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Interleukin (IL)-33 belongs to IL-1 cytokine family which is constitutively produced from

the structural and lining cells including fibroblasts, endothelial cells, and epithelial cells of

skin, gastrointestinal tract, and lungs that are exposed to the environment. Different from

most cytokines that are actively secreted from cells, nuclear cytokine IL-33 is passively

released during cell necrosis or when tissues are damaged, suggesting that it may

function as an alarmin that alerts the immune system after endothelial or epithelial cell

damage during infection, physical stress, or trauma. IL-33 plays important roles in type-2

innate immunity via activation of allergic inflammation-related eosinophils, basophils,

mast cells, macrophages, and group 2 innate lymphoid cells (ILC2s) through its receptor

ST2. In this review, we focus on the recent advances of the underlying intercellular

and intracellular mechanisms by which IL-33 can regulate the allergic inflammation in

various allergic diseases including allergic asthma and atopic dermatitis. The future

pharmacological strategy and application of traditional Chinese medicines targeting the

IL-33/ST2 axis for anti-inflammatory therapy of allergic diseases were also discussed.

Keywords: IL-33, allergic inflammation, signal transduction, eosinophils, mast cells, innate lymphoid cells (ILC),

Chinese herbal medicine, therapeutics

INTRODUCTION

Interleukin33 (IL-33) is a member of the IL-1 cytokine family that includes IL-1α, IL-1β, and IL-18
(1) and constitutively expressed in structural and lining cells including fibroblasts, endothelial,
and epithelial cells of skin, gastrointestinal tract, and lungs that are exposed to the environment
(2). IL-33 lacks a secretory signal peptide encoded by the Il1rl1 gene (1), an IL-1 family trait
for releasing via the classical endoplasmic reticulum and Golgi pathway (1). Under the inactive
state, IL-33 is harbored in the cell nuclei and associated with chromatin by a chromatin-binding
motif, belonging to the cellular homeostasis and acting as a transcriptional repressor (2, 3). The
N-terminus of IL-33 contains a nuclear localization sequence, a homeodomain-like helix-turn-helix
DNA-binding domain and a chromatin-binding domain (3). Different frommost cytokines that are
actively secreted from cells, IL-33 is released passively in its full length form (amino acids 1–270,
IL-33FL) during cell necrosis, cellular activation through ATP signaling without cell death or when
tissues are damaged, suggesting that it may function as an alarmin that alerts the immune system
after endothelial or epithelial cell damage during infection, physical stress or trauma (4, 5). IL-33
activates signaling pathways depending on the myeloid differentiation primary response gene 88
(Myd88) of immune cells expressing the cytokine receptor interleukin 1 receptor-like 1 (ST2) and

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.00364
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.00364&domain=pdf&date_stamp=2019-03-04
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ck-wong@cuhk.edu.hk
https://doi.org/10.3389/fimmu.2019.00364
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00364/full
http://loop.frontiersin.org/people/629610/overview
http://loop.frontiersin.org/people/381368/overview
http://loop.frontiersin.org/people/83821/overview


Chan et al. IL-33 in Allergic Inflammation

signals through a heterodimeric receptor complex comprising an
IL-33-specific ST2 coupled with the co-receptor IL-1 receptor
accessory protein (IL-1 RAcP) (6, 7). ST2 is selectively and stably
expressed on the cell surface of Th2 cells (8), CD4+ T cells,
group 2 innate lymphoid cells (ILC2s) and also other immune
cells such as mast cells, basophils, eosinophils, macrophages,
dendritic cells and natural killer cells (9–18). Signaling of IL-
33 can be activated through nuclear factor kappa-B (NF-κB), c-
Jun N-terminal kinase (JNK), and p38 mitogen activated protein
kinase (MAPK) cascades (19).

In humans, both IL-33 mRNA and protein are substantially
elevated in the inflamed skin lesions of atopic dermatitis (AD)
patients when compared with non-inflamed skin (20). IL-33 is
a Th2-oriented cytokine which enhances the production of Th2
cytokines, particularly IL-5 and IL-13 (21). In addition, IL-33
is also a chemoattractant for Th2 cells in vitro and in vivo,
indicating the importance of IL-33 in Th2 cells mobilization (22).
In large-scale genome-wide association studies, genes encoding
IL-33 and its receptors have been identified as susceptibility loci
in asthma (23–26).The alarmin activities of IL-33 are regulated
at multiple levels (6, 7, 27). Several hours after its extracellular
release, IL-33FL is transiently inactivated by oxidation of critical
cysteine residues (28). Inflammatory proteases from immune
cells such as neutrophils (cathepsin G and elastase) and mast
cells (chymase and tryptase) degrade IL-33FL into shorter
mature forms containing the C-terminal IL-1-like cytokine
domain with much higher activity than IL-33FL (29). A recent
study has further shown that IL-33FL functions as a protease
sensor that detects proteolytic activities associated with various
environmental allergens including house dust mite, pollens,
bacteria and fungi (30). When exposed to allergen proteases,
IL-33FL is rapidly cleaved in its central “sensor” domain, which
leads to the activation of the generation of ILC2s, and allergic
inflammation can be reduced by preventing the IL-33FL cleavage
(30, 31). In this review, we focus on the recent advances of the
underlying intercellular and intracellular mechanisms by which
IL-33 can regulate various key immune cells in the allergic
inflammatory diseases including allergic asthma and AD, and the
future pharmacological strategy and the potential application of
traditional Chinesemedicines targeting the IL-33/ST2 axis for the
treatment of allergic inflammatory diseases.

EFFECTS OF IL-33 ON IMMUNE CELLS
ACTIVATION IN
ALLERGIC INFLAMMATIONS

Eosinophils
IL-33 potently induces eosinophilia in in vivo murine models
(32, 33) and activates eosinophils, the principal effector cells in
allergic inflammation, to produce superoxide (34), upregulates
the expression of adhesion molecules and enhances eosinophil
survival (35), suggesting that it can play an important role in
the exacerbation of inflammation in allergic diseases mediated by
the activation of eosinophils. Polymorphism of human IL-33 and
ST2 genes has been shown to associate with increased numbers
of eosinophils (36). In our previous studies, we have shown the

activation of eosinophils, by different stimuli and its interactions
with structural cells in atopic dermatitis (AD) and allergic asthma
(37–44). Such findings showed that intercellular interaction of
eosinophils and dermal fibroblasts could provoke the release
of pro-inflammatory cytokines and chemokines, implying the
pathogenic effects of eosinophils infiltration in the inner dermal
fibroblast layer in AD skin lesions.

In our study of allergic inflammation, IL-33 significantly
promote eosinophil survival and cell surface expression of the
adhesion molecule intercellular adhesion molecule (ICAM)-1,
but ICAM-3, and L-selectin expressions were suppressed. In
addition, IL-33 stimulates significant release of pro-inflammatory
cytokine IL-6 and the chemokines CXCL8 and CCL2 from
eosinophils (41).The release of cytokines and chemokines
were differentially regulated by the activation of nuclear
factor (NF)-kB, p38 mitogen-activated protein kinase (MAPK)
and extracellular signal-regulated kinase (ERK) pathways in
eosinophils (41, 45). In our study of IL-33 in AD using
eosinophils and fibroblasts co-culture, we found that there
was significant increase in the production of pro-inflammatory
cytokines such as IL-6 and AD-associated chemokines CXCL1,
CXCL10, CCL2, and CCL5 (45). Such increase was further
upregulated by IL-33 stimulation, and significant production
of CXCL8 from eosinophils and fibroblasts co-culture was
observed (42). The main source in co-culture for the release
of CCL5, and IL-6, CXCL1, CXCL8, CXCL10, and CCL2 was
eosinophils and fibroblasts, respectively, and direct contact
between eosinophils and fibroblasts was essential for the release
of AD-related chemokine CXCL1, CXCL10, CXCL8, and CCL5.
IL-33 stimulation also upregulated the cell surface expression of
intercellular adhesion molecule-1 (ICAM-1) on both eosinophils
and fibroblasts in co-culture, with differential activation of ERK,
JNK, p38 MAPK, NF-kB, and phosphatidylinositol 3-kinase–Akt
(PI3K/Akt) pathways (42).

T Cells and ILC2
Besides eosinophils, IL-33 has also been shown to be an active
and soluble co-stimulator of T cells, by promoting the expansion
and functional differentiation of both effector T cells and GATA-
3+ regulatory T cells (9, 46). Study of IL-33 signaling-deficient
mice has also demonstrated the crucial role of IL-33 in protective
anti-viral T cell immunity (9). Activated Th1 and CD8+ T cells
have been shown to transiently express lower amounts of IL-
33 receptor ST2, when compared with Th2 cells. However, IL-
33 signaling can induce the expression of the lineage-specific
transcription factors FOXP3, GATA-3, and T-bet for the positive
activation of ST2 expression on Th1 cells (47). For regulatory
T cells in the intestine, high level of ST2 are constitutively
expressed and associated to the pathogenesis of eosinophilic
pneumonia (48, 49).

In the mucosal barrier sites, IL-33 has been shown to
coordinate the type 2 immune response through the activation
of ST2-positive immune cells, such as ILC2s and CD4+ T cells
(50). ILC2s are primarily localized at mucosal surfaces of lung,
skin, gut and adipose tissues (51, 52) and play an important
role in IL-33 associated allergic inflammatory diseases. Although
ILC2s lack antigen receptors, they can be rapidly activated by
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the epithelial derived cytokines IL-33, IL-25, and thymic stromal
lymphopoietin (TSLP), prostaglandin D2 from mast cells or
cysteinyl leukotrienes secreted by activated hematopoietic cells
(53–55). Activated ILC2 cells proliferate rapidly and act as an
early innate source by producing large amount of the Th2
cytokines IL-5 and IL-13 in a synergistic manner (56). Bone
marrow ILC2s has been shown to be a local source of IL-5 in IL-
33-driven eosinophilia (57). Impaired Th2 cell differentiation was
observed in ILC2 knockoutmice (48), and the differentiation is in
a cell-contact manner through major histocompatibility complex
class II (49).

Mast Cells and Basophils
Mast cells and its blood counterpart basophils, both play an
important roles in allergic inflammation by generation and
release of a panel of inflammatory mediators, such as histamine
(58). Allergens can cross link with IgE sensitized mast cells to
activate and release of large amounts of preformed and newly
formed mediators: histamine, heparin, and proteases such as
carboxypeptidase A3, chymase and tryptase (59–61). Most of
these active proteases in the granule can cleave targets in nearby
tissue compartments upon secreted from the activated mast
cells (61). In human, mucosal mast cells express only tryptase
and connective tissue mast cells express tryptase, chymase, and
carboxypeptidase A3 (62). In mouse, mucosal mast cells express
2 chymase subtypes, mast cell protease (MCPT) 1 and MCPT2,
whereas connective tissue type mast cells express the chymase
MCPT4 and the elastase MCPT5, the tryptases MCPT6 and
MCPT7, and carboxypeptidase A3 (62). IL-33 associatedmast cell
functions are involved in the pathogenesis of different allergic
inflammations such as food anaphylaxis (63) and respiratory
allergy induced by house dust mite or aspirin (54, 64, 65). Since
the IL-33 receptor ST2 is constitutively expressed on mast cells,
basophils and their progenitors cells, it is a critical amplifiers
of IL-33–mediated allergic inflammation with the capacity in
secreting a wide array of inflammatory cytokines and mediators
(66). Antigen or IL-33 activated human mast cells can also
release soluble ST2, which may further modulate the biologic
effects of IL-33 (67). IL-33 has been demonstrated to enhance the
adhesion of mast cells onto laminin, fibronectin, and vitronectin,
increase the expression of adhesion molecules, such as ICAM-1
and vascular cell adhesion molecule-1 (VCAM-1) on endothelial
cells, thus promoting mast cell adhesion to blood vessel walls
(59). Mast cell survival, growth, development andmaturation can
be enhanced by IL-33 via the ST2/Myd88 pathway (68). Mast
cell-derived tryptase and chymase have been demonstrated to
cleave extracellular IL-33 into mature active forms (29) and IL-
33 isoforms may have additional abilities to activate mast cells,
thereby further provoking inflammation (69). Human mast cell
chymase (HC) seems to be substrate specific. In a study using
51 active recombinant cytokines and chemokines (70), only 3
of them were substantially cleaved (IL-15 and two IL-1–related
alarmins: IL-18 and IL-33) by HC.

The roles of mast cells proteases are not only associated with
pro-inflammatory activities. In an in vivo study using ovalbumin
(OVA)-sensitized mice lacking mouse MC protease 4 (mMCP4)
(71), a chymase that is functionally equivalent to human chymase,

the airway hyperresponsiveness when challenged with OVA was
significantly higher in mMCP-4(−/−) mice when compared with
wild type mice. The thickness of the smooth muscle cell (SMC)
layer was more pronounced in mMCP-4(−/−) mice than in wild
type control mice, thus indicating that chymase may have a
modulating effect on airway SMCs. Taken together, the regulating
role of chymase present in the upper airways could protect
the animals against allergic airway responses. Therefore, the
pro-inflammatory and anti-inflammatory effects of mast cells
proteases may occur during different time frames, for example,
initial activities that promote the airway response being followed
by the mounting of protective activities that down-regulate the
initial pro-inflammatory activities. Similar to mast cells, IL-
33 mediates activation of human basophils and enhances their
effector functions (58–60). Compared to mast cells, human
basophils seem to have less amounts of proteases (61, 72). IL-
33 also promotes asthma-related IL-4 and IL-13 production from
basophils via MyD88-signaling pathway (73).

Macrophages
With abundant localization in lung tissue, macrophages are
the important innate immune cells participating in allergic
asthmatic inflammation (74). Th2 cytokines (IL-4 and IL-13)
can polarize macrophage into alternative activated macrophage
(AAM) phenotypes (75). Depletion of alveolar macrophages in
murine acute allergic lung inflammation model demonstrated
that Th2-immunity of allergic lung inflammation and airway
remodeling were attenuated (76). IL-33 has been shown to
promote the polarization of AAM that expressed mannose
receptor and secreted CCL17 and CCL24 in an IL-13-dependent
manner, thereby contributing to the airway inflammation in
mice (77). IL-33 can enhance the lipopolysaccharide-mediated
in vitro activation of macrophages, with the upregulation of the
expression of toll-like receptor (TLR)4, myeloid differentiation
protein 2, soluble CD14, and MyD88 (78). The updated effects
of IL-33 on the activation of eosinophils, basophils, mast cells,
macrophages, ILC2 cells and T cells in allergic inflammation is
summarized in Figure 1.

IL-33 in the Development of Allergy During
Early Life
Recent murine studies have reported that there is a spontaneous
accumulation of ILC2s, eosinophils, basophils and mast cells in
the developing lung soon after birth, which is IL-33 dependent
(79). Moreover, IL-33 is produced from type 2 airway epithelial
cells (AEC2) during postnatal lung inflation (80). Large amount
of IL-13 secreted from IL-33-activated ILC2 has been shown to
polarize alveolar macrophages (AM) to anti-inflammatory M2
phenotype in newborn mice and contributed to lung quiescence
in homeostasis with a delay in antibacterial effector responses
for lifetime (80). On the other hand, exposure of allergen house
dust mite during postnatal lung alveolarization further enhanced
subsequent IL-33-induced Th2 cytokine production in activated
ILC2s and CD11b+ dendritic cells (79, 81). Moreover, IL-33
inhibited IL-12 production and stimulated OX40L in neonatal
dendritic cells, thereby promoting Th2 cell predominant for lung
remodeling (79). House dust mites (HDM)-induced long-lasting
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FIGURE 1 | Effects of IL-33 on the activation of eosinophils, basophils, mast cells, DCs, ILC2 cells, and T cells in allergic inflammation. IL-33 is normally sequestered

in the nucleus of various cells via nuclear-localization and chromatin-binding motifs in its amino terminus. After the cells are damaged, under stress, or stimulated by

allergens, full-length IL-33 is released extracellularly, but it has low activity as a cytokine. Mast cells proteases and some allergens possess protease activity and can

directly process IL-33 by cleaving within the protease-sensor domain to generate a more potent cytokine domain, which will directly activate local and infiltrating

basophils, mast cells, group 2 innate lymphoid cells (ILC2), T cells, and eosinophils to induce allergic inflammation.

Th2 immune response could be significantly neutralized by the
intraperitoneal injection with recombinant soluble IL-33 decoy
receptor in sensitization phase (79). This suppressive effect was
even more significant in mice of young age than that of adult.
Therefore, IL-33-ST2 axis is crucial for asthma development at
childhood and intervention of such allergic axis is beneficial for
the prevention of the later development of allergic asthma (79).
Similarly, IL-33 concentration was found to be increased in the
airways after exposure to Staphylococcus aureus–derived serine
protease–like protein D (82).

Recent Study of IL-33 and AD
Severe pruritus and skin inflammation are the main
manifestations of poison ivy-induced allergic contact dermatitis
(ACD). In a murine study, the central role of IL-33/ST2
signaling in pruritus and skin inflammation of this ACD has
been illustrated (83), and the pruritic mechanism is associated
with the interaction of IL-33/ST2 signaling with primary
sensory neurons. Therefore, blockage of IL-33/ST2 signaling
may represent a therapeutic target to relieve pruritus and skin
inflammation of IL-33/ST2 signaling-related dermatitis (83).
Apart from pruritic conditions, it has been shown that IL-33 are
involved in boosting pain in a formalin-induced inflammatory
pain mice model (84).

IL-33 and Inflammatory Bowel Diseases
(IBD)
Inflammatory bowel disease (IBD) is highly complex immune
mediated sickness and mainly involved two disorders: Crohn’s
disease and ulcerative colitis with unclear pathophysiology.
However, there are some clinical and pathophysiological
similarities between IBD with asthma and non-pulmonary
allergic diseases such as mast cell activity and the involvement
of IgE (85). Moreover, upregulation of IL-33 and ST2 has been
repeatedly demonstrated in the inflamed intestinal mucosa of
IBD (86–90). Elevated IL-33 serum level of IBD patient has
been shown to be reversed after anti-TNF-α treatment (87, 90).
Different from asthma in which the AAM polarization is pro-
inflammatory, IL-33 could prime macrophages into AAM in
murine TNBS-induced colitis for inhibiting disease activity and
the release of inflammatory mediators (91).

IL-33 AS THE NEW THERAPEUTIC TARGET
FOR ALLERGIC DISEASES

Production of pro-inflammatory cytokines induced by IL-33
from ST2-expressing structural cells and hematopoietic cells
including ILC2s, mast cells, Th2 cells, eosinophils, basophils,
dendritic cells, and alternatively activated macrophages (AAM)
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is crucial to provoke atopic diseases such as allergic asthma and
AD (83, 92, 93). In vivo murine studies with IL-33- and ST2-
deficient transgenic mice, together with the analysis of patient
samples further support the crucial role of the IL-33/ST2 axis in
those allergic conditions (7, 33, 94, 95). Therefore, IL-33-blocking
agents may be a novel therapeutic modality to treat allergic
diseases and some promising compounds have recently been
developed. Conventionally, glucocorticoids suppress the mRNA
expression of pro-inflammatory mediators and exert broadly
suppressive activities on inflammatory reactions via binding
to the glucocorticoid receptors. IL-33-mediated pulmonary
inflammation can be glucocorticoid resistant because other
cytokines such as TSLP and IL-17 synergistically expressed
at local inflammatory sites (50, 96). For example, allergic
airway IL-33 production in house dust mite-induced murine
asthmatic model was found to be corticosteroid-resistant
(96). Compared with healthy controls, serum levels of IL-
33 were significantly increased in psoriasis, psoriatic arthritis,
and pustular psoriasis patients, and related to TNF-α. Anti-
TNF-α therapy may also be effective against IL-33-related
diseases (97). As the production of IL-33 is regulated by
the upstream activation of ERK1/2, ERK1/2 inhibitors have
also been shown to suppress the IL-33 production (98).
The activation of β2-receptors and protein kinase A (PKA)
could promote the IL-33 mRNA expression in dendritic cells,
thereby suggesting that β-receptor blockers and PKA inhibitors
may also be the candidates for IL-33–blocking agents (99,
100). Using mice model, butyrate has recently been found
to inhibit proliferation and function of ILC2s by inhibiting
intracellular GATA3 activity to suppress IL-33-mediated airway
hyperresponsiveness and airway inflammation (101). Similar
observations were found in human ILC2s, both in vivo and
in vitro (101).

Proteases play important role in IL-33-mediated allergic
diseases. Mast cell proteases are capable to cleave full length IL-33
to a more active IL-33 domain. It becomes a potential therapeutic
target for IL-33 mediated allergic diseases. Endogenous protease
inhibitors (cystatin A and SPINK5) have been shown to protect
the airway epithelium from exogenous protease of patients with
eosinophilic chronic rhinosinusitis (102). The development of
protease inhibitor may exert therapeutic benefit in eosinophilic
airway diseases.

The prolyl cis-trans isomerase proteinase inhibitor I (PIN1)
is known to abnormally induce cytokines for eosinophil survival
and activation by stabilizing cytokine mRNAs (103). Interleukin
receptor associated kinase M (IRAK-M) is a PIN1 target critical
for IL-33 signaling in allergic asthma (104). Nuclear magnetic
resonance analysis with docking simulations suggests that PIN1
might regulate IRAK-M conformation and function in IL-33
signaling. The IL-33/ST2 signaling pathway recruits adapter
protein MyD88 to transduce intracellular signaling (105, 106).
MyD88 forms a complex with IL-R–associated kinases (IRAKs),
IRAK4, and IRAK2, called the myddosome (MyD88–IRAK4–
IRAK2). The myddosome subsequently activates downstream
NF-kB, p38 MAPK, and JNK. A small synthetic molecule
mimetics of α-helical domain of IRAK2 called compound 7004,
which can inhibit the IL-33–induced NF-kB activity, disrupt

myddosome formation, and attenuate the pro-inflammatory
effects in an asthma-like animal model (105).

Traditional Chinese Medicines (TCM)
Targeting IL-33/ST2 Axis Against Allergic
Inflammatory Diseases
Apart from the small molecules with specific target in the IL-
33/ST2 axis as mentioned above, blocking IL-33 and its receptor
by monoclonal antibodies is the major therapeutic approach in
targeting IL-33/ST2 axis of allergic inflammatory diseases, and
serval clinical trials are in progress (105, 107–111). The main
side effect of monoclonal antibody administration is the risk of
immune reactions such as serum sickness and acute anaphylaxis
which may be fatal (112, 113). TCM and natural products
may provide a great source of blockings agents against IL-33
activities. Some TCM formulae have been shown to be effective
in attenuating IL-33 activities in both in vitro and in vivo studies
(Table 1). Most of the component herbs in those formulae have
been traditionally used to treat allergic and inflammatory diseases
(39, 43, 127, 128).

Besides TCM formulae, some natural compounds include
flavonoids and alkaloids have been shown to be active against
targeting IL-33/ST2 axis. Calycosin, a flavonoid, is a major
component in Radix Astragli (117) that has been used in the
treatment of allergy-related symptoms. When AD mice were
treated with calycosin (0.4–10 mg/kg), the protein levels of TSLP
and IL-33 were significantly suppressed (118). The inhibitory
mechanism was associated to TLR4-mediated NF-κB signaling,
with the significant inhibition of the expression of MyD88,
toll/interleukin-1 receptor domain-containing adapter protein
(TIRAP), and transforming growth factor beta-activated kinase
1 (TAK1) (118).

Cimifugin is a bioactive and major component of Radix
Saposhnikoviae, a TCM has been used for treating allergy.
Using FITC sensitized and challenged AD mice, cimifugin
can significantly inhibit TSLP and IL-33 production in the
initial stage of AD model. Moreover, cimifugin could reduce
the separated gap among the epithelial cells and increase
the expression of tight junctions (TJs). Similar effects on
TSLP/IL-33 and TJs were obtained using keratinocyte HaCaT
cells. Using siRNA blockage, cimifugin was found to inhibit
initiative cytokines through restoring TJs. In addition, cimifugin
administered alone in the initial stage obviously attenuated the
ultimate allergic inflammation, thereby indicating the sufficient
impact of cimifugin in the initial stage on TSLP/IL-33 and TJs for
suppressing allergic inflammation. This study therefore implies
the possibility of key cytokines such as IL-33 and TJs can be the
therapeutic targets for AD (119).

Eupatilin (5,7-dihydroxy-30,40,6-trimethoxyflavone) is the
major lipophilic flavonoid isolated from the Artemisia species
(120). Eupatilin has been shown to promote the transcriptional
activity and expression of peroxisome proliferator-activated
receptor α (PPARα) in keratinocyte HaCaT cells (121) and acts
as an agonist of PPARα to ameliorate atopic dermatitis (AD)
and restore the skin barrier function. Eupatilin (20ml of 1.5%
or 3.0%) improved AD-like symptoms in an oxazolone-induced
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TABLE 1 | TCM formulae and natural compounds those are active against the IL-33/ST2 axis.

Name Uses, treatment or

activities

Disease evaluated and animal

model used/ human trials

Effect References

Soshiho-tang: Radix Bupleuri,

Radix Scutellariae, Radix

Ginseng, Tuber Pinelliae, Radix

et Rhizoma Glycyrrhizae,

Rhizoma zingiberis crudae, and

Fructus Zizyphi

Pulmonary disorders such

as the common cold and

pneumonitis

Asthma,OVA-induced asthmatic

mice model

Reduce leukocyte and eosinophilic counts,

downregulate the production of IL-33 and

other Th2-type cytokines, decrease mucus

hypersecretion and IgE serum levels

(114, 115)

Qingre-Qushi Recipe(QRQS):

Herba Hedyotis Diffusae, Radix

Sophorae flavescentis, Herba

Taraxaci, and Fructus Xanthii

Skin inflammation and

itching

Atopic dermatitis (AD),

OVA-induced atopic dermatitis

mice model

Suppress both epidermal and dermal

thickness, alleviating dermatitis and reducing

IL-33 and ST2 positive cell numbers in

OVA-induced AD mice

Suppress the concentration of specific IgE,

IgG, IgG1, and IgG2a antibodies in serum

and the expression of IL-33, ST2, IL-1RAcP,

IL-4, and IL-13 mRNA in the skin

Down-regulate TNF-α and IFN-γ -induced

IL-33 mRNA and protein expression in

human keratinocyte HaCaT cells

(116)

Calycosin: A flavonoid, is a

major component in Radix

Astragli

Allergy related symptoms AD, AD mice Supress TSLP and IL-33 associated toll-liked

receptor (TLR)4-mediated NF-κB signaling,

the protein expression of MyD88, TIRAP, and

TAK1

(117, 118)

Cimifugin: Bioactive and major

component of Radix

Saposhnikoviae

Allergy AD, FITC sensitized, and

challenged AD mice

Inhibit TSLP and IL-33 in the initial stage of

AD to reduce the separated gap among the

epithelial cells and increase the expression of

tight junctions (TJs)

(119)

Eupatilin: Main lipophilic

flavonoid obtained from the

Artemisia species

Anti-oxidative,

anti-inflammatory, and

anti-apoptotic activities

AD, oxazolone-induced AD-like

mouse model

An agonist of PPARα to ameliorate AD and

restores the skin barrier function

(120–122)

Protostemonine: An alkaloid

from Radix Stemonae

Anti-inflammatory activities Asthma, DRA (dust mites,

ragweed, and

aspergillus)-induced murine

asthma model

Inhibit pulmonary eosinophil infiltration, goblet

cell hyperplasia, mucus secretion, IgE, and

Th2 cytokine (IL-4, IL-5, IL-13, and IL-33)

production

Attenuate the expression of Arginase-1

(Arg-1), Ym-1, and Fizz-1, markers of AAM

(alternatively activated macrophage)

polarization,in lung tissues

(123)

Tetramethoxyluteolin: The

structural analog of luteolin, a

common flavonoids present in

edible plants (e.g., carrots)

Suppressing mast cell

activation

AD, Clinical trials Inhibit mast cell activation stimulated by

IL-33, substance P, or their combination

Reduce skin inflammation in patients with AD

in clinical studies

(124–126)

AD-like mouse model by suppressing the serum levels of IgE, IL-
4, andAD-related cytokines including TNFα, IFN-γ, IL-1β, TSLP,
IL-25, and IL-33 (122).

Protostemonine (PSN), an alkaloid isolated from Radix
Stemonae was found to suppress inflammatory conditions,
IL-33 production and polarization of macrophage into AAM
phenotype in the lung tissues of a dust mites, ragweed and
aspergillus-induced murine asthma model (123).

Tetramethoxyluteolin (methlut), a natural flavonoid, has been
shown to inhibit mast cells stimulated by IL-33, substance P, or
their combination. This has been further validated in a clinical
trial in which a skin lotion containing tetramethoxyluteolin that
can reduce skin inflammation in AD patients. In experimental
study, methlut has also been shown to be effective in psoriasis
conditions (124, 125).

Apart from Chinese herbs and natural products, acupuncture
seems to be effective in attenuating the IL-33 associated
airway inflammation in an OVA-induced mouse model by
reducing the serum concentrations of IL-33, sST2, and other
inflammatory cytokines (129). In summary, these TCM formulae
and natural compounds could lower the IL-33 production
and other inflammatory cytokines from the tested targets,
thereby ameliorating the allergic symptoms. Some of them
could target on the specific IL-33 associated immune cells type
such as IL-33-mediated mast cell activation and macrophage
polarization into AAM phenotypes (Table 1). In view of
limited clinical evidence and laboratory studies on the action
mechanism, further investigations on these two aspects are
essential for the future development of TCM in IL-33-related
diseases (126).
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POTENTIAL FUTURE DEVELOPMENTS
AND CONCLUDING REMARKS

With ample experimental evidences, the multiple roles of
IL-33 in allergic and inflammatory diseases are not only
restricted as an alarmin, but also as a cytokine for additional
stimulatory signals: (i) to increase IL-33 expression in the
nucleus or cytoplasm, and (ii) to induce IL-33 production into
the extracellular space without cell death (29). Those stimulatory
signals provide an amplification system for IL-33–mediated
inflammatory responses. IL-33–blocking agents which target
precisely at different molecular levels (both signaling and
amplification pathways) could be potential therapeutic drugs for
treatment of allergic and inflammatory diseases. For instance,
an important mechanism for the direct activation of IL-33
by proteases from environmental allergens has been recently
discovered (30). Targeting the “sensor” domain to prevent
the cleavage and activation of IL-33FL, as well as the mast
cell protease inhibitors might represent a new approach for
reducing allergic responses in asthma and other allergic diseases.
Apart from the pathological role in allergic diseases, IL-33
participates in diverse immune regulatory events. Therefore,
to optimize the therapeutic outcomes, further evaluations,
are essential to manipulate the IL-33/ST2 axis in diseases
state and regulatory/physiological roles (130). As with other
immunomodulating therapies, investigations on the effect of
attenuating IL-33/ST2 axis on immune defense against infection
and other immune responses are essential before further
therapeutic development (131).

Since most of previous studies on IL-33 blocking agents are
at the stage of in vitro and animal testing, pharmacological

evaluations to develop IL-33–blocking agents are still on-going
(132) and some are in phase I–II clinical trials for asthma and
chronic obstructive pulmonary disease (133). The combination
of IL-33 blocking agents may also be the synergistic intervention
in IL-33-associated allergic and inflammatory diseases. For
the future translational elucidation of IL-33, human studies
are essential such as large scale clinical trials. Furthermore,
the IL-33/ST2 axis is participating in both Th2/IL-31 and
Th17 immune response during the progression of allergic
airway diseases (92). Natural products and herbal medicines
with the pluripotent activities to inhibit the production and
actions of IL-33 are also promising candidates for further
pharmacological evaluation for the treatment of allergic diseases.
TCM and natural products, especially flavonoids with proven
in vitro and in vivo activities to target the IL-33/ST2 axis,
are potential candidates and warrant further development
for the lead compounds as adjuvant anti-allergic and anti-
inflammatory agents.
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