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Jumpei Matsumoto,1,2,7,* Kouta Kanno,3,* Masahiro Kato,4,5 Hiroshi Nishimaru,1,2 Tsuyoshi Setogawa,1,2

Choijiljav Chinzorig,1 Tomohiro Shibata,6 and Hisao Nishijo1,2

SUMMARY

To investigate biological mechanisms underlying social behaviors and their defi-
cits, social communication via ultrasonic vocalizations (USVs) in mice has received
considerable attention as a powerful experimental model. The advances in sound
localization technology have facilitated the analysis of vocal interactions be-
tween multiple mice. However, existing sound localization systems are built
around distributed-microphone arrays, which require a special recording arena
and long processing time. Here, we report a novel acoustic camera system,
USVCAM, which enables simpler and faster USV localization and assignment.
The system comprises recently developed USV segmentation algorithms with a
modification for overlapping vocalizations that results in high accuracy. Using
USVCAM, we analyzed USV communications in a conventional home cage, and
demonstrated novel vocal interactions in female ICR mice under a resident-
intruder paradigm. The extended applicability and usability of USVCAM may
facilitate future studies investigating typical and atypical vocal communication
and social behaviors, as well as the underlying mechanisms.

INTRODUCTION

Ultrasonic vocalizations (USVs) are used for communication by many rodent species (Sales, 2010). Recently,

USV communication in mice has received considerable attention as a powerful experimental model to

investigate molecular, genetic, and neural mechanisms underlying social behaviors and deficits (Fischer

and Hammerschmidt, 2011; Lahvis et al., 2011; Konopka and Roberts, 2016). Since differences in acoustic

features of USVs are insufficient for discriminating individuals (Goffinet et al., 2021) and USVs are not asso-

ciated with visually distinctive movements (e.g., opening mouth), it has not been feasible to identify which

mouse in a group emits a certain USV. Therefore, USV communication has been left unexplored in most

studies on social behavior in mice, despite its importance. Recent advances in sound localization technol-

ogy in these studies have greatly facilitated the analysis of vocal interactions between multiple subjects

(Neunuebel et al., 2015; Sangiamo et al., 2020). However, to date, sound localization systems for mouse

USVs (Neunuebel et al., 2015; Heckman et al., 2017; Warren et al., 2018) are built around distributed-micro-

phone arrays (Figure 1A; distributed-microphone systems), which require a special recording arena that is

often equipped with reticulated (acoustic transparent) walls, surrounded bymultiple microphones to inves-

tigate aspects of animal behavior. The distributed-microphone systems are also computationally

demanding, practically requiring the use of a computer cluster for data processing (Warren et al., 2018).

These technical requirements present a major obstacle for the application of such sound localization tech-

nology in established behavioral paradigms in many laboratories. To facilitate the application of sound

localization technology in commonly used behavioral paradigms, we developed a novel system, named

USVCAM (Figure 1B), which was inspired by the acoustic camera, a portable device that combines a camera

and a compact microphone array to visualize sound sources on camera images. While the distributed-

microphone system uses time lags of the sound arrival (Figure 1A, bottom) for the sound localizations,

USVCAM can utilize the phase lags of sound waves (Figure 1B, bottom) thanks to a custom high-density

microphone array (Figure 1B, right). The hardware design allowed the sensor assembly to be compact while

maintaining the accuracy of sound localization. In addition to the recording simplicity, the processing

speed in this system is considerably faster than that of the distributed-microphone system, since the

computation time window is much smaller (single phase of sound wave Figure 1B). USVCAM also achieves

more accurate localization by using a high-accuracy USV segmentation algorithm (Tachibana et al., 2020)
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Figure 1. USV localization and assignment using USVCAM

(A) A schematic showing the setup (top) and the signals received from the microphones (bottom) using the distributed-microphone (Mic) system. Only two

microphones are shown for simplicity. Because the resolution of sound localization depends on the time lags of the sound arrival, microphones are located

on the sides of the recording chamber, with acoustic transparent walls to maximize the lags.

(B) A similar schematic (left) and a picture of the sensor assembly (right) of USVCAM. Because USVCAM utilizes phase lags of sound waves for sound

localization, the microphone array can be set in one place.

(C) A home cage equipped with the custom inner cage.

(D) An example of sound localization of a USV segment (inset). The white cross signifies the peak of the spatial spectrum.
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recently developed by a team including the author K.K. to reduce noise and focus on the USV segments

that require processing. Furthermore, the segmentation algorithm was modified to discriminate overlap-

ping vocalizations from multiple subjects. Finally, we demonstrate the performance and effectiveness of

USVCAM by analyzing USV communication in a home cage, which is challenging to perform with distrib-

uted-microphone systems.

RESULTS AND DISCUSSION

Validation of USVCAM

Two strains of mice (C57BL/6 [B6] and ICR), which have distinct vocal communications and social behavior

characteristics (Asaba et al., 2014; Golden et al., 2017), were used in the following experiments. First, to

validate the performance of USV localization and assignment (i.e., to identify which animal vocalizes), we

recorded the vocalizations from a single male mouse exploring an empty home cage of a female mouse

(single mouse experiment), in which we were certain about the source of each USV. To achieve accurate

sound localization, we reduced sound reflection by inserting disposable paper towels between a conven-

tional plastic cage and a custom inner cage made of fine stainless mesh (Figures 1C and S1). Figure 1D

shows an example of the spatial spectrum of a detected USV segment and the estimated source location

(the peak of the spectrum) in a single mouse experiment (Videos S1 and S2; see Methods for details of the

algorithm). The median errors of localizations were 1.95 degrees (direction from the microphone array) and

15.8 mm (Figures 1E and S2), which are comparable to those reported for previous systems (Neunuebel

et al., 2015; Heckman et al., 2017; Warren et al., 2018). Furthermore, the localization process for each

USV segment took approximately 0.1 s using a single consumer personal computer, which is more than

1000 times faster than the computation time (6 min/segment) reported in a previous distributed-micro-

phone system (Warren et al., 2018), although direct comparison was not possible since these results

were measured in different conditions including recording arenas.

In USVCAM, each USV segment is assigned to an individual whose average power at the snout position is

significantly higher than that of other mice. We tested the assignment precision by performing simulations

using data from the single mouse experiment with one to three virtual mice added at random locations

within the cage (Table S1). Here, we defined ‘‘precision’’ as the percentage of segments correctly assigned

to the real mouse (hit) in all assigned segments (hit + error). The simulation results indicated that the pre-

cisions were around 99%, which is consistent with the confidence threshold (0.99) used for assignment. We

further confirmed that the precision was independent from the distance between mice, although the num-

ber of assigned segments became lower when the mice were close (Figure S3). We also counted the as-

signed segments during social interaction experiments between two or three real mice (Table S2). Despite

the close interaction in the home cage, 25.7% to 86.7% (mean: 60.2%) of the segments were assigned, which

is comparable with the performance of distributed-microphone systems (Neunuebel et al., 2015; Warren

et al., 2018). The assignment ratios in ICR mice were relatively smaller than those in B6 mice because snout

locations were sometimes unavailable when the snouts were hidden under another mouse during interac-

tions between ICR mice; moreover, the ICR mice interacted closely more frequently (Table S3). Figure 1F

shows an example of an assignment during the interaction between a pair of female ICR mice. Most USV

segments were assigned to one of the mice, except for when the snouts of the mice were very close (see

also Videos S3 and S4). To analyze the vocal patterns, the assigned segments were finally integrated into

syllables based on the gaps between segments (bars under the spectrogram in Figures 1F and 1G).

USVCAM separates segments around crossing points (red arrow head in Figure 1G; Figure S4), which

helped discriminate overlapping USVs from different subjects (Figure S5). The ability to segment and

localize overlapping USVs is another novel aspect of this system. In the following experiments, the

maximum proportion of the overlapping syllables in a recording session was 28.4% (Table S4), underlining

the significance of this novel function.

Figure 1. Continued

(E) Distributions of the localization errors are shown in degrees (top) and millimeters (bottom). Red vertical lines indicate 50th, 75th, 95th, and 99th

percentiles of the distributions, respectively. The error distributions separately calculated for B6 and ICR mice are shown in Figure S2.

(F) An example of a USV assignment. The original spectrograms and those overlayed with the assignment results are shown. Bars under the spectrograms

indicate syllables assigned to each mouse. The video frames at the black arrows are shown on the right. The snout positions are labeled by colored circles.

(G) An example of the segmentation and assignment of the overlapping USVs emitted from different mice. Top, spectrogram; middle, the segmentation

result (different colors indicate different segments); bottom, the assignment result. The frequency (y axis) ranges of all spectrograms in the figure D, F, and G

are 30–100 kHz.
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Application of USVCAM

Finally, we evaluated the effectiveness of USVCAM in an actual behavioral experiment by using it to analyze

USV communications under the resident-intruder (R-I) paradigm, which has been challenging with previous

systems (Figure 2). All mice were tested with both a female (vs-F) and a male (vs-M) as both resident (R) and

intruder (I). Figure 2A shows the mean rates of assigned USVs (number of assigned syllables/min) during

each type of session (see Table S5 for statistical results). Interestingly, ICR females exhibited USVs even

when they interacted with a female as an intruder and when they interacted with a male as a resident. How-

ever, it has previously been reported that in other strains the primary sender of vocalizations is the resident

and the male during interactions between the same and different sex, respectively, in experiments using

devocalization or anesthetization (White et al., 1998; Holy and Guo, 2005; Hammerschmidt et al., 2012).

Furthermore, we compared the rates of assigned USVs during different actions of the self and other in

the female ICR group, in which vocal interactions were most frequently observed (Figure 2B). Three-way

ANOVA (action 3 vs F/M 3 R/I) revealed the significant main effect of the action (Table S6). The post

hoc multiple comparison showed significantly more assigned USVs during own contact with other’s tail

than the several other actions examined (Figure S6). The difference of the rate of USVs depending on

the ongoing action is consistent with a previous report (Sangiamo et al., 2020). However, the ANOVA

also showed significant main effect and interactions associated with the social contexts (vs F/M and R/I;

Table S6), suggesting the rates of assigned USV was also modulated by the social context, even during

the same types of actions (the result of the post hoc tests of the interaction between vs F/M and R/I was

shown in Figure 2B). Finally, we analyzed acoustic features of USVs using dimension reduction by a varia-

tional autoencoder (unsupervised learning methods; Goffinet et al., 2021) to determine whether the distri-

bution of acoustic features (i.e., the vocal repertoire) in ICR mice changes depending on social contexts

(Figures 2C, S7, and S8). Results revealed no significant changes in the vocal repertoire depending on social

contexts, although the vocal repertoire was dependent on individuals, as previously reported (e.g., Goffi-

net et al., 2021). We also tested different feature extraction methods to compare the vocal repertoire and

obtained the similar results (Figures S9 and S10). To the best of our knowledge, this is the first report con-

ducting a systemic analysis of complex acoustic features of syllables, including those that overlap

(Table S4). Taken together, the results of USVCAM application revealed a novel characteristic of vocal

communication in ICR mice under the resident-intruder paradigm.

There were several discrepancies between the results of the behavioral analysis in the present study and

those of the previous studies. Femalemice are known to exhibit USVs toward females (Maggio andWhitney,

1985), but in the present study, such female USVswere observed little in B6 (Figure 2A). Similar differences in

the amount of USVs can also be found among recent previous studies using B6 female; females vocalized to

females (F-F) more than males vocalized to females (M-F) in some study (Hammerschmidt et al., 2012), but

the amount of such USVs was comparable between females andmales in other study (Matsumoto andOka-

noya, 2018). In another study, fewer amount of F-F USVs was observed than M-F USVs (Sasaki et al., 2020).

Thus, the amount of vocalization seems to vary from study to study, and the causes are not well understood.

The reason for the low vocalization of B6 females in this study is unclear. One possible explanation could be

that, mice used as intruders are usually housed in group (e.g. Hammerschmidt et al., 2012; Matsumoto and

Okanoya, 2018; Sasaki et al., 2020), but subject mice in the present study were deployed as both residents

and intruders, and housed singly. Since the B6 females in this study exhibited low vocalization, we cannot

rule out the possibility that B6 females vocalize toward males. Indeed, long-time recordings with sound

localization revealed that B6 females vocalize when they encounter male mice (Neunuebel et al., 2015; San-

giamo et al., 2020). However, it is important to note here that resident individuals have been known as

primary senders of USVs in short (3-min) recordings (Hammerschmidt et al., 2012) and that females have

not been known to vocalize actively toward males in both short recordings (Maggio and Whitney, 1985)

and relatively long (maximum 20-min) recordings (White et al., 1998). Therefore, active vocal interaction

in ICR we found here is novel in any case. In particular, overlapping active vocal signals were observed in

the ICR, and it was due to the advantages of USVCAM that they could be separated and localized.

In this study, we demonstrated the effectiveness of USVCAM in the home cage recording. The advantages

of USVCAM will benefit the other various experiments. We also tested USVCAM in a different recording

cage made of different materials and achieved similar sound localization accuracy (Figure S11). This appli-

cation provides another example for reducing sound reflections for accurate sound localization with

USVCAM. To record in the larger field (such as 50 3 50 cm) from the higher position, since the recorded

vocalization sound will become smaller, better signal-to-noise ratio of the acoustic signal will be required.
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Figure 2. Analysis of mouse pair interactions under the resident-intruder (R-I) paradigm using USVCAM

(A) Comparisons of rates of assigned USVs (number of assigned syllables per minute) of subjects in different social contexts. R, the subject was a resident; I,

the subject was an intruder; vs F, the partner was a female; vs M, the partner was a male. Each dot represents an individual mouse. Error bars, standard error

of the mean (s.e.m.); **p < 0.01, *p < 0.05, simple main effects analysis.

(B) Rates of assigned USVs of female ICR mice during different actions by the subjects (self) and partners (other). See Figure S15 for the definition of the

actions. Each dot represents an individual mouse. Error bars, s.e.m.; ***p < 0.001, *p < 0.05, simple main effects analysis.

(C) UMAP projection of the acoustic features of syllables extracted using the VAE (Goffinet et al., 2021). Examples of three ICR female mice are shown

(ID, identity number of the mouse). Each point represents an assigned syllable. Red, blue, and black indicate the syllables of the subject recorded in different

sessions. Gray points are all the other syllables recorded during the pair interaction experiments.
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The signal-to-noise ratio could be improved by using more microphones or by replacing the microphones

with more sensitive ones. The fast processing of USVCAM may also allow real-time USV localizations and

assignments, with parallelization of the processes and use of a powerful computer. The real-time process-

ing will be useful for new closed-loop experiments combining with feedback stimulations such as optoge-

netics, as well as the data compression for long-term recording (de Chaumont et al., 2019, 2021).

Conclusion

In this study, we developed an acoustic camera system, USVCAM, which enables simple and fast USV local-

ization and assignment by utilizing phase lags of sound wave. The system incorporates a recently devel-

oped USV segmentation algorithm with a modification that permits discrimination between overlapping

vocalizations to achieve high accuracy. We applied USVCAM to analyze USV communications in home ca-

ges. Home cage recording is a popular method used inmany experimental paradigms because it allows the

observation of undisturbed behavioral expression and thus is ideal for investigating important aspects of

social behavior (e.g., resident-intruder, sexual, and mother-infant interactions; Kikusui, 2013). However,

previous systems have found this challenging using a conventional home cage. USVCAM revealed novel

characteristics of vocal communication between ICR mice, suggesting that it will be effective in character-

izing the social behaviors of various mice strains, such as those that have been genetically modified to

establish disease models. USV is an important social signal in rodents (Sales, 2010), and previous studies

have reported that USVs from different subjects (especially self and others) have different effects on brain

activity and behavior (Rao et al., 2014; Matsumoto et al., 2016; Neunuebel et al., 2015; Sangiamo et al.,

2020). Thus, sound source localization is fundamental for studying the dynamics of social behavior and

its underlying mechanisms, as well as behavior phenotyping. Taken together, the extended applicability

and usability of USVCAM may facilitate future studies investigating typical and atypical vocal communica-

tion, social behaviors, and the underlying molecular, genetic, and neural mechanisms.

Limitations of the study

� The limitation of the present system for recording in the larger observation field is discussed above.

� At present, fully automated USV assignment was not possible, since a completely accurate snout

location estimation of each individual mouse could not be achieved even with the state of the art

of the deep-learning-based video tracking software. Manual curations of the video tracking results

to correct errors such as identity switch were required in this study. Thus, further technical advance-

ment in video tracking system may pave the way for real-time USV assignment with precision.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

All animal experiments were performed with institutional ethics approvals (from the Institutional Animal

Use Committee of Kagoshima University #L21007 and the Animal Experiment Committee of the University

of Toyama #A2020MED-17). For the main experiment using home cages, we used 40 adult mice: 10 males

and 10 females each of the C57BL/6J (B6) and ICR strains. Mice were purchased from Japan SLC (Shizuoka,

Japan) at the age of 8 weeks and housed alone in a cage (182 3 2603 128 mm, CLEA Japan, Tokyo, Japan)

equipped with the custom inner cage (Figure 1C) for 1 week. Food (5L37 Rodent LabDiet EQ, PMI Nutrition

International, MO, USA) andwater were supplied ad libitum, and the animals were kept under a standard 12

h:12 h light-dark cycle. Soft paper chips were used for bedding (Japan SLC). Experiments were mainly con-

ducted in the light phase, except for some of the recordings for system validation (the single mouse and

three mice experiments, see below), which were conducted during the dark phase. The environment

was maintained at a constant temperature (22–25�C) and humidity (50% G 5%). For an additional

experiment using a different type of cage (Figure S11), we used 3 adult B6 mice (one male and two females)

purchased from Jaxon Laboratory Japan (Yokohama, Japan) at the age of 8 weeks. The male was housed

alone in a cage (180 3 260 3 125 mm, NK system, Osaka, Japan) and the females were housed together in

the same type of cage for 1 week before the recording experiment. The other rearing conditions was same

as the main experiment. The main experiments and the additional experiment were conducted in Kagosh-

ima University and University of Toyama, respectively.

METHOD DETAILS

Recording

The sensor assembly (Figure 1B right) consisted of four ultrasoundmicrophones (TYPE 4158N, ACO, Tokyo,

Japan), a video camera (RealSense L515, Intel, CA, USA), and a custom three-dimensional (3D)-printed

holder for the sensors. A square phased microphone array (8 mm on each side) was composed with the

holder. The distance between the camera and the center of the microphone array was 54 3 9 3 6.5 (depth)

mm (microphones were placed in front of the camera). The audio data was captured by each microphone,

amplified with a four-channel microphone amplifier (BSA-CCPMA4-UT20, Katou Acoustics Consultant

Office, Kanagawa, Japan), and sampled at 384 kHz using an analog-digital converter (PCIe-6374, National

Instruments, TX, USA). An infrared image (resolution: 640 3 480 pixels; field of view: 70� 3 55�) was
captured with the camera at 30 Hz. The audio and video data were stored on the same PC (Elitedesk

800 G5 TW, Hewlett-Packard Inc., CA, USA) with video frame timestamps along the audio data for

audio-video synchronization, using a custom recording software written in Python (Python Software Foun-

dation, NC, USA).

Reducing sound reflection in recording environments is crucial for ensuring accurate sound source locali-

zation based on the time/phase lags (Figure 1B). To this end, recordings were performed in a soundproof

box (63 3 53 3 84 [height] cm) with 20 mm thickness sound-absorbing melamine foam on the walls and

ceiling (Figure S12). We also designed a custom inner cage for home cage recording (Figures 1D and

S13). The inner cage wasmade from fine stainless mesh (mesh size: 150mesh/inch). Clean disposable paper

towels (Prowipe, Daio Paper Corp, Tokyo, Japan) were inserted into the space (5 to 10 mm) between the

inner cage and the plastic home cage to suppress the influence of sound reflection (see Figure S1 for

the effect of the inner cage). A custom cage lid with a clear mesh screen (Figure S13C) was used to prevent

a mouse from escaping.

USV segmentation

For the segmentation (detection) of the USVs in the audio data, the USVSEG algorithm (Tachibana et al.,

2020) was used with slight modifications. The USVSEG algorithm can robustly segment USVs from back-

ground noise by generating a stable spectrogram using the multitaper method and flattening the spectro-

gram by liftering in the cepstral domain. Although several different algorithms have been proposed for USV

segmentation, a recent benchmarking study indicated that the USVSEG is comparable to the state-of-art

method (Fonseca et al., 2021). Wemodified the USVSEG algorithm to separate crossing USVs emitted from

different animals (Figures 1G and S4). First, a binary image of the spectrogram peaks was created (pixel

size = 0.5 ms3 750 Hz) using the peaks obtained with the original USVSEG algorithm (Figure S4C). Second,

the binary image was dilated twice and eroded once with a 33 3 square structuring element to connect the

spatially neighboring components using imdilate() and imerode() functions in MATLAB (Mathworks, MA,
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USA; Figure S4D). Third, the corner points (i.e., the crossing points and edges) were detected using the

corner() function in MATLAB (Figure S4E), and the pixels within the rectangles (3 3 15 pixels) centered

on the corners were erased to cut segments at the crossing points. Finally, the boundaries of the subseg-

ments were calculated by applying the watershed transform to the image using the watershed() function in

MATLAB (Figure S4F), and the spectral peaks were grouped according to the boundaries (Figure S4G).

Small segments with %3.0 ms were excluded from the subsequent analysis. We validated the algorithm

with synthetic data, in which pairs of syllables recorded from a single mouse were overlapped (Figure S5).

For test data generation, a pair of syllables recorded in a singlemouse experiment were randomly selected,

and the peaks of each syllable were detected. The peaks of the two sources were overlayed with a random

time shift (G 20ms). When the peaks from the different sources were close, one stronger peak was selected

according to the USVSEG algorithm, and only one peak was selected within a narrow bandwidth. In total,

10,000 (5,000 from B6 and 5,000 from ICR mice data) overlapping syllables were generated, and the seg-

mentation algorithms were applied. To test the effect of the modification of the segmentation algorithms,

we compared the results between using the proposed algorithm and the algorithm without corner detec-

tion. To quantify the quality of the segmentation, the contamination ratio was defined as (1/N)3
P

ni, where

ni and N represent the number of contaminated points (i.e., the points from the minor source) in the i-th

segment and the total number of points, respectively.

USV localization

Using the conventional (Bartlett, or delay-and-sum) beamformer, the power (P) of sound arriving from a

given spatial location (r) was calculated as follows (Krim and Viberg, 1996):

Pðr; u; tÞ =
���wðr; uÞHxðu; tÞ

���2
xðu; tÞ = ½X1ðu; tÞ; .;Xmðu; tÞ�T

wðr; uÞ =
aðr; uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðr; uÞHaðr; uÞ
q

aðr; uÞ =
�
e� iut1ðrÞ; .; e� iutmðrÞ �T

tjðrÞ =
��r � rj

��=c
where u and t are frequency and time indices, respectively. Xj(u,t) represents the short-term Fourier trans-

form of the signal captured with the j-th (j = 1,., m) microphone. rj is the position of the j-th microphone, c

is the speed of sound, and tj is the expected time delay of the signal arriving at the j-thmicrophone from the

sound source location r. T and H denote the transposition and conjugate transposition, respectively. The

beamformer shifts the signals captured by the microphones to compensate for the arrival time delays (i.e.,

the phase lags of the signals) using a steering vector a, and sums the shifted signals to calculate the power

(P). Thus, the function P(r) is expected to be the maximum when the location r overlaps with the actual

sound source and is called the spatial spectrum of the sound. Because we are not interested in the absolute

power of the signal but rather in the peak locations in the spatial spectrum for sound localization, the

following normalized spatial spectrum Pnorm was used:

Pnormðr; u; tÞ =

�����
wðr; uÞHxðu; tÞ

jxðu; tÞj

�����
2

The average spatial spectrum of a given segment Pseg (Figure 1D) was subsequently defined as follows:

PsegðrÞ =
1

n

Xn

k = 1

Pnormðr; uk ; tkÞ

where uk and tk represent frequency and time indices, respectively, of the k-th (k=1, ., n) peak of a USV

segment in the spectrogram. To localize the USV segment, Pseg was calculated at each x-y location of

the camera image. The depth (z) of the sound source locations were assumed to be constant (i.e., equal

to the floor of the cage). To reduce computational load, the image was binned into 5 3 5-pixel bins,

and Pseg were calculated for each bin. Pseg outside the image were also calculated for margins of 100 pixels

on each side to correctly estimate the peaks of the spatial spectrum around the edge of the camera image.

The resultant spatial spectrum often showed multiple peaks in the form of a square grid (Figure S14) owing

to the periodicity of the sound wave and the square microphone array arrangement; this phenomenon is

referred to as spatial aliasing. To avoid spatial aliasing affecting the result, we positioned the microphones
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as close as possible (Figure 1B) to maximize the distance between the multiple peaks in the spatial spec-

trum. Furthermore, we used a USV assignment algorithm that can deal with spatial aliasing (see below). The

spatial spectrum was normalized with the z-score normalization to evaluate the saliency of the peaks. Peak

locations (local maximums) in the spatial spectrum were searched as bins with equal values across the orig-

inal spectrum and that filtered using the maximum filter (window size = 5 3 5 bins). A peak with a small

height (z < 1.6, approximately < 95% in the cumulative distribution function of the standard normal distri-

bution) was excluded from the sound source candidates. A USV segment without any clear peak (z < 2.3,

approximately < 99% in the cumulative distribution function of the standard normal distribution) in the

spatial spectrum was categorized as ‘unlocalized’ and was excluded from subsequent analysis. The

snout-peak distance was defined as the distance from the snout of the mouse and the nearest peak in

the spatial spectrum.

USV assignment

Figure S15 shows an overview of the algorithm for USV assignment for each USV segment. Initially, the

snout-peak distance was calculated for each mouse, and the mice with snout-peak distances that were

within the distance threshold (red dotted line) were selected as candidates of the sound source

(Figure S15A). The distance threshold was set as 99th percentiles of the distribution of the snout-peak dis-

tances in the single mouse experiments (Figures 1E and S15A right). If the number of candidates was zero or

one, the USV segment was categorized as ‘unassigned’ or assigned to the candidate mouse, respectively. If

there was more than one candidate mouse, the following test was conducted among the candidates.

To assign the USV segment to one of the candidate mice following the screening procedure above, the

average power at the snout of the candidates was first calculated (Figure S15B). The two highest powers

among the candidates were compared using a two-tailed Wilcoxon signed-rank test. The resulting pvalue

(p) was used for the assignment. In addition, we used the distance between the snouts of the best two mice

(d) for the assignment because we found using a simulation that, with the same p value threshold, when the

snouts of the two mice become closer, more assignment errors occurred (Figure S16). This may have been

caused by an error in sound localization itself (Figure 1E) or an error in the video-based estimation of snout

locations. Using the above two parameters p and d with the number of candidate mice (Nc), the confidence

for assigning the segment to the best mouse was calculated as the averaged precision of the assignment

for similar conditions in the following simulation using the single mouse experiment data. In the simulation,

Nc-1 ‘virtual’ mice were assumed to be at random locations away from the real mouse at a distance d, and

the precision (hit count/[hit + error counts]) of the assignment at the p value threshold pwas estimated. The

simulations were performed in advance for all possible combinations of p, d, and Nc (Figure S16), and the

distribution of the precision was used as a lookup table for the confidence estimation to reduce the compu-

tational load. Since the lookup tables that had been separately calculated for B6 and ICR mice (Figure S17)

were similar, we used a combined distribution (Figure S16) for assignment in this study. USV segments with

a confidence level of >0.99 were assigned to the best mice, and the others were categorized as

‘unassigned.’

The confidence estimation may be inaccurate when the two best mice are located near two different peaks

in the spatial spectrum because of spatial aliasing (Figures S14 and S18A). In such cases, although the ab-

solute snout-snout distance (d) is large, both mice should be considered good candidates. To ameliorate

the problem, we calculated the distance between snouts (d’) after converting the snout positions into their

relative positions from the nearest peaks (i.e., ‘wrapping’ the positions in a period of the spatial spectrum;

Figure S18B) and used d’ for the confidence estimation.

Merging Segments into syllables

Rodent USVs consist of syllables, which have tens to hundreds of milliseconds durations with gap intervals

(usually of > 30 ms). Previous studies categorizing syllable patterns reported that the patterns differed de-

pending on the behavior, individual, and strain (Holy and Guo, 2005; Matsumoto and Okanoya, 2018; Gof-

finet et al., 2021). Thus, we merged the short segments (Figure 1G) into syllables after the assignment. Spe-

cifically, segments assigned to one mouse and ‘unassigned’ segments (if they existed) with gap intervals

smaller than a given threshold (a minimum gap of 30 ms) were merged into a single syllable. The assign-

ment rate was defined as the ratio of the time-frequency points assigned to the mouse to all the points

in the syllable. We only used syllables with an assignment rate of 1.0 for the behavior analysis.
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Audible broadband vocalization detection

Mice occasionally emit audible broadband vocalizations (BBVs; i.e., ‘squeaks’) during conspecific interac-

tions (Finton et al., 2017). BBVs are loud broadband sounds characterized by a harmonic structure. To pre-

vent misidentifying BBVs as USVs and misassigning USVs that significantly overlap with BBVs, we excluded

the ultrasound segments that overlapped with the time intervals of BBVs from the analysis. BBVs were de-

tected automatically using the following simple algorithm. First, the recorded sound was downsampled to

38.4 kHz. Second, the spectrogram (time window = 10 ms; frequency range = 2 to 16 kHz) of the sound was

calculated. Third, continuous background noise and transient (impulse-like) broadband noise were

reduced by subtracting the median value of each frequency bin and the median value of each time bin,

respectively. Fourth, the spectrogram was filtered using a median filter (window size = 0.5 kHz) along

the frequency axis. Finally, the maximum power in the spectrogram across the frequency was calculated

for each time point, and the time intervals containing BBVs were estimated as the intervals in which the

maximum power exceeded a certain threshold value (we used 28 dB in this study). To check the precision

of the simple BBV detector, we selected three recording sessions that involved a relatively large number of

BBVs (interactions between one pair of male ICR mice and two male-female ICR mouse pairs; see below for

details of the recording experiment), and a blinded experimenter compared the results of the automatic

detection with the manual annotations (Figure S19). A total of 161 BBVs were detected in the manual an-

notations. Of these, 160 overlapped with the automatic detection, and one wasmissed by the detector. The

automatic detector had only 22 additional (false-positive) detections. Thus, the results confirmed that the

simple detector can effectively exclude time intervals containing BBVs from the analysis. Table S7 shows

the number of ultrasound segments that overlapped with the time intervals of BBVs in each of the social

interaction experiments.

Calibrating microphone positions

For the above USV localization algorithm, microphone positions (rj) needed to be accurately calibrated. For

the calibration, we searched the microphone positions that maximized the average power (Pseg) at the

snout locations for the 20 selected USV syllables in the single mouse experiment, as follows:

argmax
r1 ; .; rm

X20
l = 1

Psegðsl; lÞ

where Pseg(sl,l) represents the average power of the l-th selected syllable at the corresponding snout loca-

tion (sl). The optimization was performed using the L-BFGS-B algorithm implemented in Scipy (Virtanen

et al., 2020). The syllable that emitted different parts in the recording area was selected for appropriate

calibration.

Video tracking

USV assignment requires frame-by-frame snout locations of each mouse. USVCAM users can choose any

available high-precision video tracking software (such as DeepLabCut [Lauer et al., 2022], Social LEAP Es-

timates Animal Poses [SLEAP; Pereira et al., 2022], and Mouse Action Recognition System [MARS; Segalin

et al., 2021]) to estimate snout locations. In this study, we used AlphaTracker (Chen et al., 2020) for tracking

the locations of the snout and the other body parts. The software can relatively robustly track the locations

of body parts of interacting mice using deep neural networks. We prepared labeled data to train the net-

works by manually annotating body parts (snout, tail-base, and left and right ears) and the bounding box of

the mice in 1694 and 996 randomly selected frames from the videos of B6 and ICR mice, respectively.

Different networks were trained for tracking B6 and ICR mice. The outputs of AlphaTracker were manually

curated to correct occasional errors (e.g., switching mouse identities and flipping snout and tail-base loca-

tions) using custom software written in Python. The resultant trajectories of the snouts were filtered using a

median filter (window size = 0.16 s) and used for USV assignment. The trajectories of the bounding box, tail-

base, left and right ears, and snout were filtered using a locally estimated scatterplot smoothing (LOESS)

filter (time window = 0.5 s) and used for behavioral event classifications (see below). Video S5 shows an

example of the filtered trajectories used for behavioral event classification. These behavioral tracking

data was synchronized with the audio data based on the video frame timestamps obtained with the custom

recording software.
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Audible sound generation from recorded USVs

For intuitive data presentation, the audible sound was created according to the results of the USV segmen-

tation and integrated with the videos (Videos S1–S4) using a sound synthesis method proposed by

Carruthers et al. (2013). First, the maximum peak of the USV segments at each time point was extracted.

Then, the sound x(t) was generated as:

xðtÞ = aðtÞsin
�
2p

Z t

0

f ðtÞdt
�

where t is time, and a(t) and f(t) are the amplitude and frequency of the peak, respectively. Thus, the gener-

ated sound contains no background noise. The frequency was linearly mapped from 0 to 192 kHz to 1 to 6

kHz to make the sound audible. The generated sounds were only used for visualization.

Experimental schedule

In the main experiments, after a 1 week habituation period, the social interactions between mice in the

home cages were recorded. On the first day, each mouse was allowed to interact with another mouse of

the same sex and strain (M-M and F-F contexts), both as resident and intruder (nine mice as residents

and one mouse as an intruder were tested first). On the second day, each mouse was allowed to interact

with another mouse of a different sex but the same strain (M-F and F-M contexts). In these cases, all indi-

viduals were used as both a resident and an intruder, and the order in which these roles were applied to the

experiment was counterbalanced. For the recording, the home cage with a resident mouse was placed in

the soundproof recording box, an intruder mouse was placed in the home cage, and the behaviors of the

mice were recorded for 3 min. After the 2 days of paired social interaction recording, one mouse of each

strain was recorded in a single mouse condition to obtain data for system validation and determine param-

eters for the USV assignment. In the single mouse experiment, a male mouse was placed in an empty home

cage of a female mouse, and its vocalizations were recorded for 15 (B6) and 8 (ICR) min. We also tested the

recording of a three-mouse interaction of each strain for 8 (B6) and 5 (ICR) min for system validation

(Table S2).

In the additional experiment (Figure S11), fresh bedding from the female home cage was put in the

recording cage. Then, the male mouse was placed in the recording cage and its vocalizations were re-

corded for 10 min.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis

The number of syllables assigned completely (assignment rate = 1.0) was counted for each mouse for each

recording. The rate of assigned USVs was calculated by dividing the syllable count by the recording dura-

tion. In addition, to check the relationship between USVs and specific actions, we defined the following five

behavior events based on video tracking results: approach, leave, and contact with the tail base, trunk, and

snout (Figure S20). Then, rates of assigned USVs during different behavior events were calculated sepa-

rately. The rates of assigned USVs during contact with the snout were not analyzed because of difficulty

in USV assignment when the snouts were very close. To quantify and compare the acoustic features (pat-

terns) of syllables, we used a variational autoencoder (VAE), according to the method proposed by Goffinet

et al. (2021). In this method, VAE learns to map single-syllable spectrogram images onto 32 latent features

in an unsupervised manner. We reconstructed a spectrogram of an assigned syllable using the frequency

and amplitude of each point in the segments of the syllable to enable the analysis of the acoustic feature of

the syllables even when it temporally overlapped with the syllables emitted from the other mouse. In the

method described in Goffinet et al. (2021), the spectrogram of a short syllable was stretched for encour-

aging the VAE to represent fine temporal details. We did not use the time stretch in the main analysis since

the range of the syllable durations in the present dataset was not large. Instead we used fixed, relatively

short time window (128 ms) to keep the original duration information. In total, 7960 single-syllable spectro-

gram images were reconstructed and used for VAE training and analysis. The distribution of the syllables in

latent space was visualized using Uniform Manifold Approximation and Projection (UMAP) and the differ-

ence in the distributions (vocal repertoires) between a pair of different experimental conditions was

quantified using maximum mean discrepancy (MMD), according to a previous study (Goffinet et al.,

2021). Distributions with fewer than 10 syllables were excluded from the MMD analysis. In addition to

the VAE described above, we also tested three other feature extraction methods: 1) the VAE with the
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time stretch, 2) features of the binned contour of a syllable, and 3) traditional acoustic features. In the first

method, the same VAE was used with the spectrograms time stretched by a factor of
ffiffiffiffiffiffiffi
tmax

t

q
, where t is the

duration of the syllable and tmaxwas 128ms. The time stretching encourages the VAE to represent fine tem-

poral details (Goffinet et al., 2021). The second method was used for a similar unsupervised clustering in

DeepSqueak (Coffey et al., 2019), one of popular software for USV segmentation. In this method, the con-

tour of a syllable (the trace of the frequency of the maximum amplitude at each time point) was divided into

10 bins. Then, the frequency and shape (1st derivative) at each of the bins and the total duration of the syl-

lable were used as the features. In the third methods, following traditional acoustic features of a syllable

were used: median, minimum, and maximum frequencies, delta (max - min) frequency, standard deviation

of the frequency, slope, sinuosity, mean amplitude, peak frequency (the frequency at the maximum ampli-

tude) and duration (Coffey et al., 2019). The features of the second and third methods were z-scored for

normalization. Statistical tests were performed using R (The R Foundation, IN, USA) and MATLAB. The sig-

nificance threshold was set to 0.05. All of the statistical details can be found in the corresponding figure

legends, figures, and tables.
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