261H confers
MDCK cells to acquire EMT features

Loss of normal morphology is the characteristics of EMT
[38]. Given that ectopic expression of mutant R163H or R261H
leads to alteration of MDCK cell morphology, we sought to
determine whether these alterations are due to acquisition of
EMT-like properties in MDCK cells. Here, we found that in p53-
KD MDCK cells, the levels of EMT markers, such as E-
cadherin, β-catenin, Snail-1, Slug and Twist, remained
unchanged (Figure 5A-B, compare lane 2 to 1). However,
ectopic expression of R163H or R261H increased the level of
β-catenin, but decreased the level of E-cadherin, in MDCK cells
regardless of knockdown of endogenous wild-type p53 (Figure
5A). In addition, we found that ectopic expression of mutant
R163H or R261H alone slightly induced expression of Snail-1,
Slug, and Twist in MDCK cells (Figure 5B). Interestingly, the
combination of p53-KD with ectopic expression of R163H or
R261H markedly enhanced the expression of Snail, Slug, and
Twist (Figure 5B, compare lanes 3 and 5 with 4 and 6,
respectively). However, mutant p53 was not found to bind to
the promoter of the Slug gene by chromatin
immunoprecipitation (CHIP) assay (data not shown). The result
is consistent with other reports that mutant p53 promotes cell
invasion via stabilizing Snail or Slug proteins [27,39]. Finally,
we showed that c-MET, the cognate HGF receptor with an
oncogenic activity [40], was increased only by the combination
of p53-KD and ectopic expression of R163H or R261H (Figure
5C, compare lanes 3 and 5 with 4 and 6, respectively).

Discussion

Renal cell carcinoma (RCC) is the most common type of
kidney cancer and its incidence is increasing [41]. The p53
gene is frequently mutated in RCC and mutations of p53 is
associated with prognosis in human RCC [34,35,42]. In
addition, mice carrying mutant p53 exhibited defects in terminal
renal epithelial differentiation [43]. Thus, it is of clinical
significance to determine how mutant p53 controls the
morphological differentiation of the renal epithelium. To date,
there are no published data on mutant p53 in canine kidney
cancer. Therefore, no canine kidney tumor cell lines with
mutant p53 are available to test the effect of mutant p53
knockdown. Given that MDCK cell line, which expresses wild-
type p53, can recapitulate the in vivo epithelial morphogenesis
when cultured in a 3-D collagen gel, we developed the 3-D
culture model of MDCK cells to study how mutant p53 gain of
function is associated with aberrant renal tubulogenesis. Firstly,
we found that ectopic expression of mutant p53 R163H or
R261H disrupts cyst formation in 3-D culture of MDCK cells.

Secondly, we found that mutant p53 R163H or R261H
cooperates with p53-KD to disrupt morphogenesis of MDCK
cells and form scattered/unordered structures with extensions
in 3-D culture. Thirdly, we found that mutant p53 enhances
EMT and cooperates with p53-KD to increase the level of c-
Met. Taken together, these data indicated that gain of function
of mutant p53 alters the normal morphogenesis of MDCK cells
via promoting EMT and c-Met expression (Figure 5D).

It is noteworthy that tight regulation of cyst size, shape and
polarization is critical for normal kidney development and
functions. Disruption of these regulatory mechanisms leads to
an array of diseases including autosomal dominant polycystic
kidney disease, stenosis, and cancer [37]. Our previous data
[32] and current studies showed that in 3-D culture, p53
knockdown alone is unable to alter MDCK cell morphology,
although the cells display enhanced proliferation and migration
activities. In present study, we found that ectopic expression of
mutant p53 R163H or R261H displays a strong gain of function
in altering morphogenesis of MDCK cells in 3-D culture,
including disruption of cell polarity and formation of invasive
structures with random extensions. These observations are
consistent with previous findings that mutant p53 disrupts cell
morphogenesis and acini formation coupled with increased cell
migration in other experimental system [3,5,44]. Thus, our data
imply that these p53 mutants show a gain of function in altering
morphogenesis of renal epithelial cells.

Mutant p53 shows a gain of oncogenic function in driving
invasion and metastasis [26,44,45]. In addition, EMT was
demonstrated to be a major mechanism responsible for
invasiveness and metastasis of cancers. Alterations in
adhesion, morphology, cellular architecture and migration
capacity are the major events that occur during invasion and
metastasis [38]. In this process, transcription factors Snail, Slug
and Twist are induced, which in turn repress the expression of
E-cadherin [46]. High expression levels of EMT markers, such
as N-cadherin and Snail, were found to promote invasiveness
in Sarcomatoid RCC [47]. Thus, we sought to determine
whether mutant p53 induces EMT in MDCK cells. As expected,
we found that mutant p53 R163H or R261H disrupts
tubulogenesis of MDCK cells, coupled with decreased
expression of E-cadherin and increased expression of β-
cateinin. Previously, it has been reported that mutant p53
promote cancer cell invasiveness by stabilizing Snail and Slug
proteins [27,39]. Consistently, we also found that mutant p53
upregulates the expression of the transcription factors (Snail,
Slug and Twist). These alterations imply that ectopic
expression of mutant p53 contributes to the induction of EMT
and thus disrupts the tubulogenesis. In addition, it is well
known that mutant p53, including conformation mutants (e.g.
R175H) and contact mutants (e.g. R273H), are equally capable
of binding to p63 to acquire its gain of function through
inactivating p63 [48]. P63 is known to inhibit EMT [32,49,50].
Consistently, we found that overexpression of mutant p53
recapitulates the effects of p63 loss [32], suggesting that
mutant p53 may disrupt regular cyst formation in 3-D culture
partially through counteracting the function of p63 in MDCK
cells.
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Figure 3.  Ectopic expression of mutant p53 R163H cooperates with p53-KD to alter cyst morphology.  A, Generation of
MCF-10A cell lines in which siRNA-resistant mutant p53-R163H was expressed along with knockdown of endogenous wild-type
p53. The levels of wide-type p53 and mutant p53-R163H were determined by Western blotting. B, The level of wild-type p53
transcripts was determined by RT-PCR. C, Representative images of MDCK cells or MDCK cells with p53-KD-R163H in 2-D culture.
D, Representative images of MDCK cells or MDCK cells with wild-type p53-KD and overexpression of mutant p53-R163H in 3-D
culture for 12 d. Scale bar: 100 µM. E, Top panel: colony formation assay was performed with MDCK cells or MDCK cells with p53-
KD and overexpression of R163H. Bottom panel: the number of colonies was counted and presented as Mean ± SD from three
separate experiments. F, Wound healing assay was performed with MDCK cells, MDCK cells with p53-KD, or MDCK cells with p53-
KD and overexpression of R163H. Top panel: cell migration was determined by visual assessment of cells migrating into the wound
for 24 h using a phase-contrast microscopy. Bottom panel: the time required for wound closure was measured and presented as
mean ± SD from three separate experiments.
doi: 10.1371/journal.pone.0085624.g003
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Figure 4.  Ectopic expression of mutant p53 R261H cooperates with p53-KD to alter cyst morphology.  A, Generation of
MDCK cell lines in which siRNA-resistant mutant p53 R261H was expressed along with knockdown of endogenous wild-type p53.
The levels of wide-type p53 and mutant p53 R261H were determined by Western blotting. B, The level of wild-type p53 transcripts
was determined by RT-PCR. C, Representative images of MDCK cells or MDCK cells with p53-KD-(R261H) in 2-D culture. D,
Representative images of MDCK cells with p53-KD-R261H in 3-D culture for 12 d. Scale bar: 100 µM. E, Top panel: colony
formation assay was performed with MDCK cells or MDCK cells with p53-KD-R261H. Bottom panel: the number of colonies was
counted and presented as Mean ± SD from three separate experiments. F, Wound healing assay was performed with MDCK cells,
MDCK cells with p53-KD, or MDCK cells with p53-KD-R261H. Top panel: cell migration was determined by visual assessment of
cells migrating into the wound for 24 h using a phase-contrast microscopy. Bottom panel: the time required for wound closure was
measured and presented as mean ± SD from three separate experiments.
doi: 10.1371/journal.pone.0085624.g004

Mutant p53 Regulates Tubulogenesis via EMT

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e85624



Figure 5.  EMT markers are regulated upon ectopic expression of mutant p53, some of which are further enhanced by
knockdown of endogenous wild-type p53 in MDCK cells.  A-C, Western blots were prepared with extracts from parental MDCK
cells (lane 1), p53-KD MDCK cells (lane 2), MDCK cells in which a mutant p53 was ectopically expressed (lanes 3, 5) and MDCK
cells in which a mutant p53 was ectopically expressed along with knockdown of endogenous wild-type p53 (lanes 4, 6). The blots
were probed with antibodies against β-catenin (A), E-cadherin (A), Snail (B), Slug (B), Twist (B), c-Met (C) and actin (A-C). The
protein levels of EMT markers were quantified and the ratios were labeled under the corresponding bands. D, Proposed model of
mutant p53 in MDCK cell tubulogenesis.
doi: 10.1371/journal.pone.0085624.g005
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c-Met, the receptor for HGF, is the product of the c-met
proto-oncogene and plays a critical role in epithelial-
mesenchymal interaction [51]. c-Met regulates cell proliferation
and migration, morphogenic differentiation, and organization of
3-D tubular structures during development and tissue repair
[52,53]. c-Met receptor is frequently expressed in higher
nuclear grade renal cancers, suggesting that deranged
expression of c-Met might result in abnormal kidney growth
[54]. It has been well-known that HGF, also called scattering
factor, and c-MET make MDCK cells scattered in 3-D culture
[55]. Previous study showed that mutant p53 enhances c-Met
activation in cancer cells, which leads to invasive behavior [56].
Here, we found that expression of c-Met is only increased by
ectopic expression of R163H or R261H in MDCK cells with
knockdown of endogenous wild-type p53 (Figure 5C),
suggesting that mutant p53-enhanced expression of c-MET
may be countered by endogenous wild-type p53. Accordingly,
we found that knockdown of endogenous wild-type p53 does
not, whereas ectopic expression of mutant R163H/R261H
partially, promote MDCK cells scattering in 3-D culture. It is
likely that induction of c-Met by both p53-KD and ectopic
expression of mutant p53 is responsible for formation of
scattered structures of MDCK cells.

In summary, we showed that mutant p53 plays an important
role in disrupting tubulogenesis of renal epithelial MDCK cells
in 3-D culture and does so through regulating EMT and c-Met.
We postulate that ectopic expression of mutant p53 might
inhibit p63 activity, or stabilize transcription factors Snail/Slug
and Twist, which in turn down-regulates E-cadherin and

induces EMT. This process is enhanced by knockdown of
endogenous wild-type p53. Moreover, ectopic expression of
mutant p53 together with knockdown of endogenous wild-type
p53 leads to elevated expression of c-Met, which leads to
scattered morphology of MDCK cells in 3-D culture and further
promotes cell proliferation and mobility in 2-D culture (Figure
5D).
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(TIF)
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resistant mutant p53 cDNA.
(TIF)
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