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Abstract
The impact of acute mountain sickness (AMS) and sleep disturbances on mood 
and cognition at two altitudes relevant to the working and tourist population is 
unknown. Twenty unacclimatized lowlanders were exposed to either 3000  m 
(n = 10; 526 mmHg) or 4050 m (n = 10; 460 mmHg) for 20 h in a hypobaric chamber. 
AMS prevalence and severity was assessed using the Environmental Symptoms 
Questionnaire (ESQ) and an AMS-C score ≥ 0.7 indicated sickness. While sleep-
ing for one night both at sea level (SL) and high altitude (HA), a wrist motion 
detector was used to measure awakenings (Awak, events/h) and sleep efficiency 
(Eff, %). If Eff was ≥85%, individuals were considered a good sleeper (Sleep+). 
Mood and cognition were assessed using the Automated Neuropsychological 
Assessment Metric and Mood Scale (ANAM-MS). The ESQ and ANAM-MS 
were administered in the morning both at SL and after 20 h at HA. AMS severity 
(mean ± SE; 1.82 ± 0.27 vs. 0.20 ± 0.27), AMS prevalence (90% vs. 10%), depres-
sion (0.63 ± 0.23 vs. 0.00 ± 0.24) Awak (15.6 ± 1.6 vs. 10.1 ± 1.6 events/h), and 
DeSHr (38.5 ± 6.3 vs. 13.3 ± 6.3 events/h) were greater (p < 0.05) and Eff was 
lower (69.9 ± 5.3% vs. 87.0 ± 5.3%) at 4050 m compared to 3000 m, respectively. 
AMS presence did not impact cognition but fatigue (2.17 ± 0.37 vs. 0.58 ± 0.39), 
anger (0.65 ± 0.25 vs. 0.02 ± 0.26), depression (0.63 ± 0.23 vs. 0.00 ± 0.24) and 
sleepiness (4.8 ± 0.4 vs. 2.7 ± 0.5) were greater (p < 0.05) in the AMS+ group. 
The Sleep− group, compared to the Sleep+ group, had lower (p < 0.05) working 
memory scores (50  ±  7 vs. 78  ±  9) assessed by the Sternberg 6-letter memory 
task, and lower reaction time fatigue scores (157  ±  17 vs. 221  ±  22), assessed 
by the repeated reaction time test. Overall, AMS, depression, DeSHr, and Awak 
were increased (p < 0.05) at 4050 m compared to 3000 m. In addition, AMS pres-
ence impacted mood while poor sleep impacted cognition which may deteriorate 
teamwork and/or increase errors in judgement at HA.
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1   |   INTRODUCTION

Each year, millions of tourists (Basnyat, 2014), mountain-
eers (Keyes et al., 2016), athletes (Burtscher et al., 2018), 
military personnel (Caldwell et al., 2009), and workers 
(West, 2002) are rapidly exposed to hypobaric hypoxia 
equivalent to 3000–4000 m altitude. Decrements in mood 
(Bahrke & Shukitt-Hale, 1993; Banderet et al., 2002), 
cognition (Banderet et al., 2002; McMorris et al., 2017; 
Virues-Ortega et al., 2004), and sleep quality and quan-
tity (Ainslie et al., 2013; Bloch et al., 2015) occur following 
rapid ascent to high altitude (HA) in unacclimatized low-
landers. In addition, acute mountain sickness (AMS), the 
most common altitude illness, increases in prevalence and 
severity following rapid ascent as a function of altitude at-
tained (Beidleman et al., 2013). Symptoms, if severe, may 
completely incapacitate an individual's ability to perform 
their job (Roach et al., 2002). Symptoms of AMS, sleep 
quality and quantity, and impairments to mood and cogni-
tion are usually worst within the first 24–48 h of HA expo-
sure and largely resolve thereafter (Banderet et al., 2002; 
Beidleman et al., 2013; Bloch et al., 2015; Virues-Ortega 
et al., 2004). Furthermore, mood and cognition may be 
impacted by AMS and sleep disturbances independent 
of the impairments inflicted by hypobaric hypoxia alone 
(Aquino Lemos et al., 2012; Crowley et al., 1992; Heinrich 
et al., 2019). Although each of these topics has been re-
viewed individually in the literature (Ainslie et al., 2013; 
Bahrke & Shukitt-Hale, 1993; Banderet et al., 2002; Bloch 
et al., 2015; Hackett & Roach, 2001; McMorris et al., 2017; 
Virues-Ortega et al., 2004), a comprehensive examination 
of the influence of AMS and sleep disturbances on mood 
and cognition at two altitudes (e.g., 3000 and 4050 m) rel-
evant to the tourist and working populations has not been 
conducted.

AMS is characterized by headache, gastrointestinal 
distress, lightheadedness, and fatigue (Hackett & Roach, 
2001) and in some individuals poor sleep (Ainslie et al., 
2013), and can be provoked by acute ascents to as low as 
2500 m (Beidleman et al., 2013). Those with AMS typically 
demonstrate negative mood dispositions at HA (Crowley 
et al., 1992; Shukitt-Hale et al., 1991) but the relationship 
between AMS and cognition is equivocal given that cog-
nitive decrements typically occur prior to the manifesta-
tion of AMS and resolve while AMS is peaking (Bahrke & 
Shukitt-Hale, 1993; Banderet et al., 2002). Disturbances in 
sleep can be observed as low as 1600 m (Latshang et al., 
2013) and are nearly universal above 4000  m (Ainslie 

et al., 2013). Travelers to HA experience frequent arousals 
due to the characteristic waxing and waning of ventila-
tion and often awake feeling unrefreshed (Ainslie et al., 
2013; Bloch et al., 2015). Several studies at altitude (3650–
4500  m) have demonstrated a negative impact of poor 
sleep on mood (Aquino Lemos et al., 2012; Heinrich et al., 
2019) and cognition (Aquino Lemos et al., 2012; Kong 
et al., 2011).

Much of the previous research suggests a threshold 
altitude of 3000 m before decrements in mood and cog-
nition emerge (Bahrke & Shukitt-Hale, 1993; Banderet 
et al., 2002; Fowler et al., 1987; Li, Wu, Fu, Shen, Wu, et al., 
2000; Li, Wu, Fu, Shen, Yang, et al., 2000), though many 
confounding factors contribute to discrepant findings be-
tween studies including altitude attained and the timing 
of measurements (Petrassi et al., 2012). Another cause of 
ambiguity in the mood and cognitive literature is the pleth-
ora of tests (≥100) utilized as well as the sheer number 
of mood and cognitive domains assessed (Petrassi et al., 
2012; Virues-Ortega et al., 2004). Cognitive domains range 
from simple to complex and are not uniformly affected 
by altitude exposure (Banderet et al., 2002; Petrassi et al., 
2012). A strength of the Automated Neuropsychological 
Assessment Metric and Mood Scale (ANAM-MS) is a de-
cade's long record of use and direct linkage, for perfor-
mance comparisons, to archival research literature (Lowe 
et al., 2007; Lowe & Reeves, 2002).

The altitude range from 3000 to 4000 m appears to be 
particularly relevant to the tourist and working popula-
tions mentioned above and encompasses the threshold 
where AMS, mood disturbances, cognitive impairments, 
and sleep disturbances are first observed (Ainslie et al., 
2013; Banderet et al., 2002; Hackett & Roach, 2001). The 
purpose of this study was to examine the influence of 
AMS and sleep on mood and cognition at two altitudes 
(3000 and 4050  m) using the ANAM-MS under con-
trolled environmental, activity, and ascent conditions. 
We hypothesized that (1) altitude would impact AMS 
symptomatology and sleep disturbances with greater 
symptoms and disturbances at 4050  m compared to 
3000 m, (2) altitude would impact mood and cognition 
with greater disturbances at 4050 m compared to 3000 m, 
(3) those individuals susceptible to AMS, regardless of 
altitude, would experience greater decrements in mood 
and cognition at HA, and (4) those individuals suscep-
tible to sleep disturbances, regardless of altitude, would 
experience greater decrements in mood and cognition 
at HA.

K E Y W O R D S
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2   |   METHODS AND MATERIALS

2.1  |  Volunteers

This study was approved by the Institutional Review Board 
at the U.S. Army Research Institute of Environmental 
Medicine (USARIEM) and conformed to the Declaration 
of Helsinki. All volunteers provided written and verbal ac-
knowledgment of their informed consent and were made 
aware of their right to withdraw without prejudice at any 
time. Investigators adhered to the policies for protection 
of human subjects as prescribed in Department of Defense 
Instruction 3216.02, and the research was conducted in 
adherence with 32 CFR Part 219. All volunteers were 
healthy, well nourished, physically active, non-smokers 
with hematologic and ferritin values in the normal range. 
Age range was limited to 18–39 year olds, and all exhibited 
normal pulmonary function at sea level (SL, 756 mmHg). 
None had been diagnosed with a sleep disorder. All vol-
unteers were born at <1500  m, were currently living at 
SL, and had no recent exposures to HA. Data was lost for 
a volunteer in the 3000 m group due to a technical error 
and this participant was dropped from analysis. Physical 
characteristics were determined at SL and are presented 
in Table 1 for the entire cohort as well as by altitude group.

2.2  |  Study design

The study was a randomized, single-blind study conducted 
over a 14-day period in two phases in the following order: 
(1) 4  days at SL (50  m, 756  mmHg) for baseline testing 
and (2) a 20 h over-night, exposure to 3000 m (526 mmHg) 
or 4050 m (460 mmHg) altitude in a hypobaric chamber. 
AMS, mood states, and cognitive performance were as-
sessed every morning over 4 days at SL to achieve a stable 
baseline. The mean of the third and fourth administration 
at SL was used as the baseline record. The following week, 
volunteers rapidly ascended to their assigned altitude in 
a hypobaric chamber over a 15-min period (regardless of 
altitude) at around noon and left the hypobaric chamber 
~20 h later. Following the initial ascent and a rest period, 
all volunteers underwent 3 h of walking exercise (40 min 
on and 20 min off) on a treadmill conducted at ~40% of 

SL peak oxygen uptake (VO2peak) to simulate light on/
off exercise under controlled environmental (20  ±  2°C; 
40  ±  5%) conditions. Mood, cognitive performance, and 
AMS assessments were obtained the following morning 
after sleeping overnight in the hypobaric chamber, 20 h 
after ascent (HA20). All measurements were taken at the 
same time, regardless of group, and all volunteers were 
awakened at ~6:30 am to begin measurements. None of 
the volunteers used any type of medication. During both 
phases of the study, volunteers had ad libitum access to 
the foods and liquids available. Stouffers frozen dinners, 
or Hot Pockets supplemented with snack bars, fresh fruits, 
juices, milk and sport beverages were available.

2.3  |  Study measures

2.3.1  |  Peak oxygen uptake

An incremental, progressive exercise bout to volitional ex-
haustion on a treadmill was used to assess VO2peak during 
the SL baseline phase. Measurements of O2 uptake were 
obtained using a metabolic cart (True Max 2400; Parvo 
Medics) using a previously described protocol (Kenefick 
et al., 2019). The data obtained fromVO2peak testing was 
used to calculate the treadmill speeds and grades to elicit 
the desired 40% SL VO2peak during the walking exercise.

2.4  |  Acute mountain sickness

The prevalence and severity of AMS was determined from 
information gathered using the Environmental Symptoms 
Questionnaire (ESQ; Sampson et al., 1983). The shortened 
electronic version of the ESQ, which is a self-reported 
11-question inventory, was used to quantify a weighted 
AMS cerebral factor score (AMS-C), and AMS was judged to 
be present if AMS-C was ≥0.7 (Beidleman et al., 2007). The 
ESQ was utilized instead of the Lake Louise Questionnaire 
(LLQ) due to the discord in AMS diagnosis criteria from 
LLQ scoring. Some researchers use a cutoff value of ≥3 plus 
headache to define AMS (Roach et al., 1993) while others 
utilize ≥4 plus headache (Maggiorini et al., 1998) or ≥5 plus 
headache (Wagner et al., 2012). Directly after completion of 

Sex 
(M/F)

Age 
(year)

Height 
(cm)

Weight 
(kg)

VO2peak 
(ml kg−1 min−1)

3000 m (n = 10) 9/1 21.0 ± 0.8 173.5 ± 2.5 81.4 ± 4.2 46.1 ± 2.0

4050 m (n = 10) 8/2 23.6 ± 1.9 173.4 ± 3.4 72.6 ± 3.9 45.5 ± 1.5

Combined 
(n = 20)

17/3 22.3 ± 1.0 173.45 ± 2.1 77.0 ± 3.0 45.8 ± 1.2

T A B L E  1   Demographic sea-
level characteristics of both groups of 
unacclimatized lowlanders (mean ± SE)
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the questionnaire, resting heart rate (HR) and pulse arterial 
oxygen saturation (SpO2) were assessed with pulse oxime-
try (Model 8600; Nonin Medical) for 2 min and the mean for 
each was calculated.

2.5  |  Sleep assessment

An actigraph (Motion Logger, Ambulatory Monitoring, 
Inc.) was used to differentiate sleep from wakefulness based 
on wrist movement. Estimation of sleep by actigraphy has a 
high level of correlation with sleep estimation by polysom-
nography (Cole et al., 1992; Souza et al., 2003). Volunteers 
wore the actigraph on the wrist of their dominant hand and 
pressed an event button when they lay down to sleep and 
again on waking up in the morning. Recordings between 
the two events were analyzed for sleep awakenings (Awak, 
events/h), total time in bed (min), total sleep time (min), 
and sleep efficiency (Eff, %). Eff was calculated as total sleep 
time divided by the total time in bed and multiplied by 100. 
Data were recorded using zero crossing mode (ZCM) in 
1-min epochs. Automated analysis was performed using 
the Cole-Kripke algorithm on the ZCM channel at a 1-min 
sample rate (Action 4 version 1.13; Ambulatory Monitoring 
Inc.; Cole et al., 1992; Souza et al., 2003). If the Eff was 
≥85%, individuals were considered a good sleeper (Sleep+) 
and otherwise considered a poor sleeper (Sleep−; Ohayon 
et al., 2017).

A pulse oximeter, worn on the non-dominant hand, 
was used to measure nocturnal SpO2 and HR (Nonin 3100 
WristOx; Nonin Medical, Inc.). Study volunteers were in-
structed to put on the pulse oximeter when they went to bed 
and to remove the pulse oximeter the next morning when 
they got out of bed. Compatible software was used to deter-
mine mean sleep pulse oxygen saturation (S-SpO2, %), sleep 
heart rate (S-HR, beats/min), and relative desaturations 
(DeSHr, events/h) defined as >4% drop in oxygen satura-
tion for a minimum of 10 s (nVISION Version 6.3j, Nonin 
Medical, Inc.; Ruehland et al., 2009). All volunteers wore the 
same actigraph and pulse oximeter throughout the study.

2.6  |  Mood state

Mood states were assessed using the Automated 
Neuropsychological Assessment Metrics Mood Scale 
(ANAM-MS), a valid and reliable assessment tool when 
compared to concurrent, well-validated measures of mood 
(Johnson et al., 2008). The ANAM-MS was given in com-
puterized format using a 0–6, visual analog Likert scale 
to express how well 42 adjectives describe the volunteers' 
mood state. These 42 adjectives represent seven dimen-
sions of mood including vigor, restlessness, depression, 

anger, fatigue, anxiety, and happiness. Mean ratings 
are computed for each scale with higher values reflect-
ing a greater degree of endorsement of each of the mood 
states. The Stanford sleepiness scale is validated (Hoddes 
et al., 1973) and was incorporated in the ANAM-MS. The 
Stanford Sleepiness Scale uses a 1–7, visual analog Likert 
scale to quantify volunteers' sleepiness.

2.7  |  Cognitive performance assessment

Ten ANAM modules (Reeves et al., 2002) were utilized to 
assess cognitive performance: code substitution learning 
(CDS), code substitution delayed memory (CDD), match 
to sample, mathematical processing, go-no-go, simple 
reaction time, procedural reaction time, simultaneous 
spatial processing, Sternberg 6-letter memory (ST6), and 
simple reaction time 2 (SRT2). Throughput scores, which 
take into consideration both speed and accuracy, or per-
cent correct (for tests without throughput scores) were 
used for the analyses. Time to complete all cognitive tests 
differed for each individual but was approximately 30 min 
from start to finish. These tests and the cognitive domains 
assessed have been described previously (Reeves et al., 
2007) (Table 2).

2.8  |  Statistical analysis

Data normality was tested using the Shapiro Wilk test 
and if parameters failed to meet normality, data was 
log transformed for analysis. Homogeneity of variance 
was checked using Levene's test and none of the vari-
ables violated this assumption after log transformation. A 
repeated-measures mixed ANOVA (SPSSv24; IBM) with 
one independent factor (group; 3000 and 4050  m) and 
one repeated-measures factor (condition; SL and HA20) 
was used to analyze the AMS-C, sleep, mood and cogni-
tion data. In addition, repeated-measures mixed ANOVAs 
were used to analyze the data with AMS group (AMS+ 
and AMS−) and sleep group (Sleep+ and Sleep−), as in-
dependent factors, regardless of altitude. Tukey post-hoc 
tests were used to follow up on main and interaction ef-
fects. AMS prevalence was analyzed using SAS PROC 
GLIMMIX (SAS 9.2, Cary, NC) across conditions (SL and 
HA20). Pearson correlation coefficients were utilized to 
examine relationships between AMS-C and mood/cog-
nitive performance scores; and, between sleep measures 
and mood/cognitive performance scores. Sample-size 
analysis indicated that a sample size of 8–10 individuals 
would detect a 0.7 point difference in AMS-C, 50 ms dif-
ference in simple reaction time, and 100 point difference 
in code substitution throughput with 80% power at the 



      |  5 of 15FIGUEIREDO et al.

0.05 confidence level (Heinrich et al., 2019; Roach et al., 
2014; Seo et al., 2015). Statistical significance was set at 
p < 0.05. All data are reported as mean ± SE.

3   |   RESULTS

3.1  |  Impact of altitude on AMS and 
resting physiologic measures

Figure 1 presents the prevalence and severity of AMS, 
resting HR, and resting SpO2 for both altitude groups at SL 
and HA20. The AMS prevalence and severity was higher 
(p  <  0.0002) in the 4050  m compared to 3000  m group. 
Both groups demonstrated significant increases (p < 0.05) 
in resting HR and decreases in SpO2. In addition, resting 
HR was 19% higher (p = 0.009) and SpO2 was 6% lower 
(p = 0.001) in the 4050 m compared to the 3000 m group.

3.2  |  Impact of altitude on cognitive 
performance and mood states

Table A1 presents the ANAM-MS results for cognition 
and mood for both altitude groups (3000 m vs. 4050 m) 
in each condition (SL and HA20). None of the cognitive 
performance modules expressed a significant group, con-
dition, or interaction effect. The 4050 m group exhibited 
higher (p = 0.005) ratings of depression than the 3000 m 
group at HA20. Ratings of fatigue, restlessness, sleepiness 
increased while vigor decreased (p < 0.05) in the 4050 m 
group from SL to HA20.

3.3  |  Impact of altitude on sleep 
disturbances

Table A1 presents the sleep data for both altitude groups 
in each condition (SL and HA20). Sleep was negatively 

impacted (p < 0.05) at HA20 in both groups but more so in 
the 4050 m group. The S-SpO2 was 15% lower (p = 0.0002) 
and S-HR was 28% higher (p  =  0.0002) in the 4050  m 
group compared to the 3000  m group at HA20. Awak 
(events/h) were 54% higher (p = 0.03), DeSHr (events/h) 
were 300% higher (p = 0.004), and sleep Eff (%) was 17% 
lower (p  =  0.03) in the 4050  m group compared to the 
3000 m group at HA20.

3.4  |  Impact of AMS presence on 
cognitive performance and mood states

One participant from the 3000 m group and nine partici-
pants from the 4050 m group were a posteriori allocated 
to the AMS+group while eight participants from the 
3000 m group and one participant from the 4050 m group 
were allocated to the AMS− group. Table A2 presents the 
ANAM-MS results for cognition and mood by condition 
(SL and HA20) using AMS presence (AMS+ and AMS−) 
as the group factor. None of the cognitive performance 
modules expressed a significant group, condition, or in-
teraction effect. Anger, depression, fatigue and sleepi-
ness were higher (p < 0.05) in the AMS+compared to the 
AMS- group. Restlessness increased while vigor decreased 
(p  <  0.05) from SL to HA20 only in the AMS+group. 
Among all study volunteers, AMS-C significantly cor-
related with anxiety (r  =  0.60, p  =  0.007), depression 
(r = 0.59, p = 0.008), restlessness (r = 0.63, p = 0.004), 
vigor (r  =  −0.47, p  =  0.04), and sleepiness (r  =  0.70, 
p = 0.001) at HA20.

3.5  |  Impact of sleep on cognitive 
performance and mood states

Six participants from the 3000 m and one from the 4050 m 
group were a posteriori allocated to the Sleep+ group 
while three participants from the 3000 m group and nine 

Module Cognitive domain

CDS Visual search, sustained attention, working memory

CDD Sustained attention, working memory, learning

M2S Spatial processing, visuospatial working memory

MTH Computational skills, concentration, working memory

GNG Executive function, decision-making, processing speed

SRT Processing speed

PRT Processing speed, attention

SPD Spatial processing

ST6 Working Memory

SRT2 Cognitive fatigue, processing speed

T A B L E  2   Automated 
Neuropsychological Assessment Metric 
(ANAM) module clarifications
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participants from the 4050 m group were allocated to the 
Sleep− group. Table A3 presents the ANAM-MS results 
for cognition and mood by condition (SL and HA20) using 
sleep quality (Sleep+ and Sleep−) as the group factor. The 
ST6 working memory scores were 56% higher (p = 0.020) 
and SRT2 scores were 29% higher (p  =  0.048) in the 
Sleep+ compared to the Sleep− group at HA20. Sleepiness 
and restlessness was increased, and vigor was decreased 
(p  <  0.05) from SL to HA20 only in the Sleep− group. 
Sleepiness was higher and vigor was lower (p < 0.05) in 

the Sleep− group compared to the Sleep+ group at HA20. 
Among all study volunteers, Awak was significantly cor-
related with learning, as measured by CDD (r  =  −0.51, 
p = 0.025).

4   |   DISCUSSION

These two altitudes were selected as they were expected 
to impose a moderate and large hypoxic strain and induce 

F I G U R E  1   Impact of altitude on acute mountain sickness (AMS) and resting physiologic measures. All data presented as mean ± SE. 
(a) AMS severity (AMS-C), (b) AMS prevalence (%), (c) resting heart rate (bpm), (d) resting SpO2 (%) at sea level (SL) and after 20 h of 
simulated altitude exposure (HA20). *p < 0.05 from SL; †p < 0.05 between groups at HA20
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differences in AMS prevalence and severity (Beidleman 
et al., 2013), mood and cognition (Li, Wu, Fu, Shen, Wu, 
et al., 2000; Li, Wu, Fu, Shen, Yang, et al., 2000; Shukitt-
Hale et al., 1998), and sleep disturbances (Ainslie et al., 
2013; Bloch et al., 2015). The desired effect was attained 
with a clear divergence between altitude groups in the 
prevalence and severity of AMS, resting HR and SpO2, 
S-HR and S-SpO2, Awak, Eff, and DeSHR at HA20. Our 
findings support some but not all of our hypotheses. 
Altitude impacted AMS symptomatology and sleep dis-
turbances with greater symptoms and disturbances 
at 4050  m compared to 3000  m but had no impact on 
mood and cognition, except for an increase in depres-
sion in the 4050 m group. Those individuals susceptible 
to AMS, regardless of altitude, did not experience greater 
decrements in cognition but fatigue, anger, depression, 
and sleepiness were increased in the AMS+compared to 
AMS- individuals. Last, those individuals susceptible to 
sleep disturbances, regardless of altitude, demonstrated 
poorer working memory performance and decreased re-
action time as well as increased ratings of sleepiness and 
decreased ratings of vigor at HA20. Increased AMS sever-
ity was associated with mood disturbances in five out of 
the eight mood indices while increases in Awak were as-
sociated with impairments in working memory/learning 
(CDD) in participants, regardless of grouping.

4.1  |  Altitude: Impact on AMS, sleep, 
cognition and mood

The foremost consideration when traveling or work-
ing at altitude is the altitude attained given the grow-
ing reduction in O2 delivery to the working muscles 
and brain with increasing altitude (Hackett & Roach, 
2001). Our measures of resting HR and SpO2 (Crowley 
et al., 1992; Kenefick et al., 2019), AMS prevalence and 
severity (Beidleman et al., 2013; Kenefick et al., 2019), 
and all sleep variables are in agreement with previ-
ously published reports (Aquino Lemos et al., 2012; 
Heinrich et al., 2019; Latshang et al., 2013) at similar 
altitudes. While it has been demonstrated that men suf-
fer from poorer sleep at altitude than women (Ainslie 
et al., 2013), our female volunteers were equally spread 
throughout the groups having minimal impact on 
analysis. It is worth noting that the simulated activity 
at altitude was standardized to ⁓40% of SLVO2peakand 
that the 4050 m was therefore working at a higher rela-
tive exercise intensity in the early hours of altitude ex-
posure. This confounding influence may (Roach et al., 
2000) or may not (Schommer et al., 2012) have contrib-
uted to higher AMS levels in the 4050  m group com-
pared to the 3000 m group.

There was no effect of altitude on cognitive perfor-
mance in the current study despite the wide array of cog-
nitive domains tested with the ANAM-MS. A priori, we 
hypothesized that various ANAM modules would express 
a greater decrement in the 4050 m group as it has been 
generally accepted that cognitive performance declines 
above 3000  m (Banderet et al., 2002; Cudaback, 1984; 
Fowler et al., 1987; Li, Wu, Fu, Shen, Yang, et al., 2000). 
Complex and unfamiliar tasks have been shown to be the 
most susceptible to hypoxia compared to simple or pre-
viously mastered tasks (Banderet et al., 2002; Cudaback, 
1984). Lack of agreement among studies may be related to 
ascent profiles, duration of exposure, cognitive tests used, 
medications and uncontrolled environmental conditions 
(Petrassi et al., 2012).

Previous research provides strong evidence for the di-
rect role of hypoxemia, expressed as SpO2 (Fowler et al., 
1987; Li, Wu, Fu, Shen, Yang, et al., 2000; McMorris et al., 
2017; Van der Post et al., 2002) on cognitive performance 
decrements at altitude. The apparent relationship be-
tween SpO2 and cognitive performance (Banderet et al., 
2002; Fowler et al., 1987; Li, Wu, Fu, Shen, Yang, et al., 
2000; Van der Post et al., 2002) was not prominent within 
the current study with no correlation between SpO2 and 
ANAM results at HA20. Previous researchers have found 
a threshold for cognitive performance decrements in acute 
hypoxia (≤120 min) at SpO2 levels below 82% (Fowler et al., 
1987; Li, Wu, Fu, Shen, Yang, et al., 2000; Van der Post 
et al., 2002). By HA20, the 3000 and 4050 m groups had 
SpO2 levels of 91 and 85%, respectively, most likely due 
to ventilatory acclimatization. This may explain why our 
results deviated from previous literature and our hypoth-
esis. Our volunteers may have acclimated over the 20 h of 
altitude exposure and may have compensated enough that 
cognitive performance decrements were marginal at the 
time of measurement.

Our findings of mood disturbances during HA expo-
sure are in agreement with the majority of literature on 
the subject (Shukitt & Banderet, 1988; Shukitt-Hale et al., 
1990, 1998). Five out of the eight mood indices were neg-
atively disturbed at HA20 in the 4050 m group. In concert 
with our observations, other researchers have also sug-
gested the threshold for mood disturbances to be >3000 m 
(Banderet et al., 2002; Li, Wu, Fu, Shen, Wu, et al., 2000; 
Shukitt-Hale et al., 1990). Changes in sleepiness and vigor 
in the 4050 m group supported our hypothesis while no 
changes in mood in the 3000 m group was contrary to our 
hypothesis.

A possible factor for the lack of change in mood in the 
3000 m group is the timing of measurements and lack of 
AMS. Li, Wu, Fu, Shen, Wu, et al. (2000) found that mood 
states deviated from baseline at 2800  m but returned to 
baseline over a 1 h exposure while all mood disturbances 
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at 3600–4400 m lasted throughout a 1 h exposure. In the 
current study, the volunteers acclimatized for 20 h which 
allowed for the confounding impact of acclimatization. In 
addition, Crowley et al. (1992) found that volunteers af-
flicted by AMS accounted for most of the overall changes 
in mood over a 2.5 day exposure to 4300 m.

4.2  |  AMS susceptibility: Impact on 
cognition and mood

At HA20, our volunteers were equally split as “sick” and 
“not sick” with the afflicted group demonstrating greater 
mood disturbances. When AMS group was utilized as the 
independent grouping factor, six out of eight of the moods 
demonstrated significant differences. When all volunteers 
were pooled, the moderate correlations between mood 
and AMS-C score supported the expected relationship. 
Other researchers have reported similar relationships 
between AMS and mood (Crowley et al., 1992; Forster, 
1985; Shukitt-Hale et al., 1990, 1991). This relationship is 
supported by the similar time lines of AMS and mood dis-
turbances, which both tend to be fully ameliorated after 
⁓48–72 h of exposure (Shukitt & Banderet, 1988).

AMS is associated with an ascent too fast for the body 
to acclimatize to the rapid drop in PaO2 (Berger et al., 
2019; Virues-Ortega et al., 2004). Neuropsychological 
alterations are associated with a reduced PaO2 in the or-
ganism independent of acclimatization (McMorris et al., 
2017; Virues-Ortega et al., 2004). Hypobaric hypoxia can 
cause both AMS and cognitive performance decrements, 
however they can occur independently of each other with 
large individual variability (Berger et al., 2019). As the 
differing timelines suggest (Banderet et al., 2002), AMS 
development and cognitive performance decrements do 
not seem to be related in the current study. While some 
have found correlations between AMS and cognitive per-
formance decrements (Forster, 1985; Shukitt-Hale et al., 
1991), others have not (Abraini et al., 1998; Beidleman 
et al., 2017; Kramer et al., 1993) and it is generally believed 
they are not directly related (Shukitt-Hale et al., 1991; 
Virues-Ortega et al., 2004).

4.3  |  Sleep: Impact on 
cognitionand mood

At HA, the groups were split into good and poor sleepers 
as measured using an established sleep efficiency cutoff 
value (Ohayon et al., 2017). The impact of sleep groups 
on next day sleepiness was anticipated. The ANAM 
modules that reflect working memory (ST6) and men-
tal fatigue (SRT2) were impacted by poor sleep. These 

findings are similar to what has been observed in other 
studies at both SL (Findley et al., 1986) and HA (Aquino 
Lemos et al., 2012; Kong et al., 2011). When comparing 
sleep apnea patients with and without accompanying hy-
poxemia, Findley et al. (1986) found that the sleep apnea 
with hypoxemia group had significantly lower scores in 
four of eight cognitive performance tests and had double 
the desaturations per hour during sleep. Additionally, in 
a cohort of 230 soldiers stationed at HAs (3500–5800 m), 
scores on the Pittsburg Sleep Quality Index, inversely 
correlated with intelligence quotient (IQ) score and both 
long- and short-term memory (Kong et al., 2011). In this 
study, poor sleep quality was an independent predictor of 
impaired IQ and digit symbol score (short-term memory) 
(Kong et al., 2011). Roach et al. also found a decrement in 
SRT2, a measure of cognitive fatigue, at 5200 m with no 
decrements reported in SRT which is consistent with our 
results (Roach et al., 2014).

Similarly, the Sleep+ and Sleep− groups in the cur-
rent study differed in DeSHr at HA20 (9.7  events/h vs. 
33.4  events/h) while both groups experienced similar 
levels of nocturnal hypoxemia (83% vs. 79%,). Like sleep 
apnea at SL, the periodic breathing associated with sleep 
at altitude causes intermittent hypoxia (IH) beyond the 
continuous hypoxia experienced from altitude alone 
(Bloch et al., 2015). IH has been shown to have benefi-
cial adaptations and maladaptations depending on the 
frequency, severity, and duration of the desaturations 
(Almendros et al., 2014). While continuous hypoxia pro-
motes increased expression and activity in both hypoxia-
inducible factor 1-alpha (HIF-1α) and HIF-2α, acute IH 
upregulates HIF-1α and downregulates HIF-2α (Nanduri 
et al., 2009). Within the current study, we can speculate 
that the stronger overnight stimulus of IH in the Sleep− 
group, characterized by increased DeSHr, may contribute 
to increases in ROS via down-regulation of HIF-2α and 
therefore insufficient transcription of antioxidative en-
zymes (Almendros et al., 2014). Increased ROS promotes 
a proinflammatory response, neuronal apoptosis and mi-
croglial activation which may contribute to cognitive defi-
cits (Almendros et al., 2014) and possibly the significantly 
lower measures of working memory and reaction time in 
the Sleep− group.

The suggested relationship between impaired sleep 
and cognitive performance at altitude has inconsistent 
support from the literature. While studying the efficacy 
of adaptive servoventilation versus supplemental oxygen 
maintaining SpO2  >  95%, one study observed impaired 
sleep, cognitive performance, and disturbed mood at 
3800 m (Heinrich et al., 2019). Supplemental oxygen was 
most effective at improving sleep quality and eliminat-
ing desaturations. Both interventions improved mood, 
though neither intervention had an impact on cognitive 
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impairment which improved over subsequent days at al-
titude (Heinrich et al., 2019). On the other hand, in nor-
mobaric hypoxia equivalent to 4500 m, de Aquino Lemos 
et al. (2012) observed declines in both sleep and cognitive 
performance variables with correlations between them. 
Among these correlations, apnea/hypopnea index, which 
integrates respiratory and desaturation events, correlated 
with working memory and inhibitory control (Aquino 
Lemos et al., 2012) supporting the detrimental impact of 
IH while sleeping during acute exposure to altitude.

4.4  |  Implications

Implications from this study apply to the millions of 
people that visit high terrestrial terrain (Basnyat, 2014; 
Burtscher et al., 2018; Keyes et al., 2016; West, 2002) or 
are exposed to hypobaric hypoxia (Caldwell et al., 2009; 
States & Regulations, 2018), but especially those individ-
uals that have to work at HA such as military personnel, 
pilots, mine/telescope workers, and emergency search 
and rescue personnel. Small changes in cognition may 
have drastic effects in emergency situations and mood 
changes can impact team cohesiveness and willingness to 
complete the job. Military pilots can fly at cabin pressures 
up to 3000 m (States & Regulations, 2018) and ultra-long 
haul flights (>12 h) are being employed more frequently 
to decrease the logistical burden of troop movement 
(Caldwell et al., 2009). AMS can occur within that short 
time frame and exacerbate the mood and cognitive 
changes induced by exposure to hypobaric hypoxia alone 
(Crowley et al., 1992; Forster, 1985; Shukitt-Hale et al., 
1991; Virues-Ortega et al., 2004). Moreover, the quality 
of sleep that pilots experience during their assigned in-
flight sleep period is known to be poorer and fragmented 
compared to SL sleep (Signal et al., 2013). From these 
results, it appears that AMS symptoms have a greater 
negative impact on mood while poor sleep has a greater 
negative impact on cognition and both can be detrimen-
tal in a work situation.

4.5  |  Limitations

One limitation to the current study is the inability to dis-
cuss the time course of AMS, physiologic responses, and 
mood and cognition disturbances. With just two sampling 
periods, we cannot determine the effect acclimatization 
had on our measures. It would have added value to have 
some short-term measures to see how mood and cogni-
tive performance changed prior to AMS development and 
sleep; then compare those results to the HA20 time point. 
Having periodic blood samples to assess hematologic, 

metabolic gene expression, and ventilatory acclimati-
zation would also improve the study and allow for less 
speculative discussion regarding the mechanism behind 
altered cognition after HA sleep.

5   |   CONCLUSION

The degree of altitude impacted both AMS and sleep with 
greater symptoms and disturbances, respectively, in the 
4050  m group. AMS presence did not impact cognition, 
but anger, depression, fatigue, and sleepiness were greater 
in those with AMS while poor sleepers demonstrated a de-
crease in their working memory and reaction time scores. 
Overall, AMS presence impacted mood while poor sleep 
impacted cognition which may deteriorate teamwork 
and/or increase errors in judgement at HA.
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T A B L E  A 2   Condition = Sea level versus high altitude. Group = AMS− versus AMS+. Throughput or percent correct scores of ten 
Automated Neuropsychological Assessment Metrics (ANAM) modules and subjective ratings of eight mood states (ANAM-MS)

Group AMS− (n = 9) AMS+ (n = 10)
Condition 
effects Group effects Condition × Group

Condition SL HA20 SL HA20 F p F p F p

ANAM modules

CDS 55 ± 4 50 ± 5 59 ± 3 54 ± 5 4.12 0.06 0.57 0.46 0.09 0.76

CDD 51 ± 5 53 ± 6 51 ± 5 48 ± 5 0.01 0.94 0.18 0.67 0.44 0.52

M2S 43 ± 6 37 ± 6 29 ± 6 30 ± 6 0.57 0.46 0.57 0.46 1.84 0.19

MTH 21 ± 3 23 ± 3 24 ± 3 26 ± 3 1.82 0.19 0.60 0.45 0.17 0.68

GNG 89 ± 2 84 ± 3 89 ± 2 86 ± 3 3.73 0.07 0.07 0.80 0.41 0.53

SRT 201 ± 11 203 ± 20 220 ± 10 214 ± 19 0.02 0.88 0.66 0.43 0.11 0.75

PRT 99 ± 5 91 ± 8 96 ± 5 94 ± 8 2.07 0.17 0.00 0.99 0.70 0.41

SPD 37 ± 3 39 ± 5 31 ± 2 35 ± 4 2.38 0.14 1.10 0.31 0.18 0.68

ST6 63 ± 5 62 ± 9 65 ± 4 59 ± 8 0.56 0.46 0.00 0.95 0.15 0.70

SRT2 195 ± 13 172 ± 22 201 ± 13 188 ± 21 1.04 0.32 0.19 0.67 0.23 0.63

Mood scale

Anger 0.03 ± 0.04 0.02 ± 0.26 0.14 ± 0.04 0.65 ± 0.25† 0.07 0.80 5.73 0.02 1.24 0.28

Anxiety 0.10 ± 0.06 0.09 ± 0.18 0.08 ± 0.06 0.42 ± 0.17 1.51 0.24 2.14 0.16 1.93 0.18

Depression 0.00 ± 0.03 0.00 ± 0.24 0.10 ± 0.03† 0.63 ± 0.23† 1.48 0.24 9.34 0.01 0.56 0.46

Fatigue 0.39 ± 0.15 0.58 ± 0.39 0.60 ± 0.14 2.17 ± 0.37*† .42 0.52 6.52 0.02 5.31 0.03

Happiness 2.45 ± 0.57 1.86 ± 0.53 1.41 ± 0.54 0.72 ± 0.50 3.31 0.08 1.59 0.22 0.06 0.80

Restlessness 0.08 ± 0.05 0.22 ± 0.28 0.08 ± 0.05 0.78 ± 0.27* 6.87 0.02 1.67 0.21 2.10 0.16

Vigor 1.77 ± 0.46 1.35 ± 0.27 1.74 ± 0.44 0.45 ± 0.26* 7.34 0.01 0.83 0.37 1.57 0.23

Sleepiness 2.4 ± 0.4 2.7 ± 0.5 2.4 ± 0.4 4.8 ± 0.4*,† 10.43 0.01 6.34 0.02 7.54 0.01

Note: Mean ± SE.
Abbreviations: CDD, code substitution delayed memory; CDS, code substitution learning; GNG, go-no-go; M2S, match to sample; MTH, mathematical 
processing; PRT, procedural reaction time; SPD, simultaneous spatial processing; SRT, simple reaction time; SRT2, Simple reaction time 2; ST6, Sternberg 
6-letter memory.
*p < 0.05 from SL;
†p < 0.05 between groups.
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T A B L E  A 3   Condition = Sea level versus high altitude. group = Sleep− versus Sleep+. Throughput or percent correct scores of 10 
Automated Neuropsychological Assessment Metrics (ANAM) modules and subjective ratings of eight mood states (ANAM-MS)

Group Sleep+ (n = 7) Sleep− (n = 12)
Condition 
effects

Group 
effects Condition × Group

Condition SL HA20 SL HA20 F p F p F p

ANAM modules

CDS 56 ± 4 53 ± 5 58 ± 3 51 ± 4 3.20 0.09 0.00 0.98 0.46 0.51

CDD 55 ± 5 60 ± 6 48 ± 4 45 ± 4 0.02 0.90 3.39 0.08 0.83 0.37

M2S 47 ± 7 46 ± 6 28 ± 5 26 ± 5 0.67 0.42 6.82 0.02 0.77 0.39

MTH 26 ± 3 25 ± 4 23 ± 3 20 ± 3 1.26 0.27 0.93 0.35 0.92 0.35

GNG 91 ± 2 90 ± 4 88 ± 2 83 ± 3 2.57 0.12 3.02 0.10 0.94 0.35

SRT 224 ± 12 229 ± 22 203 ± 9 197 ± 17 0.00 0.96 1.91 0.19 0.20 0.66

PRT 104 ± 6 104 ± 9 94 ± 4 87 ± 7 1.18 0.29 2.45 0.14 1.09 0.31

SPD 37 ± 3 43 ± 5 32 ± 2 34 ± 4 3.15 0.09 2.61 0.13 0.80 0.38

ST6 69 ± 5 78 ± 9 61 ± 4 50 ± 7† 0.07 0.80 5.31 0.03 5.02 0.04

SRT2 210 ± 15 221 ± 22 186 ± 11 157 ± 17† 0.42 0.52 5.76 0.03 1.82 0.19

Mood scale

Anger 0.04 ± 0.05 0.56 ± 0.31 0.12 ± 0.04 0.35 ± 0.23 0.02 0.88 7.01 0.02 3.13 0.10

Anxiety 0.13 ± 0.07 0.22 ± 0.21 0.07 ± 0.05 0.29 ± 0.16 1.63 0.22 0.00 0.97 0.10 0.75

Depression 0.04 ± 0.04 0.17 ± 0.30 0.06 ± 0.03 0.43 ± 0.23 1.34 0.26 1.64 0.22 0.02 0.89

Fatigue 0.42 ± 0.18 0.93 ± 0.53 0.55 ± 0.13 1.70 ± 0.40 0.26 0.62 0.88 0.36 0.31 0.58

Happiness 1.92 ± 0.67 1.84 ± 0.62 1.89 ± 0.51 0.92 ± 0.47 2.49 0.13 01.49 0.24 0.58 0.48

Restlessness 0.11 ± 0.06 0.17 ± 0.32 0.06 ± 0.04 0.72 ± 0.24* 4.11 0.06 0.78 0.39 3.43 0.08

Vigor 1.83 ± 0.53 1.43 ± 0.31 1.71 ± 0.40 0.56 ± 0.24*,† 5.69 0.03 4.12 0.05 0.99 0.33

Sleepiness 2.36 ± 0.4 2.57 ± 0.6 2.42 ± 0.3 4.50 ± 0.4*,† 6.24 0.02 5.67 0.03 5.04 0.04

Note: Mean ± SE.
Abbreviations: CDD, code substitution delayed memory; CDS, code substitution learning; GNG, go-no-go; M2S, match to sample; MTH, mathematical 
processing; PRT, procedural reaction time; SPD, simultaneous spatial processing; SRT, simple reaction time; SRT2, Simple reaction time 2; ST6, Sternberg 
6-letter memory.
*p < 0.05 from SL;
†p < 0.05 between groups.


