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Abstract

The purpose of this research is to develop an intuitive and robust realtime QRS detection
algorithm based on the physiological characteristics of the electrocardiogram waveform.
The proposed algorithm finds the QRS complex based on the dual criteria of the amplitude
and duration of QRS complex. It consists of simple operations, such as a finite impulse
response filter, differentiation or thresholding without complex and computational opera-
tions like a wavelet transformation. The QRS detection performance is evaluated by using
both an MIT-BIH arrhythmia database and an AHA ECG database (a total of 435,700
beats). The sensitivity (SE) and positive predictivity value (PPV) were 99.85% and 99.86%,
respectively. According to the database, the SE and PPV were 99.90% and 99.91% in the
MIT-BIH database and 99.84% and 99.84% in the AHA database, respectively. The result
of the noisy environment test using record 119 from the MIT-BIH database indicated that
the proposed method was scarcely affected by noise above 5 dB SNR (SE = 100%, PPV >
98%) without the need for an additional de-noising or back searching process.

Introduction

An electrocardiograph (ECG) is a graphical representation of the electrical activity of a heart
over time, and it is the most basic examination method that can be used for cases of heart dis-
ease. However, it may be necessary to record and analyze long-term ECGs since the symptoms
of some types of heart disease are generally intermittent. Thus, research related to automatic
ECG processing algorithms has been actively conducted over the last several decades. The first
step of an automatic ECG processing algorithm involves detecting the QRS complex. With the
results of the QRS complex detection, other fiducial points in the ECG, such as P, Q, S, or T,
can also be detected to provide further information [1-4]. As a result, QRS complex detection
methods have a considerable influence on the performance levels in subsequent steps of the
algorithm. Nowadays, many ECG-based devices have been developed for use toward personal-
ized healthcare, and the industry is evolving to provide ubiquitous and mobile healthcare.
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Since automatic ECG processing algorithms have been developed for use with every kind of
ECG-related application, the need for stable, noise-robust signal processing techniques has
been increasing to provide ubiquitous use. Therefore, current research on QRS complex detec-
tion algorithms has focused on increasing the performance in terms of the detection accuracy,
computational burden, and noise-robustness of the detection [5-7].

The accuracies of modern QRS complex detection algorithms are already quite high.
Though many QRS complex detection algorithms show over 99% in sensitivity and a positive
predictive value [4, 8-16], most only used the MIT-BIH arrhythmia database [17] or AHA
ECG database [18] during their evaluation. Moreover, most of them are offline algorithms,
which cannot be used in causal systems. Research related to the Pan & Tompkins QRS detec-
tion algorithm [14], the most commonly used algorithm, led to the development of a real-time
QRS complex detection algorithm that operates according to the slope, amplitude, and width.
The results showed the sensitivity (SE) of this algorithm was of 99.75% with a positive predic-
tive value (PPV) of 99.54%. Lee et al. [12] used a modified spatial velocity method to measure
the energy of the QRS complexes for reliable detection. The algorithm was also evaluated using
the MIT-BIH arrhythmia database and showed SE results of 99.88% and a PPV result of
99.69%. Afonso et al. [9] detected QRS complexes based on the sub-band components of an
ECG by using a filter bank, achieving an SE result of 99.59% and a PPV result of 99.56% with
the same database.

To maintain a high level of accuracy, even in noisy environments, Christov proposed an
adaptive threshold method that combines three parameters: an adaptive slew-rate value,
another parameter to reduce the effect of the high-frequency noise, and a third parameter to
detect low-amplitude beats [11]. This method achieved an SE result of 99.69% and a PPV result
0f 99.80%. Yeh et al. [16] proposed offline QRS complex detection based on a difference opera-
tion method to produce more reliable and faster detection involving a relatively simple opera-
tion. The algorithm had a 99.89% SE and a 99.95% PPV.

The current trend in research could be summarized to develop a highly accurate algorithm
that can maintain a high level of accuracy, even in very noisy environments, in spite of having
a high computational burden. For this, we have designed a new QRS complex detection
method that takes into account the characteristics of the ECG signal. To represent the electric
activity of the ventricle, the waveform for the QRS complex has a regular range in terms of the
amplitude and variation in speed. The proposed QRS complex detection method consists of
two detection criteria. Since the electrical activities caused by the ventricular beats have a regu-
lar range for the energy level within a certain frequency band, the first criterion evaluates
whether or not the energy in a specific frequency band exceeds a certain level. The second crite-
rion involves checking whether or not the energy appears or disappears after a certain period
(approximately the duration of the QRS complex) since the heart, the energy source, has a
quiet interval between heartbeats. In addition, the algorithm operates in a stable manner by
using additional parameters in various environments, such as with surrounding noise or other
noises that change in amplitude. To evaluate the robustness of the proposed algorithm, data
from multiple databases were processed, including the MIT-BIH arrhythmia database and the
AHA ECG database. Moreover, various aspects of the proposed algorithm were inspected, and
the noise analysis, including the effects of the noise and the signal amplitude, were also
included.

Materials and Methods

The proposed algorithm has the advantages of providing a stable performance, of using intui-
tive criteria based on the characteristics of the QRS complex, and requiring simple
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Fig 1. Procedure for the proposed QRS detection algorithm.
doi:10.1371/journal.pone.0150144.g001

computation. The algorithm detects the QRS complex by examining two features. The first fea-
ture is the level of energy of the waveform and the second is the variation within a given time
duration. These features reflect the characteristics of the QRS complex, which means that the
major energy components are within a certain frequency band (mainly 5 to 25Hz) and that
there is a variation in energy components after a certain time duration (the duration of the
QRS complex). We detected the QRS complex using these features because, unlike the QRS
complex, noise components generally occur in different frequency bands or are present contin-
uously. Fig 1 shows a block diagram of the proposed QRS complex detection method. Before
the assessment of the above features, the input ECG signal passes through the band pass filter
(BPF). The BPF is a 64-tap finite impulse response (FIR) filter, and it has a pass band from 5 to
25 Hz, where the QRS complexes have their main energy components.
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Energy Level Detection

To calculate the energy level of the signal power components of the filtered signal, Xsyareq Was
obtained by squaring. Then, the moving average filter (MAF1) was applied to the squared signal
in order to acquire the average power (x,s451) within a certain time range. Then, peak detection
was performed using adaptive thresholds based on the output signal of the MAF1. The above
process is designed to measure the amplitude of the energy within a certain time range.

A detailed configuration of the control parameter and its meaning was obtained in the fol-
lowing manner. MAF1 is used to calculate the energy in a particular frequency range. Thus, the
length of MAF1 should be similar to the duration of the QRS complex. In general, the duration
of the QRS complex is of no more than 0.1 seconds in a normal state, but it can increase to 0.15
seconds in an abnormal state. Therefore, the length of MAF1 needs to be longer than 0.15 sec-
onds to cover the QRS complex. However, the length of MAF1 should have the shortest length
as possible because the filtering result of the QRS complex could be influenced by adjacent fea-
tures such as P or T waves of the ECG waveform when too wide MAF1 is used. Therefore, in
this study, the length of MAF1 was set to 0.15 seconds. Eq (1) shows the formula for MAF1,
where N is the number of samples within 0.15 seconds.

Xpuar1 1] :Ni Z xsquared[k] (1)

1 k=<N;>

An adaptive threshold was applied to the output signal of MAF1 to explore the peak. The
adaptive threshold is composed of two kinds of thresholds: a signal threshold (th,;,) and a noise
threshold (th,,,;s.). During adaptive threshold detection, the signal threshold represented in Eq
(2) comes along the signal when the threshold is lower than the value of the waveform. Other-
wise, the signal threshold is controlled by both the previous signal and the threshold level for
the noise. In this study, the decay rate (4.,,) is set to decrease the signal threshold with a speci-
fied rate defined through a combination of the fixed decay constant and the peak-noise ampli-
tude ratio. The decay rate is basically designed to produce a decrease from the initial value of
the signal threshold of 5.75% per second. This rate is adapted by considering the refractory
period (RP) as 150 ms and a general human beat-to-beat interval of 700 ms (Eq (3)). The decay
rate is finally determined by multiplying the noise-peak amplitude ratio. The noise-peak ampli-
tude ratio reflects the noise level to the signal peak amplitude ratio, and it changes the decay
rate with the application rate, r,. The noise threshold also contributes to the change in the sig-
nal threshold with an application rate r,,. The application rate indicates the degree of the contri-
bution of each input parameter to the value obtained as the result. The signal threshold, r; and
1, are determined to be 5% and 3%, respectively, and were empirically determined. For other
conditions, such with a refractory period or r,,, times the noise threshold exceeding the signal
threshold, the signal threshold will be set to the previous value or to r,, times of noise thresh-
old. Empirically, r,,, was set as 1.75.

'xMAFl [n] xMAFl [n] > thsig [n]
th, [n— 1] in refractory period

thsig = : (2)
rnrthnoise[n - 1] rnrthnoisc [Yl - 1} > thsig[n - 1]
Tiecaythgn — 1] +1,th,,. [n — 1] otherwise

1 th,..[n— 1]
— (1= 1— noise 3
rdem)’ < (05 —RP )fs) ( " Vprepeak ) ( )
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The noise threshold, shown in Eq (4), depends on the previous noise threshold level and on
the filtered signal level. It is used to determine the next noise level in the signal. In Eq (4), the
application rate, 7y, is set to 0.1%. Finally, for the energy level detection, the QRS candidate is
determined at the end of the accompanying signal and threshold if the candidate is not within
the refractory period.

(4)

thnme[ ] = { Xmars [1’!] thnoise[”] > xMAFl[n]

th,eln — 1] + rXyumn — 1] otherwise

Energy Variation Detection

The second criterion checked whether the energy variation has a proper value within a certain
time interval. The energy variation means an increase and decrease in the energy generated
from the QRS complex. Though the amplitude of the ECG could be lower than 0.39 mV in the
low ECG case [19], the amplitude of a normal QRS complex has been known to be greater than
0.5 mV in general. Moreover, as mentioned above, the normal QRS duration is of 0.06 to 0.1
seconds. These characteristics can be used to define the rule for the speed of the rising and fall-
ing of the QRS complex, which could be from 3.9 mV/s to 35 mV/s or greater. Although there
is a huge difference within this range, we could set the boundary of the QRS energy variation.

The rising and falling speed of the energy is evaluated by obtaining the difference signal of
the squared signal (x44) and then applying MAF2 (Eq (5)). MAF2 was used to calculate the
change over a certain period of time. Thus, the length of MAF2 (N,) should be similar to the
duration of the QRS complex, and moreover, it should be long enough to cover the QRS dura-
tion that could occur a representative human. Therefore, in this study, MAF2 was set to a
length of 0.2 seconds. To evaluate the energy variation criterion, the output signal of MAF2
was assessed to ensure that that it has the proper range where the peak was detected in the
energy level detection stage.

Sl =35 D gl )

2 k=<Ny>

Three criteria were designed and used to judge the variation in energy. The first criterion
involved the minimum requirement for the QRS energy variation. We set the maximum abso-
lute energy variation speeds to exceed £0.45 mV per 0.2 seconds within 0.2 seconds earlier or
later than the peak of the MAF1. The second criterion was that the magnitude of the changes
during the 0.4 seconds should be greater than 2 mV per 0.4 seconds. The last criterion is that
the maximum absolute energy variation speeds should not exceed 20 mV/s within 0.2 seconds
before or after the MAF1 peak. Every criterion was commonly adjusted to 5% of the value, con-
sidering the averaging effect of MAF2. If they exceed the criterion, they are regarded as noise.
The QRS complex is determined only when all of the above conditions have been satisfied.

Energy Level Stabilizer

The QRS complexes were detected according to the results obtained from these two detection
stages: the energy level detection and the energy variation detection. However, the amplitude of
the input ECG signal could affect the energy level detection because it relies on the amplitude
thresholds. Therefore, a level stabilizer that generates the stabilized signal (x,,;,) could relieve
the abrupt changes in the signal level and improve the performance of the adaptive threshold
peak detection method by regulating the signal level over a specific range. The weights of the
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level stabilizer were adjusted according to the amplitude of the detected peak. The signal was
applied to adaptive thresholds reduce the effects of the variation in the amplitude of the ECG.
To this end, a weight adjustment block was added as a regulator. This block controls the

weights of the level stabilizer, w,;, to produce a stable signal level for the MAF1 output (Eq
(6)).

sl =20 S ©

k=<N;>

To control the weights, the weight in every cycle is adjusted with w,,; when it was greater or
less than a predefined reference value (level,;) of 0.5 mV (Eq (7)). The amount of weight
adjustment, w,g, is determined with Eq (7), where Vi ea, 72 and ry, are the 5 recent peaks and
an application rate of 10% and 5%, respectively. Through this process, the QRS complex was
reliably detected, even when the amplitude of the signal had varied.

Wstab [n + 1] = Wstab [T’l] + Wadj [Tl]

arg min (ra(levelsmb — median(V; peak)>, 7, levelmb>, level,,, > mean(Vy ,...)
Wadj[n] = (7)

arg min (ru(levelsmb — median(V; Wk)), —rblevelsmb), otherwise

Fig 2 shows the compensation effects on the amplitude of the ECG. In Fig 2(B), the signal
that was applied to the thresholds does not reach the predefined average value of 0.5 mV for
MAF1 from the beginning. However, we could confirm that the signal level gradually increases
and becomes similar to the level,;. The parameter values used for the above criterion were set
to detect the QRS complexes in a stable manner when the signal was around a predefined

o
[

o

Amplitude[V]

o
ESN
I

o
ho

Amplitude[V]

Fig 2. The original ECG signal and the scaled output of the level stabilizer (the dashed line is the energy level threshold.)
doi:10.1371/journal.pone.0150144.9002
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average value. Throughout this process, the proposed algorithm reliably detects QRS com-
plexes at various amplitudes of the input signal.

Results and Discussion
Database

In this study, the performance of the proposed QRS detection algorithm was evaluated by ana-
lyzing arrhythmia signals acquired from a variety of subjects. The evaluation was based on 183
records (435,801 beats) comprised of 48 records from the MIT-BIH arrhythmia database and
135 records from AHA ECG database (1000-7000 series).

Statistical Methods

The proposed QRS complex detection algorithm was evaluated in terms of its sensitivity and
positive predictive value, and the corresponding equations are shown below where the TP, FN,
and FP refer to a true positive, a false negative, and a false positive result, respectively.

SEHSIU lt) (EE) TP FT’ X 1::(/[) (E)
ICSIU EIIEdl:tl ) - ( ) X ::(/C) (E)

Evaluation 1: MIT-BIH and AHA Databases

Fig 3 shows the steps of the proposed detection method. Each waveform in Fig 3 represents the
output signal of each of the stage of the proposed detection method, as presented in Fig 1. Fig 3
(A) shows the ECG of record 100 of the MIT-BIH arrhythmia database, and Fig 3(B), 3(C), 3
(D), 3(E) and 3(F) show the output signals of the BPF, squaring, differentiation, level stabilizer
and MAF2, respectively. The dotted line and the dashed in Fig 3(E) indicate the signal thresh-
old and the noise threshold, respectively. The triangles indicate where the QRS complexes
occur, and the dotted line in Fig 3(F) indicates 0 to verify the zero crossing while the dashed
lines represent the first criterion of the energy variation detection.

S1 Table provides a summary of the results of the proposed algorithm based on the MIT--
BIH arrhythmia database and the results of other algorithms evaluated using the same data-
base. The proposed QRS complex detection method showed a very good overall detection
performance for the MIT-BIH arrhythmia database. The average performance was of 99.90%
SE and 99.91% PPV. These results are definitely superior to those found in earlier studies [4, 8-
12, 14, 15] but are similar to those obtained in others [13, 16]. For comparison, S1 Table repre-
sents the most widely used algorithm [14], the highest performance reported to date [13], and
a recently developed algorithm [8].

An evaluation of the results using the AHA ECG database indicated that the proposed algo-
rithm was the best among any presented in previously published studies [14, 15, 20-23], as
shown in Table 1. Statistically, in an AHA ECG database, the proposed QRS detection method
shows an SE of 99.84% and a PPV of 99.84%. The above results based on the MIT-BIH and the
AHA ECG databases indicate that the proposed QRS complex detection algorithm had a good
overall detection performance. Overall, the proposed algorithm shows an SE of 99.85% of SE
and a PPV of 99.86% for 435,700 beats.

The characteristics of the erroneous detections performed by the proposed QRS detection
algorithm are analyzed by showing representative examples of incorrectly detected beats in Fig
4, which features records 105, 108 and 203 from MIT-BIH database with 20 or more beats that
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Fig 3. Output signal of each processing stage of the proposed algorithm. (a) Original ECG signal, (b) Band pass filtered ECG signal, (c) Output signal
of the squaring, (d) Output signal of the difference block, (e) Output signal and threshold after MAF1 & level stabilization, (f) output signal and threshold of

MAF2.

doi:10.1371/journal.pone.0150144.g003

were incorrectly detected. Record 105 has extensive severe peak noise, as shown in Fig 4(A),
and this created many FPs. However, record 108 includes a severe baseline movement or satu-
ration, which leads to a considerable number of false negatives, as shown in Fig 4(B). Moreover,
record 203 includes many irregular beats in the amplitude and shape, which produces many
incorrect detections. However, it is challenging even for physicians to detect QRS complexes
correctly without other lead signals in the three records mentioned above due to the severe
noise or saturation regions that exist in those records. As shown in S1 Table, all of the other
algorithms that were tested also returned many incorrect detection results from these same

records.

Table 1. The results of the evaluation of the proposed algorithm and others based on the AHA ECG database

File number TP FP FN SE PPV
Proposed Algorithm 325679 519 557 99.84 99.84
Serafim Tabakov, et. al. [15] 322328 2205 1085 99.32 99.66
Ivan A Dotsinsky, et. al. [20] 324739 1376 1411 99.57 99.58
U. Kunzmann, et. al. [21] 181564 4446 309 97.61 99.83
J. Pan, et. al. [14, 23]* 64404 4166 8381 88.49 93.92
H. So, et. al. [22, 23]* 69197 623 3588 95.07 99.11
*Only 30 records (1201~1210, 2201~2210, 3201~3210) of AHA ECG database were evaluated.
doi:10.1371/journal.pone.0150144.t001
8/13

PLOS ONE | DOI:10.1371/journal.pone.0150144 March 4, 2016



D)
@ : PLOS | ONE Simple and Robust Realtime QRS Detection Algorithm

. ‘ I TP I I I ]
= 1P fpfP P . P PP TP
§ 0 TP -
=-1r -
o
£ 2L -
< | | | | | | |
1029 1030 1031 1032 1033 1034 1035
Time[s]
(a)
> 1
3 0
=
'6_-1
£ -2 i
< | | | | | | |
1217 1218 1219 1220 1221 1222 1223
Time[s]
(b)
. 2 F TP T T T T T T =
S
o1 P ™ T P ™
S of - FN
Q.- i
-
<-2 [ | l | | P P |P | |
101 102 103 104 105 106 107
Time[s]

(C)

Fig 4. Examples of incorrect detection from some subjects who have over 20 FPs or FNs. (a) False positive detection in record 105, (b) False negative
detection in record 108, (c) False negative detection in record 203.

doi:10.1371/journal.pone.0150144.9004

Evaluation 2: Evaluation in a Noisy Environment

The proposed QRS complex detection algorithm was evaluated in a noisy environment to test
the robustness in the presence of random noise. The proposed algorithm adopts an adaptive
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Fig 5. Output signals of the proposed algorithm with a clean ECG signal and a contaminated ECG signal. (a) clean ECG signal, (b) contaminated

ECG signal (SNR =6 dB).

doi:10.1371/journal.pone.0150144.9005

threshold for the noise component in order to maintain accuracy in a noisy environment. Fig 5
(A) shows the output signal of each of the criteria block of the proposed algorithm under nor-
mal circumstances with a low value for the noise power. The dashed lines in Fig 5(A) and 5(B)
are the noise thresholds, and the dotted lines represent the signal threshold. The noise thresh-
old in Fig 5(B) increased slightly relative to that in Fig 5(B) due to the increase in the noise
power (SNR = 6 dB). Since the noise threshold examines the output signal passing through the
BPF, raising the noise threshold does not appear prominently, even with noise. Through this
process, the proposed algorithm prevents false detection in a noisy environment.

Previous research [10] analyzed the decline in the performance as a result of variation in the
SNR in order to evaluate the robustness of the algorithm. In this study, the same conditions
were used to conduct an evaluation, and the results were compared. The detection performance
was evaluated using record 119 of the MIT-BIH arrhythmia database with an SNR that varied
from 0 dB to 30 dB. Table 2 shows these results and also shows that the proposed algorithm
has a higher noise stability when compared to that of a recent study [10]. In particular, even in
the absence of an additional de-noising process, the proposed QRS complex detection method
was scarcely affected by noise above a 5 dB SNR (SE = 100%, PPV > 98%).

Conclusion

In this study, we have designed a new QRS complex detection method that takes into account
the characteristics of the ECG signal. The proposed QRS complex detection method is based

PLOS ONE | DOI:10.1371/journal.pone.0150144 March 4, 2016 10/13
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Table 2. The evaluation of the proposed algorithm and others under a variety of noisy environments.

SNR (dB) Proposed Algorithm Szi-Wen Chen, et. al. [10]
with wavelet without wavelet
denoising denoising
TP FP FN SE PPV SE PPV SE PPV
0 1980 115 7 99.80 94.61 93.85 92.82 0.28 100
1 1986 104 1 99.95 94.75 97.21 95.87 0.28 100
2 1987 81 0 100 95.53 97.77 99.15 0.28 100
3 1987 68 0 100 96.46 99.16 99.16 0.28 100
4 1987 40 0 100 97.59 99.72 99.17 0.28 100
5 1987 31 0 100 98.08 100 98.9 0.28 100
6 1987 24 0 100 98.81 100 99.44 0.28 100
7 1987 13 0 100 99.35 100 99.44 0.56 100
8 1987 6 0 100 99.75 100 99.72 1.4 100
9 1987 2 0 100 99.85 100 99.72 2.79 100
10 1987 1 0 100 100 100 99.72 8.66 93.94
11 1987 0 0 100 100 100 99.72 17.32 92.54
12 1987 1 0 100 100 100 99.72 29.33 89.74
13 1987 0 0 100 100 100 99.72 41.06 83.52
14 1987 0 0 100 100 100 99.72 53.63 78.05
15 1987 0 0 100 100 100 100 65.08 71.91
16 1987 0 0 100 100 100 100 72.63 65.16
17 1987 0 0 100 100 100 100 81.28 59.51
18 1987 0 0 100 100 100 100 91.06 56.5
19 1987 0 0 100 100 100 100 96.65 56.81
20 1987 0 0 100 100 100 100 100 91.33
21 1987 0 0 100 100 100 100 100 98.62
22 1987 0 0 100 100 100 100 100 100
23 1987 0 0 100 100 100 100 100 100
24 1987 0 0 100 100 100 100 100 100
25 1987 0 0 100 100 100 100 100 100
26 1987 0 0 100 100 100 100 100 100
27 1987 0 0 100 100 100 100 100 100
28 1987 0 0 100 100 100 100 100 100
29 1987 0 0 100 100 100 100 100 100
30 1987 0 0 100 100 100 100 100 100

doi:10.1371/journal.pone.0150144.1002

on two detection criteria that have a low computational burden. In addition, the algorithm
operates in a stable manner by using additional parameters that correspond to various environ-
ments, such as when there is surrounding noise or changes in the signal amplitude. The pro-
posed algorithm was evaluated by using the MIT-BIH arrhythmia and the AHA ECG
databases. It showed a very high detection performance for both databases. Specifically, the
detection results based on the MIT-BIH arrhythmia database indicated that the proposed QRS
complex detection method produced clearly erroneous results only when the detection was car-
ried out in a severely noisy or saturated region. Moreover, the performance of the proposed
algorithm was maintained at up to 5 dB SNR, as is shown in the evaluation where the SNR var-
ied. One of the factors that contributes to the improvement in the performance is the level sta-
bilization technique. We showed that the QRS detection methods based on the thresholds
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work properly when the amplitude of the input signal is maintained, even when the thresholds
are adaptively applied. However, the amplitude of the ECG signal can change considerably
depending on the person who is measured, the measuring equipment, and the sensor positions.
To account for these changes, the proposed algorithm stabilizes the amplitude of the signal to
which the thresholds are applied by adjusting the coefficients of the MAFs.

Consequently, the proposed algorithm shows adequate or even outstanding performance
even though it only depends on basic signal processing procedures, such as FIR or MA filtering.
In other words, the proposed algorithm has a suitable performance without high computa-
tional operations, such as a wavelet, and it may dramatically reduce the computational load.
The computational complexity of the decomposition and reconstruction process of wavelet is
known as O(N) in both cases where N is a number of time samples. However, computational
complexity of algorithms could be increased in wavelet-based QRS detection because addi-
tional processing steps are generally needed after wavelet processing. The computational com-
plexity of the whole procedure of proposed QRS detection algorithm is O(N) because it is a
combination of linear systems based on FIR filtering that consists N times of multiplication
and N-1 times of addition. It is the same level with the existing low complexity algorithm pro-
posed by Yeh et al., which was proved the low computational load compared with wavelet-
based method [16].

Considering that the expansion of the ECG-related device and the application toward personal-
ized healthcare, a low computational load and ease of implementation are quite important envi-
ronments with limited resources, such as when using mobile or consumer devices. Moreover, a
simple, robust realtime algorithm is important to maintain a suitable performance during ubiqui-
tous use because the computational load could increase in a noisy environment. From this point of
view, the proposed algorithm, which only depends on the most common types of preprocessing
methods such as FIR BPF and MAFs and a widely used thresholding technique [10, 11, 15], has
the advantage in that it is simple, and moreover it shows superior performance compared with
other realtime algorithms. It is our belief that the robust performance and low computational bur-
den make this detection method useful for application in a limited environment, such as for u-
healthcare with mobile or home healthcare devices. The source code used in this research is also
available from website: https://github.com/HangsikShin/QRS-Detection/tree/master/Simple-and-
Robust-Realtime-QRS-Detection- Algorithm-based-on-Spatiotemporal-Characteristic-of-the-
QRS-Complex.

Supporting Information

S1 Table. The results of the evaluation of the proposed algorithm and others based on
MIT-BIH arrhythmia database.
(DOCX)

Author Contributions

Conceived and designed the experiments: JK. Performed the experiments: JK. Analyzed the
data: HS. Contributed reagents/materials/analysis tools: JK HS. Wrote the paper: HS JK. Vali-
dation: HS.

References

1. Abibullaev B, Seo HD. A new QRS detection method using wavelets and artificial neural networks.
Journal of medical systems. 2011; 35(4):683-91. doi: 10.1007/s10916-009-9405-3 PMID: 20703782

2. Benali R, Reguig FB, Slimane ZH. Automatic classification of heartbeats using wavelet neural network.
Journal of medical systems. 2012; 36(2):883—92. doi: 10.1007/s10916-010-9551-7 PMID: 20703646

PLOS ONE | DOI:10.1371/journal.pone.0150144 March 4, 2016 12/183


https://github.com/HangsikShin/QRS-�Detection/tree/master/Simple-and-Robust-Realtime-QRS-�Detection-Algorithm-based-on-Spatiotemporal-Characteristic-of-the-QRS-�Complex
https://github.com/HangsikShin/QRS-�Detection/tree/master/Simple-and-Robust-Realtime-QRS-�Detection-Algorithm-based-on-Spatiotemporal-Characteristic-of-the-QRS-�Complex
https://github.com/HangsikShin/QRS-�Detection/tree/master/Simple-and-Robust-Realtime-QRS-�Detection-Algorithm-based-on-Spatiotemporal-Characteristic-of-the-QRS-�Complex
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0150144.s001
http://dx.doi.org/10.1007/s10916-009-9405-3
http://www.ncbi.nlm.nih.gov/pubmed/20703782
http://dx.doi.org/10.1007/s10916-010-9551-7
http://www.ncbi.nlm.nih.gov/pubmed/20703646

@’PLOS ‘ ONE

Simple and Robust Realtime QRS Detection Algorithm

10.

1.

12

13.

14.

15.

16.

17.
18.

19.

20.

21.

22,

23.

Kim J, Shin HS, Shin K, Lee M. Robust algorithm for arrhythmia classification in ECG using extreme
learning machine. Biomedical engineering online. 2009; 8:31. doi: 10.1186/1475-925X-8-31 PMID:
19863819

Paoletti M, Marchesi C. Discovering dangerous patterns in long-term ambulatory ECG recordings using
a fast QRS detection algorithm and explorative data analysis. Computer methods and programs in bio-
medicine. 2006; 82(1):20-30. doi: 10.1016/J.Cmpb.2006.01.005 PMID: WOS:000237046600003.

Friesen GM, Jannett TC, Jadallah MA, Yates SL, Quint SR, Nagle HT. A comparison of the noise sensi-
tivity of nine QRS detection algorithms. IEEE transactions on bio-medical engineering. 1990; 37(1):85—
98. doi: 10.1109/10.43620 PMID: 2303275.

Kohler BU, Hennig C, Orglmeister R. The principles of software QRS detection. IEEE engineering in
medicine and biology magazine: the quarterly magazine of the Engineering in Medicine & Biology Soci-
ety. 2002; 21(1):42-57. PMID: 11935987.

Portet F, Hernandez Al, Carrault G. Evaluation of real-time QRS detection algorithms in variable con-
texts. Medical & biological engineering & computing. 2005; 43(3):379-85. PMID: 16035227.

Adnane M, Jiang Z, Choi S. Development of QRS detection algorithm designed for wearable cardiore-
spiratory system. Computer methods and programs in biomedicine. 2009; 93(1):20-31. doi: 10.1016/j.
cmpb.2008.07.010 PMID: 18786742.

Afonso VX, Tompkins WJ, Nguyen TQ, Luo S. ECG beat detection using filter banks. IEEE T Bio-Med
Eng. 1999; 46(2):192—202. doi: 10.1109/10.740882 PMID: WOS:000078211900009.

Chen SW, Chen HC, Chan HL. A real-time QRS detection method based on moving-averaging incorpo-
rating with wavelet denoising. Computer methods and programs in biomedicine. 2006; 82(3):187-95.
doi: 10.1016/j.cmpb.2005.11.012 PMID: 16716445.

Christov Il. Real time electrocardiogram QRS detection using combined adaptive threshold. Biomedical
engineering online. 2004; 3(1):28. PMID: 15333132

Lee J, Jeong K, Yoon J, Lee M, editors. A simple real-time QRS detection algorithm. Engineering in
Medicine and Biology Society, 1996 Bridging Disciplines for Biomedicine Proceedings of the 18th
Annual International Conference of the IEEE; 1996: IEEE.

Li CW, Zheng CX, Tai CF. Detection of ECG Characteristic Points Using Wavelet Transforms. IEEE T
Bio-Med Eng. 1995; 42(1):21-8. PMID: WOS:A1995QA317000083.

Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE transactions on bio-medical engineer-
ing. 1985; 32(3):230-6. doi: 10.1109/TBME.1985.325532 PMID: 3997178.

Tabakov S, lliev |, Krasteva V. Online digital filter and QRS detector applicable in low resource ECG
monitoring systems. Annals of biomedical engineering. 2008; 36(11):1805—-15. doi: 10.1007/s10439-
008-9553-5 PMID: 18752068.

Yeh YC, Wang WJ. QRS complexes detection for ECG signal: the Difference Operation Method. Com-
puter methods and programs in biomedicine. 2008; 91(3):245-54. doi: 10.1016/j.cmpb.2008.04.006
PMID: 18547674.

Mark R, Moody G. MIT-BIH arrhythmia database 1997. URL http://ecgmit.edu/dbinfo.html. 1997.

Hermes RE, Geselowitz DB, Oliver GC. Development, distribution, and use of the American Heart
Association database for ventricular arrhythmia detector evaluation. Comput Cardiol. 1980:263—6.

Bruch C, Schmermund A, Dagres N, Bartel T, Caspari G, Sack S, et al. Changes in QRS voltage in car-
diac tamponade and pericardial effusion: reversibility after pericardiocentesis and after anti-inflamma-
tory drug treatment. Journal of the American College of Cardiology. 2001; 38(1):219-26. PMID:
11451278.

Dotsinsky IA, Stoyanov TV. Ventricular beat detection in single channel electrocardiograms. Biomedi-
cal engineering online. 2004; 3:3. doi: 10.1186/1475-925X-3-3 PMID: 14750981; PubMed Central
PMCID: PMC356927.

Kunzmann U, Wagner G, Schéchlin J, Bolz A. Parameter extraction of ECG signals in real-time. Biome-
dizinische Technik/Biomedical Engineering. 2002; 47(s1b):875-8.

So H, Chan K, editors. Development of QRS detection method for real-time ambulatory cardiac monitor.
Engineering in Medicine and Biology Society, 1997 Proceedings of the 19th Annual International Con-
ference of the IEEE; 1997: IEEE.

Tan K, Chan K, Choi K, editors. Detection of the QRS complex, P wave and T wave in electrocardio-
gram. Advances in Medical Signal and Information Processing, 2000 First International Conference on
(IEE Conf Publ No 476); 2000: IET.

PLOS ONE | DOI:10.1371/journal.pone.0150144 March 4, 2016 13/13


http://dx.doi.org/10.1186/1475-925X-8-31
http://www.ncbi.nlm.nih.gov/pubmed/19863819
http://dx.doi.org/10.1016/J.Cmpb.2006.01.005
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000237046600003
http://dx.doi.org/10.1109/10.43620
http://www.ncbi.nlm.nih.gov/pubmed/2303275
http://www.ncbi.nlm.nih.gov/pubmed/11935987
http://www.ncbi.nlm.nih.gov/pubmed/16035227
http://dx.doi.org/10.1016/j.cmpb.2008.07.010
http://dx.doi.org/10.1016/j.cmpb.2008.07.010
http://www.ncbi.nlm.nih.gov/pubmed/18786742
http://dx.doi.org/10.1109/10.740882
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000078211900009
http://dx.doi.org/10.1016/j.cmpb.2005.11.012
http://www.ncbi.nlm.nih.gov/pubmed/16716445
http://www.ncbi.nlm.nih.gov/pubmed/15333132
http://www.ncbi.nlm.nih.gov/pubmed/WOS:A1995QA31700003
http://dx.doi.org/10.1109/TBME.1985.325532
http://www.ncbi.nlm.nih.gov/pubmed/3997178
http://dx.doi.org/10.1007/s10439-008-9553-5
http://dx.doi.org/10.1007/s10439-008-9553-5
http://www.ncbi.nlm.nih.gov/pubmed/18752068
http://dx.doi.org/10.1016/j.cmpb.2008.04.006
http://www.ncbi.nlm.nih.gov/pubmed/18547674
http://ecgmit.edu/dbinfo.html
http://www.ncbi.nlm.nih.gov/pubmed/11451278
http://dx.doi.org/10.1186/1475-925X-3-3
http://www.ncbi.nlm.nih.gov/pubmed/14750981

