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Abstract

We evaluated the fraction of variation in HIV-1 set point viral load attributable to viral or

human genetic factors by using joint host/pathogen genetic data from 541 HIV infected indi-

viduals. We show that viral genetic diversity explains 29% of the variation in viral load while

host factors explain 8.4%. Using a joint model including both host and viral effects, we esti-

mate a total of 30% heritability, indicating that most of the host effects are reflected in viral

sequence variation.

Author Summary

Viral loads of Human Immunodeficiency Virus infections are correlated between the

donor and the recipient of the transmission pair. Similarly, human genetic factors may

modulate viral load. In this study we estimate the extents to which viral load is heritable

either via the viral genotype (from donor to recipient) or via the host’s Human Leukocyte

Antigen (HLA) genotype. We find that a major fraction of inter individual variability is

explained by the similarity of the viral genotypes, and that human genetic variation in the

HLA region provide little additional explanatory power.

Introduction

There are differences in the rate of disease progression among individuals infected with HIV. An

easy to measure and reliable correlate of disease progression is the mean log viral load (HIV RNA

copies per ml of plasma). The viral load measured during the chronic phase of infection (referred

to as setpoint viral load, spVL) exhibits large variation in a population. Several studies have been

carried out to elucidate whether this variation is primarily driven by host genetics [1–4], viral

genetics [5–9], or environmental effects [7]. Genome-wide association studies consistently show
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that amino acid polymorphisms in the peptide binding groove of the HLA-A and HLA–B pro-

teins are associated with the viral load of an individual. Furthermore, variants in the HLA-C and

CCR5 genes have also been shown to impact spVL. However, those host factors explain less than

15% of the observed phenotypic variance [4]. In contrast, viral genetic studies and studies of

donor-recipient transmission pairs established that 33% of the phenotypic variance is attributable

to the transmitted virus itself [5, 10–13].

HIV is an extremely variable and adaptive organism with a rapid replication time, and high

rates of mutation. Within-host evolution of the viral population occurs during the chronic

phase of infection in which the pathogen adapts to its host environment. Several studies showed

that a major proportion of the viral sequence is under selective pressure in the host environ-

ment, and several viral amino acid changes are associated with host genetic variants in the

Human Leukocyte Antigen (HLA) genes [14, 15].

Viral strains harbor epitope sequences that can be presented by HLA class I proteins of the

infected host, which allows the detection and killing of infected cells. The viral population

evades detection through escape mutations that modify the epitope sequence but may incur a

fitness cost. Compensatory mutations may follow until the viral population reaches its optimal

place in a sequence space constrained by the host immune system [16].

There are two main different approaches to viral heritability estimation in the literature.

The first one is based on the regression of phenotypic values in donor-recipient transmission

pairs, while the other quantifies the difference between the observed phenotypic variance-

covariance structure and the phylogenetic variance-covariance structure. Because our study

population did not include donor-recipient data, we used the latter strategy. In particular we

used linear mixed models (LMMs) to explain inter-patient differences in spVL while taking

into account host and viral genetic relatedness. LMMs use the pairwise relatedness of individu-

als with respect to a large set of features (rather than the individual data points) to estimate the

fraction of phenotypic variance attributable to those features. Such models have been success-

fully applied to estimate narrow-sense heritability from genome-wide genotype data [17]. Con-

currently, LMMs were proposed to incorporate phylogenetic relatedness between samples in

comparative analyses [18], a technique that was further developed to estimate the viral genetic

contribution to spVL [6, 8].

Results

To estimate the respective contribution of host and viral genetics to the variation in spontane-

ous HIV control, we collected paired viral/host genotypes along with spVL measurements

from 541 chronically infected individuals enrolled in two prospective cohort studies in Swit-

zerland and in Canada. We estimated the respective contributions of host and viral genetics to

spVL by defining two relatedness measures, one with respect to the host genotypes, the other

with respect to the viral genotypes, and used these jointly in a linear mixed model.

On the host side, we focused on amino acid variations in the HLA-A, B and C genes due to

their established associations with HIV control [1]. In particular, we used 33 amino acid poly-

morphisms selected by L1 regularized regression [19] to represent the genetic relatedness of

the host (S1 Table). Principal component analysis based on host genome-wide genotype data

confirmed the lack of major population stratification in the host sample.

We built three LMMs, one containing human variants, one derived from phylogenetic trees,

and one including both host and virus information (Fig 1). The genetic relatedness matrix created

from 33 amino acid polymorphisms of the human class I HLA genes explained 8.4% (SD = 4%)

of the observed variance in spVL. In contrast, 28.8% (SD = 11%) of phenotypic variation was

attributable to the viral phylogenetic tree. Combining the two relatedness matrices in one model
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yielded a total variance explained of 29.9% (SD = 12%), less than the sum of the latter two models.

Thus, we show that HLA polymorphisms do not explain additional phenotypic variance beyond

viral sequence variation.

We next assessed the contribution of viral variants most likely to have an impact on spVL.

These included amino acids in known CTL epitopes [20] and those positions whose variation

is associated with host polymorphisms [14] (82%, 60% and 84% of gag, pol, nef codons respec-

tively, S2 Table). We used phylogenetic trees built from those codons to show that viral varia-

tion in epitopes or other HLA-associated positions explain 23.6% (SD = 11%) of phenotypic

variance. However, this explained fraction might be overestimated due to linkage disequilib-

rium on the viral haplotype. We therefore repeated the analysis after randomly picking 70% of

variable viral positions, and obtained very similar results. We thus cannot conclude that viral

variants in known epitopes contribute disproportionately to variance in spVL. Additional evi-

dence for the existence of substantial linkage disequilibrium on the viral haplotype comes from

the analysis of the smaller, complementary set of variable viral positions (located in non-epitope

regions), which explained 18.5% (SD = 10%) of the phenotypic variance. This leads to lower

bounds of 11.4% and 6.3% of variance in spVL explained by variation in epitope and non-epi-

tope regions, respectively, leaving 12.2% of variance unresolved due to linkage disequilibrium.

Discussion

By jointly analyzing host and viral genetic relatedness, we here provide estimates of the total

and respective contributions of human and viral genetic variation to HIV control. Our results

do not challenge the current consensus estimates of the host or viral contributions to spVL.

Nevertheless, our combined analysis demonstrates that human HLA polymorphisms do not

explain additional variance in spVL once viral genetic diversity is taken into account.

The difference between the variance explained by viral phylogeny and the variance explained

by HLA polymorphisms may be attributed to two effects. First, selected viral variants might pro-

vide a better surrogate of the impact of the host genotype than the imputed host amino acid var-

iants we used. Rare host genetic factors outside of the major histocompatibility complex region

(e.g. the CCR5 deletion), as well as environmental interactions may influence viral fitness, and

these effects are not accounted for in our estimate of host heritability. Thus some host effects

might be missed from the host partition, while their footprint in the virus is still detected in the

viral partition. Second, the difference could partly be due to the effect of viral variation indepen-

dent of the current host, including transmitted escape mutations, i.e. viral sequence variation

carried over from the previous host, rather than induced by the current host. Indeed, a recent

Fig 1. Illustration of fractions of explained variances by models taking human HLA, viral sequence similarities, or both into

account.

doi:10.1371/journal.pcbi.1005339.g001
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study showed that spVL is dependent on the degree of pre-adaptation of the viral strain to the

HLA class I genotype of the current host [21]. In particular, an increase in the frequency of pre-

existing escape mutations, at the population level, led to higher viral heritability estimates. This

indicates that both host and viral estimates of heritability depend on the amount of pre-adapta-

tion in the sample population, which varies based on the level of HLA diversity. It has also been

shown that reversion of some fitness reducing escape variants is very slow, potentially allowing

for a transitory but measurable effect on viral load at the population level [15, 22].

A limitation of our study is the fact that study participants were collected from two cohorts.

To reduce batch effect, we included a cohort-specific variable in all our models. Still, differ-

ences in inclusion criteria, health system, geographical exposure and other factors are very

likely to increase environmental variance, thus negatively impacting our heritability estimates.

Another potential shortcoming is our implicit assumption of the absence of selection on

spVL, which might be incorrect, as suggested by recent studies [23, 24], and might thus lead to

over- or under-estimation of heritability due to model misspecification. Still, because our esti-

mates are comparable to results obtained in donor-recipient transmission studies and in host-

genetic studies, we conclude that they are useful for the purpose of delineating the respective

amounts of host and viral contributions to phenotypic variation of HIV spVL.

In conclusion, our results suggest that host genetic association studies not taking the virus

into account underestimate the population level effect of host genetic variation. Combining

host and pathogen data provides additional insight into the genetic determinants of the clinical

outcome of HIV infection, which can serve as a model for other chronic infectious diseases.

Materials and Methods

Ethics statement

All participants were HIV-1-infected adults, and written informed consent for genetic testing

was obtained from all individuals as part of the original study in which they were enrolled. Eth-

ical approval was obtained from institutional review boards for each of the respective contrib-

uting centers.

Data collection

Bulk sequences of the HIV-1 gag, pol and nef genes, human genome-wide genotyping data and

viral load measurements were obtained for 541 individuals of Western European ancestry

infected with HIV-1 Subtype B, and followed in the Swiss HIV Cohort Study (SHCS, www.

shcs.ch) or in the HAART Observational Medical Evaluation and Research study in Canada

(HOMER, www.cfenet.ubc.ca/our-work/initiatives/homer) [14].

Viral sequences data were generated from samples collected two to five years after infection

(for SHCS) or during chronic infection (for HOMER) but prior to the initiation of antiretrovi-

ral therapy. Thus, the viral genotypes reflect the result of natural adaptation of the pathogen to

the host environment. The viral sequences for 1262, 2187 and 548 nucleotides of the gag, pol
and nef genes were available for at least 80% of samples studied. The analysis was limited to

these three genes because sequences of the rest of the retroviral genome were not available for

the majority of study samples. Overlapping viral genomic regions were excluded from gag, to

avoid duplicated sequences in the analysis.

Human DNA samples were genotyped in the context of previous genome-wide association

studies. High-resolution HLA class I typing (4 digits; HLA-A, HLA-B, and HLA-C) was imputed

from the genome-wide genotyping data as described previously [14].

Set point viral load (spVL) was defined as the average of the log10-transformed numbers of

HIV-1 RNA copies per ml of plasma obtained in the absence of antiretroviral therapy, excluding
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VL measured in the first 6 months after seroconversion and during periods of advanced immu-

nosuppression (i.e., with<100 CD4+ T cells per ul of blood). The distributions of spVL in the

two cohorts are shown in S1 Fig.

Viral genetic relatedness

The pairwise genetic relatedness of the dominant viral strains observed in the samples was

calculated from phylogenetic trees similarly to [6]. Nucleotide sequences were translated to amino

acid sequences, which were in turn aligned with MUSCLE [25] and used to derive the correct

codon-aware nucleotide alignment. The phylogenetic tree was built from the aligned nucleotide

sequences using RAxML [26] with the following command line: “raxml -w {PATH} -s {PATH} -m

GTRCAT -f a -N 30 -k -n {NAME} -T {NUMBER} -x 1234 -p 1234”. Individual sequences were

then rooted to the HIV-1 group M ancestral sequence, downloaded from the Los Alamos sequence

database. Using an HIV-1 subtype C sequence as outgroup led to similar results. The whole tree

was scaled with the inverse of the median height of the branches. We followed the method of Hod-

croft et al, to create a relatedness matrix from a phylogenetic tree [6]. The genetic relatedness of

two samples in a given phylogenetic tree is the amount of shared ancestry, i.e. the distance from

the root of the tree (excluding the outgroup) to their most recent common ancestor [27].

Host genetic relatedness

We selected 33 amino acid variants with L1-regularized regression (LASSO) out of all poly-

morphisms in the HLA-A, B and C genes and used them to generate a genetic relatedness

matrix as described in [17]. Our relatively small sample size made it necessary to use a small

subset of selected markers rather than genome-wide variant information to create the genetic

relatedness matrix. Doing otherwise would have resulted in very large errors of the estimates.

Heritability estimations

To estimate heritability, we used the gcta software as a generic implementation of the linear

mixed model [17]. In such a framework, a multivariate Gaussian distribution models HIV

viral load with a variance-covariance matrix consisting of the linear combination of the sam-

ple-sample genetic relatedness matrices (one for the host and one for the virus) and the iden-

tity matrix (representing sample-specific noise). The total heritability estimate is the fraction

of variance explained by the genetic relatedness matrices over the total variance. All models

included a binary variable indicating cohort as a fixed effect. Variance components were esti-

mated by restricted maximum likelihood.

Supporting Information

S1 Fig. Distribution of HIV setpoint viral load values in the Swiss (SHCS) and Canadian

(HOMER) cohorts.

(PNG)

S1 Table. List of human amino acid variants in HLA-I genes selected by L1 regularized

regression and used throughout the paper.

(XLSX)

S2 Table. List of MHC-associated HIV amino acid positions based on epitope maps (20)

and previous association studies (14).

(TXT)
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