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Abstract 

Background: Maize kernel row number (KRN) is one of the most important yield traits and has changed greatly dur-
ing maize domestication and selection. Elucidating the genetic basis of KRN will be helpful to improve grain yield in 
maize.

Results: Here, we measured KRN in four environments using a nested association mapping (NAM) population named 
HNAU-NAM1 with 1,617 recombinant inbred lines (RILs) that were derived from 12 maize inbred lines with a common 
parent, GEMS41. Then, five consensus quantitative trait loci (QTLs) distributing on four chromosomes were identi-
fied in at least three environments along with the best linear unbiased prediction (BLUP) values by the joint linkage 
mapping (JLM) method. These QTLs were further validated by the separate linkage mapping (SLM) and genome-wide 
association study (GWAS) methods. Three KRN genes cloned through the QTL assay were found in three of the five 
consensus QTLs, including qKRN1.1, qKRN2.1 and qKRN4.1. Two new QTLs of KRN, qKRN4.2 and qKRN9.1, were also iden-
tified. On the basis of public RNA-seq and genome annotation data, five genes highly expressed in ear tissue were 
considered candidate genes contributing to KRN.

Conclusions: This study carried out a comprehensive analysis of the genetic architecture of KRN by using a new 
NAM population under multiple environments. The present results provide solid information for understanding the 
genetic components underlying KRN and candidate genes in qKRN4.2 and qKRN9.1. Single-nucleotide polymorphisms 
(SNPs) closely linked to qKRN4.2 and qKRN9.1 could be used to improve inbred yield during molecular breeding in 
maize.
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Introduction
Maize (Zea mays L.) is one of the most important cereal 
crops and plays important roles in food, animal feed and 
raw materials [1, 2]. Therefore, the inheritance of grain 

yield in maize has been a focus of agricultural scientists 
and plant breeders [3]. Kernel row number (KRN), which 
is highly heritable, is not only one of the most important 
yield components but also an important breeding target 
of maize [4]. In addition, KRN is a quantitative trait that 
appears to be genetically controlled by multiple genes, as 
more than 100 QTLs have been identified (http:// www. 
maize gdb. org/) [5, 6]. Thus, it is of great significance to 
dissect the genetic architecture of the KRN.
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To date, multiple genes involved in regulating maize 
inflorescence architecture and development that affect 
KRN have been identified, such as THICK TASSEL 
DWARF1 (TD1), FASCIATED EAR2 (FEA2), RAMOSA1 
(RA1), RAMOSA2 (RA2) and UNBRANCHED3 (UB3) 
[7–11]. Most of these genes have been isolated using 
inflorescence mutants. Almost all these mutants show 
sharply increased KRN but also negative effects on other 
related traits. For example, they have short ears [7, 8], a 
dwarf stature [12], and fasciated ear tips with unproduc-
tive kernels [10, 12]. Such negative effects have directly 
limited the application of these genes in maize yield 
improvement. Several studies have shown that KRN 
and yield can be increased to a certain extent without 
changing the main shape of the ear by creating weak 
allele mutants of maize ear meristem maintenance genes 
[13–15]. More recently, gene editing technology has been 
used to help manipulate the transcriptional activity of the 
corresponding genes at promoter regions, such as CLE7 
and FCP1 [16]. This provides a flexible strategy of using 
KRN genes to improve maize yield.

Aside from the genes cloned from mutants, more natu-
ral variations controlling the KRN are widely distributed 
in the genome in the form of multiple genetic loci. Liu 
et al. [11] cloned KRN4, a major QTL with a 1.2-kb pres-
ence/absence variant (PAV) that regulated the expression 
of UB3, which encoded an SBP transcription factor that 
could participate in the regulation of meristem main-
tenance [11]. Wang et  al. [17] identified and cloned 
another major QTL, KRN1, which corresponded to the 
AP2 domain-encoding gene IDS1/TS6. The results sug-
gest that plants that produce more IDS1/TS6 transcripts 
develop more spikelet pair meristems, resulting in more 
KRNs [17]. Recently, Chen et al. [18] identified the gene 
KRN2 in a convergent selection region in cereal crops 
using a set of introgression lines constructed with maize 
Mo17 and teosinte. KRN2 encoded a WD40 protein and 
functioned synergistically with a gene of unknown func-
tion, DUF1644. Knockout of KRN2 alleles in maize and 
rice increased the yield to 10% and 8% in the investigated 
background, respectively [18]. The above studies show 
that the regulation of maize KRN involves pathways such 
as the CLAVATA-WUSCHEL, RAMOSA, regulation of 
auxin, cytokinin, and other metabolic pathways, reflect-
ing the genetic complexity of KRN. Although reliable 
genetic loci of KRN can be obtained by QTL mapping 
assays, the large size and complexity of the maize genome 
has slowed the progress on QTL cloning works [19].

Traditionally, QTL mapping studies have been per-
formed with linkage mapping strategies using segregat-
ing populations derived from biparental crosses, such 
as  F2 populations, recombinant inbred lines (RILs), 
double-haploid populations (DHs), and single-segment 

substitution lines (SSSLs) [20–23]. Genome-wide asso-
ciation studies (GWASs) benefit from abundant diversity, 
enabling the locations of identified QTLs to be inferred 
with a high resolution; however, the inherent popula-
tion structure and presence of rare variants in natural 
populations reduce GWAS statistical power [19]. Thus, 
several advanced populations have been developed for 
and introduced into GWASs, such as nested association 
mapping (NAM) [24], multiparent advanced generation 
intercross (MAGIC) [25], and complete-diallel design 
plus unbalanced breeding-like intercross (CUBIC) popu-
lations [26]. A NAM population simultaneously exploits 
the advantages of both linkage and association mapping 
and has advantages such as the reduced marker density 
requirement, increased allele richness, increased map-
ping resolution, and increased statistical power for QTL 
mapping [27]. Among crops, NAM populations have 
been gradually applied for barley, sorghum, wheat, rice, 
and especially maize [28–32]. Through these mapping 
approaches, a large number of QTLs for complex traits 
such as flowering time, biological stress resistance and 
kernel composition have been identified in maize [33–
35]. The NAM population in this study was developed 
in a former work and reflected a high QTL identification 
power in the maize plant architecture [36].

In this study, we measured the KRN in the HNAU-
NAM1 population with 1,617 RILs in four environments. 
Linkage mapping and GWASs were performed together 
to detect the QTLs underlying KRN. After integrating all 
the mapping results, we identified five consensus QTLs 
located on chromosomes 1, 2, 4, and 9 that explained 
4.4%-18.3% of the phenotypic variation. Moreover, all 
the three KRN genes cloned in previous studies were also 
identified in the QTL intervals of our present study. In 
addition, we found two new dependable QTLs, qKRN4.2 
and qKRN9.1. Further analysis of the two QTLs revealed 
that five genes were speculated to be candidate KRN 
genes underlying qKRN4.2 and qKRN9.1.

Results
Phenotypic evaluation
The 13 parents of HNAU-NAM1 population showed a 
large phenotypic variation in KRN. As shown in Table S1, 
the KRN of all parents varied from 9.3 in CML360 to 19.5 
in DAN598. The KRN of HNAU-NAM1 ranged from 
10.7–19.0, 11.0–19.0, 10.0–19.0, and 9.0–18.8 across the 
four environments (Table 1 and Table S2). This wide vari-
ation in KRN in each of the environments was beneficial 
for genetic architecture dissection. The KRN decreased 
from Sanya2020 (15.1 ± 1.6), Sanya2021 (14.6 ± 1.7), and 
Changge2020 (14.6 ± 1.5) to Beijing2021 (14.4 ± 1.4), as 
shown in Table  1. Among 12 subpopulations, the KRN 
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varied from 13.9 ± 1.4 in Subpop CML304 to 15.5 ± 1.1 in 
Subpop DAN598 (Table S3).

As shown in Table 1, KRN exhibited high inheritance 
with a broad-sense heritability (H2) of 0.82, consistent 
with the suggestions of previous studies [37]. Analysis of 
variance (ANOVA) of HNAU-NAM1 showed significant 

variations for genotypes and environments (Table  1). 
In addition, KRNs were modestly correlated (r = 0.46–
0.64) among the four environments (Fig.  1). The results 
indicated that the main proportion of the phenotypic 
variations in KRN were derived from genetic factors; 
at the same time, however, KRN was affected by the 

Table 1 ANOVA, broad-sense heritability analysis, and descriptive statistics for HNAU-NAM1

a , P ≤ 0.01
b SD stands for standard deviation

Trait Variation source F  valuea Broad-sense heritability Descriptive statistics

Environment Range Mean ± SDb

Kernel Row Number Genotype 4.512a 0.82 Changge2020 10.7–19.0 14.6 ± 1.5

Sanya2020 11.0–19.0 15.1 ± 1.6

Environment 83.299a

Sanya2021 10.0–19.0 14.6 ± 1.7

Replication 0.706 Beijing2021 9.0–18.8 14.4 ± 1.4

Fig. 1 Correlation of the KRN phenotypes among Changge2020, Sanya2020, Sanya2021, and Beijing2021. Frequency distribution diagrams of KRN 
in the four environments are plotted, and the correlation coefficient between each pair of environments is shown. ***, P ≤ 0.001
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environment, mainly in Sanya2020. Therefore, it is neces-
sary to perform QTL mapping with KRN data in different 
environments and to use best linear unbiased prediction 
(BLUP) values to comprehensively identify and assess the 
genetic effects of QTL regions.

Linkage map construction of HNAU-NAM1
HNAU-NAM1 was constructed from crosses between 
the maize inbred line GEMS41 and 12 other inbred 
lines. These 12 biparental families contain 47–209 

different backcross population-derived lines consisted 
of a total of 1,617 RILs. Detailed information about 
HNAU-NAM1 is given in Table S3. The number of 
segregating single-nucleotide polymorphism (SNP) 
markers ranged from 723 to 3,500 per subpopulation 
(Table  2 and Fig.  2). In addition, 77.8% of genotypes 
were homozygous for GEMS41, 17.0% were homozy-
gous for the other parents, and 5.2% were heterozygous 
throughout the whole genome (Table 2).

Table 2 HNAU-NAM1 linkage map statistics

a No, number of; RILs, recombinant inbred lines
b G/P stands for the ratio of genetic distance to physical distance relative to the maize B73 reference genome v4

Subpopulation Generation No.  RILsa No. markers Length (cM) No. crossovers G/Pb GEMS41 (%) Heterozygous 
(%)

Other 
parent 
(%)

Subpop CIMBL29 BC2F4 179 2280 2093 2039 1.00 84.8 3.5 11.7

Subpop CIMBL83 BC1F4 209 3500 1382 4231 0.66 71.3 7.2 21.5

Subpop CML304 BC1F4 147 3433 1224 2715 0.58 71.1 6.3 22.6

Subpop CML360 BC2F4 47 3047 993 611 0.47 86.5 2.8 10.7

Subpop CML454 BC1F4 171 3465 1291 3309 0.61 70.9 7.6 21.5

Subpop CML470 BC2F4 133 3365 1196 1557 0.57 85.5 3.9 10.7

Subpop CML486 BC1F4 183 3336 1215 3475 0.58 71.4 6.8 21.8

Subpop CML496 BC2F4 80 3299 1470 1297 0.70 86.3 1.6 12.1

Subpop DAN598 BC2F4 79 3404 1362 1174 0.65 86.5 2.0 11.5

Subpop K22 BC2F4 117 3238 1248 1585 0.59 87.9 1.6 10.5

Subpop P178 BC2F4 108 3382 1408 1577 0.67 86.1 2.9 10.9

Subpop TY1 BC1F4 164 723 1270 1967 0.60 71.1 7.3 21.7

Composite - 1617 2345 1376 25,537 0.66 77.8 5.2 17.0

Fig. 2 Joint linkage map of the HNAU-NAM1 population. Red: homozygous genotype of GEMS41; green: homozygous genotype of other parents; 
blue: heterozygous genotype. The ordinate represents the number of RILs
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We next constructed a genetic linkage map with a total 
of 2,345 markers that showed polymorphisms in at least 
6 subpopulations. A joint linkage map with a length of 
1,376  cM and 25,537 crossovers was constructed using 
the “R/qtl” package in R software. We examined the rela-
tionship between genetic distance based on the compos-
ite genetic map and physical distance according to the 
chromosome lengths of the B73 reference genome v4 
(G/P). The mean value of G/P of each chromosome was 
0.66 (Table 2).

Separate linkage maps were constructed for the 12 sub-
populations, with an average length of 1,346 ± 254.35 cM 
(ranging from 993  cM in Subpop CML360 to 2,093  cM 
in Subpop CIMBL29) using the same method mentioned 
above (Table S4 and Fig. S1). On average, each linkage 
map comprised 3,039 SNP markers, and the average G/P 
among the 12 RIL subpopulations of HNAU-NAM1 var-
ied from 0.47 to 1.00.

Genetic dissection of KRN
In joint-linkage mapping (JLM) analysis, 6–12 QTLs were 
identified in each environment using the BLUP value, 
which explained 4.4%-18.3% of the phenotypic variance 
(Fig. 3 and Table S5). Importantly, five consensus QTLs 
were identified in at least three environments accord-
ing to the overlap of the QTL physical support intervals 
(Table 3). These QTLs were located on chromosomes 1, 
2, 4, 4 and 9 and explained 8.2%-18.3%, 5.8%-10.4%, 5.6%-
11.0%, 4.4%-9.5% and 4.8%-13.5% of the phenotypic vari-
ation in each environment, respectively.

To validate the reliability of the five consensus QTLs, 
we performed separate linkage mapping (SLM) and 
GWAS (Tables S6 and S7). We found that the five con-
sensus QTLs could be repeatedly identified by the SLM 
method. First, qKRN1.1 overlapped with 8 QTLs, which 
were identified in three subpopulations by the SLM 
method (SLM QTLs). Next, qKRN2.1 overlapped with 6 
SLM QTLs that were identified in four subpopulations. 

Then, qKRN4.1 overlapped with 18 SLM QTLs that 
were identified in seven subpopulations. Furthermore, 
qKRN4.2 overlapped with 7 SLM QTLs that were iden-
tified in four subpopulations. Lastly, qKRN9.1 over-
lapped with 6 SLM QTLs that were identified in three 
subpopulations.

At the same time, we found that six SNPs that were 
significantly associated with KRN were located within 
four consensus QTL intervals. Among them, one SNP 
chr1_286427302 explained 2.14% and 0.49% of the phe-
notypic variation using Beijing and the BLUP value, 
respectively, which located within the qKRN1.1 interval. 
Next, three SNPs, chr4_203363685, chr4_203327066 and 
chr4_203495247 were identified in Changge2020 and 
Beijing2021 using the BLUP value; these SNPs explained 
7.36%, 4.85% and 7.18% of the phenotypic variation, 
respectively. We found that the flanking regions 500  kb 
upstream and 500 kb downstream of the three SNPs over-
lapped, and all were located within the qKRN4.1 interval. 
Then, one SNP explaining 4.36% of the phenotypic varia-
tion, chr4_242133004l, was identified in Sanya2021. This 
SNP was located within the qKRN4.2 interval. In addi-
tion, one SNP explaining 1.56% of the phenotypic vari-
ation, chr9_102720434, was identified using the BLUP 
value and was located within the qKRN9.1 interval. These 
results provide reliable evidence of the five consensus 
QTLs.

Identification of candidate genes underlying the two new 
dependable QTLs
Before the current study, only three KRN genes had 
been cloned through the QTL approach, namely, KRN4 
(UB3) [12], KRN1 (IDS1/TS6) [17], and KRN2 (a WD40-
domain encoding gene) [18]. In this study, all these 
three KRN genes were identified in three of the five con-
sensus QTL intervals. In addition, we also found two 
new dependable QTLs, qKRN4.2 and qKRN9.1, which 
were repeatedly verified by SLM and GWAS methods. 

Fig. 3 QTLs associated with KRN under different environments in the HNAU-NAM1 population as determined by the JLM method. C1-C10 
represent chromosomes 1–10, respectively. The abscissa represents the genetic distance of the HNAU-NAM1 population. cM represents 
centimorgan
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qKRN4.2 and qKRN9.1 explained 4.4%-9.5% and 4.8%-
13.5% of the phenotypic variation in each environ-
ment. To further predict the candidate genes for KRN, 
we used the published RNA-seq datasets from 7 tissues 
[38] of all main plant organs across the whole develop-
ment stages to profile the expression of genes annotated 
in the qKRN4.2 and qKRN9.1 regions with the B73 refer-
ence genome v4. As shown in Fig. S2, 46 and 38 genes 
were specifically expressed in the ear and tassel, respec-
tively, relative to other tissues. Among them, we found 
some putative genes might controlling inflorescence 
development based on the functional annotations of 

their homologous genes. Thus, three candidate genes 
(Zm00001d053756, Zm00001d053775, encoding squa-
mosa promoter binding protein; Zm00001d053819, 
encoding auxin response factor) and two candidate 
genes (Zm00001d046783, encoding GRAS family tran-
scription factor; Zm00001d046930, encoding WD40 
repeat-like superfamily protein) potentially associated 
with KRN were deduced in the two QTL regions, respec-
tively (Table  4). We found that the expression of spike 
was relatively high in all tissues (Fig. S2). Furtherly, we 
checked gene expression level in the developing imma-
ture ear tissues. Zm00001d053756, Zm00001d053775, 

Table 3 Consensus QTLs identified under different environments by JLM

a The 1.5-LOD support interval (B73_v4) (Mb) is based on the B73 reference genome v4
b LOD means logarithm of odds
c PVE (%) indicates the percentage of phenotypic variation explained by the QTL

No QTL Environment Chromosome QTL position 
(cM)

1.5-LOD support interval 
(B73_v4) (Mb)a

Peak  LODb PVE (%)c

1 qKRN1.1 BLUP 1 200.0 282.9–303.1 25.0 18.3

Changge2020 1 195.0 282.3–303.1 12.0 8.2

Sanya2020 1 195.0 282.9–303.1 17.0 14.0

Sanya2021 1 200.0 286.2–303.1 16.5 10.0

Beijing2021 1 200.0 286.2–303.1 27.6 14.9

2 qKRN2.1 Changge2020 2 25.0 2.8–18.0 8.9 10.0

Sanya2020 2 20.0 2.8–13.6 12.2 5.8

Sanya2021 2 20.0 2.8–13.6 13.2 8.8

Beijing2021 2 25.0 9.7–18.0 10.2 10.4

3 qKRN4.1 BLUP 4 105.7 196.5–214.5 15.3 11.0

Changge2020 4 100.7 191.5–213.8 11.1 8.0

Sanya2020 4 95.7 187–213.8 10.7 8.0

Sanya2021 4 103.7 195.2–207.5 11.2 7.0

Beijing2021 4 105.7 199.8–214.4 11.0 5.6

4 qKRN4.2 BLUP 4 129.7 238.5–243.4 12.7 9.5

Changge2020 4 130.7 238.5–243.4 10.6 7.7

Sanya2021 4 130.7 240.6–243.6 9.4 4.4

Beijing2021 4 130.7 240.7–243.7 10.6 6.7

5 qKRN9.1 BLUP 9 45.6 101.7–110.2 16.7 13.5

Sanya2020 9 45.6 101.7–111.8 14.6 11.7

Sanya2021 9 43.6 97.6–110.2 10.5 5.1

Beijing2021 9 45.6 97.6–110.2 9.1 4.8

Table 4 Functional annotation of potential candidate genes

Number QTL Chromosome Gene ID Function annotation

1 qKRN4.2 4 Zm00001d053756 Squamosa promoter binding protein

2 qKRN4.2 4 Zm00001d053775 Squamosa promoter binding protein

3 qKRN4.2 4 Zm00001d053819 Auxin response factor

4 qKRN9.1 9 Zm00001d046783 GRAS family transcription factor

5 qKRN9.1 9 Zm00001d046930 WD40 repeat-like superfamily protein
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Zm00001d046783, and Zm00001d046930 expressed 
relatively higher in 0.2–0.6  mm ear and decreased after 
1  mm, according to the ear RNA-seq data of maize 
LH244 (Table S8, the raw data has not yet been pub-
lished). The suppressed bract (SB) and spikelet pair mer-
istem (SPM) initiated at 0.2 to 0.6 mm stage, indicating 
that these candidate genes might involve in the emergent 
of SPM, and further affected the KRN.

Discussion
Characteristics and comparison of the three QTL 
positioning methods
The use of NAM populations becomes progressively 
a regular practice in crop genetics and crop breeding. 
NAM was constructed to enable high power and high 
resolution through joint linkage-association analysis 
[27]. In this study, we used the JLM method to perform 
a comprehensive genetic analysis of KRN in the maize 
HNAU-NAM1 population composed of 12  BC1F4/BC2F4 
families. In maize HNAU-NAM1, a total of 47 QTLs 
associated with maize KRN in the four environments 
and using the BLUP value were identified. Moreover, five 
consensus QTLs were identified in at least three envi-
ronments. To further verify the mapping results with 
the JLM method, we used two different methods to map 
QTLs and compare them with the five consensus QTLs. 
(1) SLM method. In the SLM mapping method, separate 
genetic linkage maps of 12 subpopulations were con-
structed, ranging in length from 993 to 2,093 cM (Table 
S4). A number of QTLs associated with the maize KRN 
were localized throughout almost all 10 chromosomes in 
maize by using these genetic maps. The phenotypic vari-
ation explained by QTLs (PVE) varied in different sub-
populations, possibly because there were too few RILs 
in Subpop CML360, resulting in overestimation of the 
effect. If this subpopulation was removed, the PVE of 
each QTL ranged from 4.9% to 22.4%. In addition, some 
SLM QTLs overlapped with the five consensus QTLs 
located by the JLM method. (2) GWAS method. In the 
GWAS mapping method, a number of SNPs significantly 
associated with the maize KRN were identified. Among 
them, 6 SNPs significantly associated with KRN were 
found to be located within four consensus QTLs from 
the JLM method. However, we found that there was no 
SNP significantly associated with KRN located within the 
qKRN4.1 interval. This may have been due to the lack of 
functional gene variation. In addition, one candidate gene 
(Zm00001d053819) was located in the QTL supporting 
regions of SNP chr4_242133004, providing evidence for 
screening of candidate genes potentially associated with 
KRN. In summary, these results indicate the reliability of 
the consensus QTLs and candidate genes.

Characteristics of the consensus QTLs compared to those 
in former studies
Previous studies have found that many KRN QTLs are 
clustered in hotspots across the genome. Calderón et al. 
[39] mapped a region on the long arm of chromosome 
1 containing the QTL KRN1.4 for KRN, and this QTL 
had a 1.5-logarithm of odds (LOD) confidence inter-
val of 203 kb. Wang et al. [17] finely mapped KRN1 to a 
6.6-kb genomic region on chromosome 1 based on the 
maize B73 reference genome v4. We noticed that KRN1 
was very close to KRN1.4, but KRN1 was consistent with 
KRN1.4. In this study, one consensus QTL, qKRN1.1, was 
located on chromosome 1, which included the KRN1.4 
and KRN1 intervals. Another major QTL, KRN4, was 
identified by combining linkage mapping and association 
analysis [40, 41]. Liu et  al. [11] isolated KRN4 by posi-
tional cloning. qKRNW4, a new KRN QTL, was narrowed 
down to a nearly 700-kb interval [42] located nearly 1 Mb 
away from KRN4 [11]. Similarly, one consensus QTL 
in this study, qKRN4.1, was located on chromosome 
4, which included the KRN4 and qKRNW4 intervals. 
However, some clustered QTLs were not identified in 
this study, such as qKRN5a and qKRN5b [43]. In addi-
tion, several QTLs containing a single KRN gene with 
large effects also overlapped in our results. For example, 
one consensus QTL qKRN2.1 in this study included the 
qKRN2 interval [18, 44]. However, some major QTLs 
were not identified in HNAU-NAM1, such as qKRN5.04 
and qKRN8 [45, 46]. This may be because HNAU-NAM1 
lacked variations in these functional loci.

Marker-assisted selection (MAS) can aid in selection of 
breeding progeny carrying desirable alleles to achieve the 
purpose of crop improvement [47]. In this study, three 
consensus QTLs, qKRN4.1, qKRN4.2, and qKRN9.1, 
tended to have negative additive effects on KRN (Table 
S6), indicating that the parent GEMS41 contributed 
the favorable allele. In contrast, two consensus QTLs, 
qKRN1.1 and qKRN2.1, tended to have positive additive 
effects on KRN, indicating that other parents contrib-
uted the favorable allele. In summary, lines with favorable 
allele should be used for marker-assisted breeding and 
breeding improvement. So the genotype of the parent 
GEMS41 should be considered for qKRN4.1, qKRN4.2, 
and qKRN9.1, while other parents would provide the 
favorable allele at qKRN1.1 and qKRN2.1. All these QTLs 
lay a foundation for marker-assisted breeding and breed-
ing improvement.

Putative genes involved in the regulation of KRN
We mainly focused on the five consensus QTLs simul-
taneously detected in at least three environments using 
the JLM method (Table  3). Interestingly, in these five 
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QTL genomic regions, we identified three genes, namely, 
Zm00001d034629 (IDS1/TS6), Zm00001d002641 (a 
WD40-domain encoding gene), and Zm00001d052890 
(UB3), that are known to be involved in the regulation 
of KRN [12, 17, 18]. These most likely represent fun-
damental genes underlying KRN, and their location 
within consensus QTL regions strongly demonstrates 
the power and efficiency of our strategy to dissect the 
genetic basis of quantitative traits using HNAU-NAM1. 
Furthermore, we analysed the two dependable QTL 
regions qKRN4.2 and qKRN9.1 and identified potential 
candidate genes; for example, two squamosa promoter 
binding protein (SBP) family genes (Zm00001d053756 
and Zm00001d053775) and one WD40 protein gene 
(Zm00001d046930) were found to be located within the 
two QTL mapping regions. Importantly, Chuck et al. [12] 
showed that the genes UB2 and UB3 encoding the maize 
SBP transcription factors can affect maize yield by con-
trolling the branching and differentiation of male and 
female inflorescences. Their findings further suggested 
that ub2/ub3 double mutants display a decrease in tas-
sel branch number and an increase in ear row number. 
Moreover, recent studies involving sequence analysis 
of KRN2 have predicted that this gene encodes a cyto-
plasmic WD40 protein containing seven WD40 repeats 
[18]. Members of the WD40 family act as scaffolds for 
protein–protein interactions [48, 49] and have diverse 
functions in plants, including in development, metabolite 
biosynthesis, and immune responses [50, 51]. In addi-
tion, a gene (Zm00001d053819) that encodes an auxin 
response factor was found to be located in the qKRN4.2 
interval. Studies have shown that auxin biosynthesis 
and polar transport play an important role in maize ear 
development [52]. The ear length and kernel numbers of 
the maize functional deletion mutants vanishing tassel 2 
(vt2) and sparse inflorescence1 (spi1) are decreased, and 
a similar phenotype is caused by a lack of auxin [53, 54]. 
Therefore, we speculate that this gene affects the forma-
tion of KRN by affecting auxin synthesis. Furthermore, 
a gene (Zm00001d046783) that encodes a GRAS family 
transcription factor was found in the qKRN9.1 interval. 
GRAS proteins are plant-specific transcription factors 
that are involved in various developmental processes, 
including meristem maintenance, root radial patterning, 
light signalling, phytohormone signalling, and abiotic/
biotic stress responses [55–58]. Cai et  al. [59] isolated 
a GRAS transcription factor, ZmGRAS20, from the 
maize inbred line B73 based on transcriptome sequenc-
ing. Overexpression of ZmGRAS20 led to the formation 
of a chalky region of ventral endosperm with decreased 
starch content and defective agronomic characteris-
tics, including grain length, grain width, grain thickness, 
and 1000-grain weight, in transgenic seeds. Li et al. [60] 

identified a novel DELLA-like transcriptional regulator, 
ZmGRAS11, that positively regulates kernel size and ker-
nel weight in maize. However, further fine-scale mapping 
and functional gene validation are required to confirm 
whether these candidate genes truly represent the causal 
agents underlying QTLs for KRN.

Methods
Plant materials and field trials
The maize NAM population, named HNAU-NAM1, con-
tained 1,617 RILs that were derived from crosses of the 
common parent GEMS41 with each of 12 diverse inbred 
lines: CIMBL29, CIMBL83, CML304, CML360, CML454, 
CML470, CML486, CML496, DAN598, K22, P178 
and TY1. The method of population construction was 
described in a previous study [36]. The 12 subpopula-
tions were named Subpop CIMBL29, Subpop CIMBL83, 
Subpop CML304, Subpop CML360, Subpop CML454, 
Subpop CML470, Subpop CML486, Subpop CML496, 
Subpop DAN598, Subpop K22, Subpop P178, and Sub-
pop TY1. The HNAU-NAM1 population was planted in 
four environments in China: Changge (34°13’N, 113°46’E) 
in 2020, Sanya (18°25’N, 109°50’E) in 2020 and 2021, 
and Beijing (39°54’N, 116°23’E) in 2021. Across all of 
the field trials, a randomized complete design was used. 
In every environment, the 12 subpopulations were ran-
domly assigned to 12 plots with one or two replications. 
In every plot, each line of the corresponding subpopu-
lation was planted in a row with 10 plants, with 0.25 m 
between plants and 0.60 m between rows. All lines of the 
HNAU-NAM1 population followed standard local field 
management practices using local maize tillage methods 
throughout the whole growth period. When maturity 
was reached, 5–7 ears of each line in every plot were har-
vested to calculate the KRN.

Phenotypic analysis
Descriptive statistical analysis was performed 
with Microsoft Excel 2010. The broad-sense herit-
ability ( H2 ) for KRN was estimated using the formula 
H2=δ2g/(δ

2
g+δ

2
e/n) , where δ2g is the genetic variance, δ2e is 

the residual variance, and n is the number of environ-
ments. The estimates of δ2g and δ2e were obtained with a 
mixed linear model treating genotype, environment and 
repetition as random effects. ANOVA was performed 
to evaluate the effects of genotype and environment on 
phenotypic variance in R [37]. Correlation analysis was 
performed in the R package “Performance Analytics”. 
Considering the effect of environmental variation on 
QTLs, the BLUP value was obtained for each line across 
all environments using the mixed linear model in the R 
package “lme4” [61] and adopted as a new phenotypic 
value in the following analyses.



Page 9 of 11Fei et al. BMC Genomics          (2022) 23:593  

Linkage map construction and QTL identification
Polymorphic SNP markers were obtained from the Maiz-
eSNP9.4  K BeadChip array, and severely segregated 
markers were removed in each subpopulation. Next, 
SNPs showing polymorphisms in at least 6 subpopula-
tions were retained; thus, a total of 2,345 markers were 
retained to construct a joint genetic linkage map. The 
joint linkage map was constructed with Kosambi’s map-
ping function in a modified version of “R/qtl” software 
[62, 63]. Then, we conducted 1,000 permutations to 
determine the LOD significance threshold for QTLs at 
the P ≤ 0.05 level. To avoid overestimation of the num-
ber of QTLs, adjacent peaks within neighbouring genetic 
regions (≤ 10  cM) with the same effect directions were 
defined as a single QTL, as previously described [41]. 
For each QTL, a QTL support interval was defined as the 
1.5-LOD drop position ranging from the QTL peak [64]. 
Finally, JLM was carried out using the NAM function of 
QTL IciMapping v4.2.53 software [65].

We performed SLM analysis using composite interval 
mapping in each RIL subpopulation to validate the JLM 
results. Genetic distances and LOD thresholds were cal-
culated using the same method mentioned above. For 
convenience, an LOD = 3.0 was utilized as the global cut-
off point.

GWAS
To further verify the JLM results, we also performed a 
GWAS for HNAU-NAM1. After quality control, a total 
of 5,129 SNPs with a minor allele frequency (MAF) > 5%, 
missing rate < 20% and heterozygous rate < 50% were 
selected and used for the GWAS. The population struc-
ture was estimated using Admixture v1.3 software with 
the number of subpopulations (k) ranging from 1 to 15 
[66], and the optimal number of subpopulations was 
approximately k = 12. Next, 5,129 SNPs were used to esti-
mate the relative kinship by GCTA v1.92.2 software [67]. 
Then, a fixed and random effect (FarmCPU) model tool 
for GWAS in the R package “GAPIT” [68] was used on 
the KRN to test the statistical association between phe-
notypes and genotypes. Population structure and relative 
kinship were taken into account in the model to decrease 
spurious associations. After the GWAS, the criterion of 
the P value was set as 9.7e-6 (P ≤ 0.05/N, where N is the 
total number of genome-wide SNPs).

QTL region identification
QTLs detected in at least three environments by the 
JLM method were identified as consensus QTL regions. 
Next, the QTL supporting regions identified in the JLM 
or SLM methods were obtained based on the physical 
coordinates of flanking markers. The mapping results 

from the GWAS combined the 500  kb upstream and 
downstream regions of the significant SNPs as the 
QTL supporting regions, as described by Zhao et  al. 
[36]. Then, all the genes in the consensus QTL support 
interval were annotated according to the B73 reference 
genome v4 [69]. Raw data sets of RNA-Seq from differ-
ent maize tissues were described from previous study 
[38]. RNA-seq reads were aligned to the maize B73 ref-
erence genome using Hisat2-2.2.1 [70]. We calculated 
the number of uniquely mapped reads for each gene 
model in the B73 FGS by parsing the alignment output 
files from Hisat2, and then normalized the resulting 
read counts by FPKM to measure the gene expression 
level.
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