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Homogeneity score test of AC1 statistics
and estimation of common AC1 in multiple
or stratified inter-rater agreement studies
Chikara Honda1,2* and Tetsuji Ohyama3

Abstract

Background: Cohen’s κ coefficient is often used as an index to measure the agreement of inter-rater determinations.
However, κ varies greatly depending on the marginal distribution of the target population and overestimates the
probability of agreement occurring by chance. To overcome these limitations, an alternative and more stable
agreement coefficient was proposed, referred to as Gwet’s AC1. When it is desired to combine results from multiple
agreement studies, such as in a meta-analysis, or to perform stratified analysis with subject covariates that affect
agreement, it is of interest to compare several agreement coefficients and present a common agreement index. A
homogeneity test of κ was developed; however, there are no reports on homogeneity tests for AC1 or on an estimator
of common AC1. In this article, a homogeneity score test for AC1 is therefore derived, in the case of two raters with
binary outcomes from K independent strata and its performance is investigated. An estimation of the common AC1
between strata and its confidence intervals is also discussed.

Methods: Two homogeneity tests are provided: a score test and a goodness-of-fit test. In this study, the confidence
intervals are derived by asymptotic, Fisher’s Z transformation and profile variance methods. Monte Carlo simulation
studies were conducted to examine the validity of the proposed methods. An example using clinical data is also
provided.

Results: Type I error rates of the proposed score test were close to the nominal level when conducting simulations
with small and moderate sample sizes. The confidence intervals based on Fisher’s Z transformation and the profile
variance method provided coverage levels close to nominal over a wide range of parameter combination.

Conclusions: The method proposed in this study is considered to be useful for summarizing evaluations of consistency
performed in multiple or stratified inter-rater agreement studies, for meta-analysis of reports from multiple groups and for
stratified analysis.

Keywords: Common AC1, Consistency evaluation, Gwet’s AC1, Homogeneity test, Inter-rater agreement, Stratified study

Background
To evaluate the reliability when two raters classify ob-
jects as either positive (+) or negative (−), Cohen’s κ [1]
and the intra-class version of κ, which is identical to
Scott’s π [2], have often been used. Let pa be the agree-
ment probability, and p1 and p2 the probabilities

classified as (+) by rater 1 and 2 respectively. Then
Cohen’s κ (κCohen) and Scott’s π (κScott) are defined as
follows:

κCohen ¼ pa−pe cð Þ
1−pe cð Þ

; κScott ¼
pa−pe sð Þ
1−pe sð Þ

;

where peðcÞ ¼ p1p2 þ ð1−p1Þð1−p2Þ; peðsÞ ¼ p2þ þ ð1−pþÞ2
and p+ = (p1 + p2)/2. The pe(c) and pe(s) are the probabil-
ities of agreement expected by chance for Cohen’s κ and
Scott’s π respectively. The pe(c) assumes that the prob-
abilities of positive classification differ between two
raters, while the pe(s) assumes that these two
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probabilities are the same. Landis and Koch provided
benchmarks of the strength of consistency as follows:
values ≤0 as poor, 0.00 to 0.20 as slight, 0.21 to 0.40 as
fair, 0.41 to 0.60 as moderate, 0.61 to 0.80 as substantial
and 0.81 to 1.00 as almost perfect agreement [3]. Al-
though the authors acknowledge the arbitrary nature of
their benchmarks, they recommended their benchmark
scale as a useful guideline for practitioners.
Many extensions have been made to Cohen’s κ includ-

ing those for agreement in the cases of ordinal data [4],
multiple raters [5–9], comparisons of correlated κ ’s
[10–13] and stratified data [14, 15]. However, as Fein-
stein and Cicchetti showed, Cohen’s κ depends strongly
on the marginal distributions and therefore behaves
paradoxically [16]. This behavior can be explained by the
bias effect and the prevalence effect, on which various
discussions have been undertaken [16–18]. A number of
alternative measures of agreements have also been pro-
posed, such as Holley and Guilford’s G [19], Aickin’s α
[20], Andres and Marzo’s delta [21], Marasini’s s* [22, 23]
and Gwet’s AC1 [24] and AC2 [25].
Gwet showed that AC1 has better statistical properties

(bias and variance) than Cohen’s κ, Scott’s π and G-
index under a limited set of simulations for two raters
with binary outcomes [24]. Shanker and Bangdiwala
compared Cohen’s κ, Scott’s π, Prevalence Adjusted Bias
Adjusted Kappa (PABAK) [26], AC1 and B-statistic [27],
which is not a kappa-type chance-corrected measure, in
the case of two raters and binary outcomes and showed
that AC1 has better properties than other kappa-type
measures [28]. In addition, AC1 has been utilized in the
field of medical research over the past decade [29–35].
Therefore, in this study we have limited our discussion
to AC1 in the case of two raters with binary outcomes.
First, a brief review of the concept of Gwet’s AC1 is

provided. Consider the situation in which two raters in-
dependently classify randomly extracted subject as posi-
tive (+) or negative (−). Gwet defined two events:
G = {the two raters agree} and R = {at least one rater per-
forms random rating}. The probability of agreement ex-
pected by chance is then pe = P(G ⋂ R) = P(G| R)P(R). A
random rating would lead to the classification of an indi-
vidual into each category with the same probability 1

2

and it follows that PðGjRÞ ¼ 2� ð12Þ � ð12Þ ¼ 1
2. As for the

estimation of P(R), this probability cannot be obtained
from data. Therefore, Gwet proposed approximating it
with a normalized measure of randomness Ψ, defined as
follows:

PðRÞ≃Ψ ¼ πþð1−πþÞ
1
2
ð1− 1

2
Þ

¼ 4πþð1−πþÞ; ð1Þ

where π+ is the probability that a randomly chosen rater

classifies a randomly chosen subject into the + category.
Thus, the approximated probability of chance agreement
is represented by

p�e ¼ PðGjRÞΨ ¼ 2πþð1−πþÞ: ð2Þ
AC1 is thus defined as follows:

γ ¼ pa−p
�
e

1−p�e
; ð3Þ

where pa is the probability of agreement. Although pe is
approximated to p�e , Gwet showed that the bias of γ, the
difference between γ and the true inter-rater reliability,
is equal to or less than Cohen’s κ, Scott’s π and G-index
under some assumption in the case of two raters with
binary outcomes. Gwet also provided an estimator γ̂� of
γ and its variance for multiple raters and multiple
categories based on the randomization approach, which
requires the selection of subjects to be random in such a
way that all possible subject samples have the exact same
chance of being selected. However, it is advantageous to
employ a model-based approach when, for example, the
evaluation of the effect of subject covariates on agree-
ment is of interest. Therefore, in the case of two raters
with binary outcomes, Ohyama [36] assumed the under-
lying probability that a subject is rated as (+) and its
marginal homogeneity of the two raters, and then con-
structed the likelihood. The maximum likelihood estima-
tor of γ, which is shown to be identical to the estimator
given by Gwet, was derived. The likelihood-based confi-
dence intervals for AC1, inclusion of subject covariates,
hypothesis testing and sample size determination were
also discussed [36].
In this article, we discuss stratification analyses as an-

other approach to adjust the effect of subject covariates
on agreement. For example, a clinical assessment
whether a patient has a particular disease symptom may
be influenced by overall severity of the disease. In such a
case, we consider stratification based on the severity of
the disease. Another example is a multicenter inter-rater
agreement study, in which the classifications for subjects
are conducted independently in each center. These situ-
ations require several independent agreement statistics.
Then the main purpose of the analyses would be testing
whether the degree of inter-rater agreement can be
regarded as homogeneous across strata, such as centers
and severities of the disease.
For κ, Fleiss has been at the forefront of the idea of χ2

test-based inter-class consistency with large sample vari-
ances [37] and further studies by Donner, Eliasziw and
Klar [14], Nam [15, 38] and Wilding, Consiglio and Shan
[39] have developed the homogeneity test of κ across co-
variate levels. However, there are no reports on homo-
geneity tests for AC1 or on an estimator of common
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AC1. Therefore, in this article, we derive the homogen-
eity score test for AC1 from K independent strata and its
performance is investigated. An estimation of the com-
mon AC1 between strata and its confidence intervals is
also discussed. Finally, an example application of our ap-
proach to clinical trial data is provided.

Methods
Homogeneity tests
Score test
Consider K independent strata involving nk subjects for k =
1, …, K. In each stratum, two raters independently classify
subjects as either positive (+) or negative (−). Let Xkij= 1 if
subject i(=1,…, nk) in the k-th stratum is classified as “+”
by rater j(=1, 2) and Xkij = 0 otherwise. Suppose that
P(Xkij = 1| i) = uki, EðukiÞ ¼ πk and VarðukiÞ ¼ σ2k . The γ
of the k-th stratum is then expressed as follows [36]:

γk ¼
1þ 2 σk2−2πk 1−πkð Þ½ �

1−2πk 1−πkð Þ : ð4Þ

Let the number of observed pairs in the three categor-
ies of the k-th stratum be x1k, x2k and x3k and their cor-
responding probabilities be P1k(γk), P2k(γk) and P3k(γk).
The data of the k-th stratum are then given as shown in
Table 1.
The log-likelihood function is given by

lðγ;πÞ ¼
XK
k¼1

lkðγk ;πkÞ; ð5Þ

where γ = (γ1,…, γK)
', π = (π1,…, πK)

', lk(γk, πk) = x1k log
P1k(γk) + x2k log P2k(γk) + x3k log P3k(γk),

P1k γk
� � ¼ πk 2−πkð Þ− 1

2
þ γk

2
Ak ; ð6Þ

P2k γk
� � ¼ Ak 1−γk

� �
; ð7Þ

P3k γk
� � ¼ 1−πkð Þ 1þ πkð Þ− 1

2
þ γk

2
Ak ; ð8Þ

and Ak = 1 − 2πk(1 − πk).
The maximum likelihood estimators of γk and πk are

then given by

γ̂k ¼ 1−
2nkx2k

n2k þ x1k−x3kð Þ2 ð9Þ

and

π̂k ¼ 2x1k þ x2k
2nk

; ð10Þ

respectively.
The first and second derivatives of the log-likelihood

function and the Fisher information matrix are given in
the Appendix. The aim of this study is to test the homo-
geneity of the agreement coefficients among K strata,
and thus the null hypothesis to test is represented by
H0 : γk = γ0 (k = 1, 2, ..., K). The score test statistic for the
null hypothesis is derived as follows (see Appendix):

Tð~γ0; ~πÞ ¼
XK
k¼1

~Rk
2 ~Dk

nkð~Bk ~Dk−~Ck
2Þ
; ð11Þ

where ~Bk ; ~Ck ; ~Dk and ~Rk are obtained by substituting the
maximum likelihood estimators ~γ0 and ~πk under the null
hypothesis into

Bk ¼ 1
P1k

þ 4
P2k

þ 1
P3k

;

Ck ¼ 1
P1k

− 1
P3k

þ ð1−γkÞð1−2πkÞBk ;

Dk ¼ 1
P1k

þ 1
P3k

þ ð1−γkÞð1−2πkÞð 1
P1k

− 1
P3k

þ CkÞ;
Rk ¼ x1k

P1k
− 2x2k

P2k
þ x3k

P3k
:

Tð~γ0; ~πÞ is asymptotically distributed as a χ2 with K −
1 degrees of freedom. The homogeneity hypothesis is
rejected at level α when Tð~γ0; ~πÞ ≥ χ2ð1−αÞ;K−1 , where

χ2ð1−αÞ;K−1 is the 100 × (1 − α) percentile point of the χ2

distribution with K − 1 degrees of freedom.
Note that, since 0 ≤ P1k(γk), P2k(γk), P3k(γk) ≤ 1 and

P1k(γk) + P2k(γk) + P3k(γk) = 1, substituting (6), (7) and (8)
into these equations, the admissible range of γk with re-
spect to πk is obtained as follows [36]:

2− 1−j1−2πk jð Þ 3þ j1−2πk jð Þ
2− 1−j1−2πk jð Þ 1þ j1−2πk jð Þ ≤γk ≤1: ð12Þ

When obtaining the maximum likelihood estimators ~γ0
and ~πk under the null hypothesis by numerical calculation,
initial values need to be set to satisfy this condition.

Goodness-of-fit test
Donner, Eliasziw and Klar proposed a goodness-of-fit ap-
proach for testing homogeneity of kappa statistics in the
case of two raters with binary outcomes [40]. This proced-
ure can also be applied to AC1 statistics. Given that the fre-
quencies x1k, x2k, x3k, k= 1, …, K in Table 1 follow a
multinomial distribution conditional on nk, estimated prob-
abilities under H0 are given by P̂hkð~γ0Þ, which is obtained by

Table 1 Data layout

Category Ratings Frequency Probability

1 (+, +) x1k P1k(γk)

2 (+, −) or (−, +) x2k P2k(γk)

3 (−, −) x3k P3k(γk)

Total nk 1
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replacing πk by π̂k and γk by ~γ0 in Phk(γk); h= 1, 2, 3; k= 1,
…, K. Then the goodness-of-fit statistic is derived as follows:

χ2G ¼
XK
k¼1

X3
h¼1

xhk−nkP̂hk ~γ0
� �� �2

nkP̂hk ~γ0
� � ; ð13Þ

under H0, χ2G follows an approximate χ2 distribution with
K − 1 degrees of freedom. The homogeneity hypothesis
is rejected at level α when χ2G≥χ

2
ð1−αÞ;K−1, where χ2ð1−αÞ;K−1

is the 100 × (1 − α) percentile point of the χ2 distribution
with K − 1 degrees of freedom.

Estimation of common AC1
If the assumption of homogeneity is reasonable, the esti-
mate of γ0 can be used as an appropriate summary meas-
ure of reliability. The maximum likelihood estimator ~γ0
and ~πk are obtained by maximizing the log-likelihood

functions l0ðγ0;πÞ ¼
PK

k¼1 lkðγ0;πkÞ . Since an analytical
solution cannot be obtained from this function, numerical
iterative calculations are used. The variance Varð~γ0Þ of ~γ0
can be expressed as follows (see Appendix):

Var ~γ0
� � ¼ 4

XK
k¼1

nkAk
2 B 0ð Þ

k −
C 0ð Þ

k

2

D 0ð Þ
k

 !" #−1
¼

XK
k¼1

1

Vark ~γ0
� �" #−1

;

ð14Þ
where Bð0Þ

k ;Cð0Þ
k ;Dð0Þ

k are values using γk = γ0 in Bk, Ck,
Dk respectively, and

Vark ~γ0
� � ¼ 1

nkA2
k

Ak 1−γ0
� �

− A2
k−4Ak þ 2

� �
1−γ0
� �2

−Ak 2Ak−1ð Þ 1−γ0
� �3h i

:

ð15Þ
A simple 100 × (1 − α) % confidence interval using the

asymptotic normality of ~γ0 can be expressed as follows:

~γ0 � Zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar ~γ0
� �q

; ð16Þ

where Zα/2 is the α/2 upper quantile of the standard

normal distribution and dVarð~γ0Þ is obtained by substi-
tuting ~γ0 and ~πk into (14). Hereafter, this method is re-
ferred to as the simple asymptotic (SA) method. Since
Eq. (14) depends on γ0, SA method may not have the
correct coverage rate, and the normality of the sampling
distribution of ~γ0 may be improved using Fisher’s Z
transformation. This method is referred to below as
Fisher’s Z transformation (FZ) method (see Appendix).
As an alternative method, we employ the profile vari-

ance approach, which has been shown to perform well
in the case of the intra-class κ for binary outcome data
[41–43]. This approach also performs well for AC1 in
the case of two raters with binary outcomes [36]. The
confidence interval based on the profile variance can be
obtained by solving the following inequality for γ0:

ð~γ−γ0Þ2
~Varð~γ0Þ

≤Z2
a=

2
; ð17Þ

where gVarð~γ0Þ is given by substituting ~πk into πk in
(15). Hereafter, this method is referred to as the profile
variance (PV) method (see Appendix).

Numerical evaluations
We conducted Monte Carlo simulations to investigate the
performance of the proposed homogeneity tests and to
evaluate the estimate of common AC1 and its confidence
intervals under the following conditions: the number of
strata in the simulation is K = 2 or 3; and random observa-
tions are generated from the trinomial distributions accord-
ing to the probabilities of (6), (7) and (8) by giving the
values of γk and πk. The balanced and unbalanced cases
were considered for the values of πk and nk. The values of
γk and πk are set within the theoretical range of Eq. (12) de-
rived in the preceding paragraph. Ten thousand times of it-
erations were carried out for each parameter combination.
When πk is close to 0 or 1 and nk is small, there are

cases in which the generated data include zero cells. In
such cases, Bk, Ck, Dk and Rk cannot be estimated . Thus,
when zero cells were generated, we adopted the ap-
proach of adding 0.5 to the frequency of each combin-
ation by two raters, (+,+), (+,−), (−,+), (−,−). This simple
method was discussed by Agresti [44] and was adopted
in a previous study [39].

Results
Empirical type I error rate for the homogeneity test
The type I error rates of the homogeneity tests with a
significance level of 0.05 were examined. The sample
size was set at nk = n = 20, 50, 80 for balanced settings
and (n1, n2, n3) = (20, 50, 80) for unbalanced settings.
The error rate obtained by the score test is expressed as
SCORE and the error rate obtained by the goodness-of-
fit test is expressed as GOF. Table 2 summarizes the
results for K = 2.
Overall, the proposed score test did not show any

significant type I error rate inflation, but it was very
conservative when sample size was small and γ0 was
close to 1.
In the case of n = 20 when γ0 = 0.1, 0.3 or 0.5, the

type I error rates of SCORE were maintained at the
nominal level of 0.05 regardless of whether πk was
balanced or unbalanced, but when γ0 = 0.7 or 0.9,
the type I error rates were slightly conservative. Espe-
cially when γ0 = 0.9, the rate was significantly conser-
vative to the extent of being less than 0.01. In the
case of n = 50, the type I error rates were maintained
at the nominal level of 0.05 except when γ0 = 0.9. Fi-
nally in the case of n = 80, the type I error rates
were almost maintained at the nominal level. In
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contrast, the type I error rate of GOF tended to be
larger than that of SCORE and in many cases it was
not maintained at the nominal level.
The results obtained for K = 3 are shown Table S1 and

Table S2 in Additional file 1.
The Additional file 2 provides the simulation code of

empirical type I error rate using R language.

Empirical power of the homogeneity test
The empirical power of the score test was investigated
only for the case of K = 2, by setting γ1 = 0.1, 0.3, 0.5
and γ2 − γ1 = 0.3, 0.4. The values of πk and nk were set
as in the type I error simulation. The results are shown
in Table 3. The power tended to be large as the value of
γ1 increased under the fixed values of π and γ2 − γ1.

Table 2 Empirical type I error rates of homogeneity tests for γ1 = γ2 = γ0 based on 10,000 simulations (K = 2 balanced sample size)

Balanced π conditions Unbalanced π conditions

n1 = n2 γ0 π1 = π2 SCORE GOF n1 = n2 γ0 π1 π2 SCORE GOF

20 0.1 0.5 0.045 0.067 20 0.1 0.5 0.35 0.049 0.097

0.3 0.046 0.067 0.3 0.049 0.096

0.5 0.048 0.062 0.5 0.050 0.083

0.7 0.033 0.041 0.7 0.037 0.049

0.9 0.002 0.003 0.9 0.003 0.005

0.1 0.35 0.052 0.121 0.1 0.65 0.35 0.050 0.120

0.3 0.054 0.126 0.3 0.051 0.120

0.5 0.052 0.103 0.5 0.051 0.101

0.7 0.039 0.064 0.7 0.039 0.065

0.9 0.004 0.006 0.9 0.004 0.007

0.7 0.2 0.047 0.132 0.7 0.5 0.2 0.038 0.090

0.9 0.008 0.029 0.9 0.005 0.013

50 0.1 0.5 0.050 0.058 50 0.1 0.5 0.35 0.048 0.117

0.3 0.047 0.054 0.3 0.051 0.087

0.5 0.050 0.054 0.5 0.049 0.072

0.7 0.051 0.053 0.7 0.050 0.060

0.9 0.026 0.027 0.9 0.024 0.027

0.1 0.35 0.051 0.172 0.1 0.65 0.35 0.051 0.168

0.3 0.051 0.126 0.3 0.049 0.117

0.5 0.052 0.092 0.5 0.051 0.092

0.7 0.052 0.072 0.7 0.052 0.071

0.9 0.028 0.033 0.9 0.028 0.033

0.7 0.2 0.053 0.162 0.7 0.5 0.2 0.051 0.104

0.9 0.037 0.061 0.9 0.032 0.042

80 0.1 0.5 0.047 0.052 80 0.1 0.5 0.35 0.051 0.120

0.3 0.047 0.051 0.3 0.053 0.094

0.5 0.054 0.057 0.5 0.051 0.072

0.7 0.050 0.052 0.7 0.051 0.061

0.9 0.037 0.039 0.9 0.047 0.050

0.1 0.35 0.052 0.173 0.1 0.65 0.35 0.052 0.172

0.3 0.054 0.123 0.3 0.054 0.124

0.5 0.053 0.089 0.5 0.055 0.090

0.7 0.051 0.069 0.7 0.051 0.069

0.9 0.044 0.051 0.9 0.045 0.052

0.7 0.2 0.052 0.152 0.7 0.5 0.2 0.050 0.103

0.9 0.051 0.073 0.9 0.048 0.059
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The empirical power of the GOF test was also exam-
ined under the same simulation conditions as the score
test. The results are also shown in Table 3. However, the
GOF had a large type I error rate inflation (Table 2) and
was invalid as a test.
The Additional file 2 provides the simulation code of

empirical power using R language.

Bias and mean square error for common AC1
We evaluated the bias and mean square error (MSE) of the
maximum likelihood estimator for the common AC1, ~γ0 .
The balanced and unbalanced conditions for πk and the bal-
anced condition for nk were considered. The results are
shown in Table 4. The bias of ~γ0 tended to be small as γ0 in-
creased, but ~γ0 was almost unbiased. As expected, the bias
and MSE tended to be small as the sample size increased.
The Additional file 3 provides the simulation code of

bias and mean square error for common AC1 using R
language.

Confidence intervals for common AC1
We conducted a simulation study to evaluate the per-
formances of the three confidence intervals presented
in the previous section. The coverage rates of the
95% confidence interval were examined. The balanced
and unbalanced conditions for πk and the balanced
condition for nk are considered. The results are
shown in Table 5. The coverage rate of the SA
method was generally lower than 0.95 under many
conditions, with the exception of the value being
close to 0.99 in the case of n1 = n2 = 20 and γ0= 0.9.
The FZ method and PV method greatly improved the
coverage rates close to the nominal level. However,
the coverage rate of the PV method was closer to the
nominal level than that of the FZ method in most
cases under the conditions examined. The coverage
rates of each method were also evaluated in the case
of K = 3, and the unbalanced nk conditions and both
the FZ method and the PV method achieved coverage
rates near 0.95 (results not shown).

Table 4 Bias and mean square error of the maximum likelihood estimator for the common AC1 based on 10,000 simulations (K = 2
balanced sample size)

Balanced π conditions Unbalanced π conditions

n1 = n2 γ0 π1 = π2 Bias MSE n1 = n2 γ0 π1 π2 Bias MSE

20 0.1 0.5 0.026 0.025 20 0.1 0.5 0.35 0.019 0.027

0.3 0.023 0.023 0.3 0.018 0.024

0.5 0.017 0.018 0.5 0.013 0.019

0.7 0.009 0.012 0.7 0.007 0.012

0.9 −0.011 0.003 0.9 −0.011 0.003

0.1 0.35 0.009 0.029 0.1 0.65 0.35 0.010 0.028

0.3 0.007 0.025 0.3 0.011 0.025

0.5 0.007 0.019 0.5 0.008 0.019

0.7 0.004 0.012 0.7 0.004 0.012

0.9 −0.011 0.003 0.9 −0.011 0.003

0.7 0.2 −0.007 0.012 0.7 0.5 0.2 0.001 0.012

0.9 −0.010 0.003 0.9 −0.010 0.003

80 0.1 0.5 0.007 0.006 80 0.1 0.5 0.35 0.006 0.007

0.3 0.006 0.006 0.3 0.005 0.006

0.5 0.005 0.005 0.5 0.004 0.005

0.7 0.003 0.003 0.7 0.003 0.003

0.9 0.002 0.001 0.9 0.001 0.001

0.1 0.35 0.004 0.007 0.1 0.65 0.35 0.003 0.008

0.3 0.002 0.006 0.3 0.001 0.006

0.5 0.001 0.005 0.5 0.002 0.005

0.7 0.001 0.003 0.7 0.001 0.003

0.9 0.000 0.001 0.9 0.000 0.001

0.7 0.2 −0.001 0.003 0.7 0.5 0.2 0.001 0.003

0.9 −0.001 0.001 0.9 0.001 0.001
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Table 5 Coverage rates of common γ 95% confidence intervals of the three proposed methods based on 10,000 simulations

Balanced π conditions Unbalanced π conditions

n1 = n2 γ0 π1 = π2 SA FZ PV n1 = n2 γ0 π1 π2 SA FZ PV

20 0.1 0.5 0.939 0.959 0.958 20 0.1 0.5 0.35 0.939 0.958 0.958

0.3 0.936 0.958 0.950 0.3 0.933 0.958 0.955

0.5 0.931 0.962 0.962 0.5 0.927 0.959 0.960

0.7 0.924 0.976 0.963 0.7 0.917 0.971 0.961

0.9 0.998 0.963 0.955 0.9 0.997 0.966 0.955

0.1 0.35 0.935 0.953 0.956 0.1 0.65 0.35 0.938 0.955 0.957

0.3 0.934 0.955 0.953 0.3 0.934 0.955 0.956

0.5 0.926 0.956 0.955 0.5 0.927 0.959 0.955

0.7 0.918 0.965 0.958 0.7 0.917 0.967 0.960

0.9 0.996 0.967 0.947 0.9 0.996 0.969 0.950

0.7 0.2 0.929 0.959 0.950 0.7 0.5 0.2 0.931 0.965 0.956

0.9 0.970 0.966 0.911 0.9 0.993 0.970 0.943

50 0.1 0.5 0.949 0.953 0.952 50 0.1 0.5 0.35 0.946 0.952 0.953

0.3 0.945 0.955 0.954 0.3 0.943 0.952 0.951

0.5 0.945 0.954 0.953 0.5 0.941 0.952 0.952

0.7 0.936 0.961 0.953 0.7 0.936 0.956 0.953

0.9 0.920 0.971 0.971 0.9 0.923 0.968 0.965

0.1 0.35 0.942 0.948 0.952 0.1 0.65 0.35 0.946 0.954 0.954

0.3 0.942 0.950 0.950 0.3 0.943 0.953 0.952

0.5 0.940 0.951 0.951 0.5 0.941 0.954 0.953

0.7 0.937 0.954 0.952 0.7 0.936 0.956 0.953

0.9 0.926 0.966 0.960 0.9 0.925 0.968 0.960

0.7 0.2 0.938 0.949 0.948 0.7 0.5 0.2 0.937 0.954 0.952

0.9 0.927 0.965 0.954 0.9 0.928 0.969 0.960

80 0.1 0.5 0.945 0.952 0.952 80 0.1 0.5 0.35 0.946 0.951 0.951

0.3 0.947 0.952 0.952 0.3 0.946 0.952 0.952

0.5 0.943 0.953 0.952 0.5 0.942 0.950 0.950

0.7 0.944 0.950 0.949 0.7 0.943 0.955 0.953

0.9 0.901 0.962 0.956 0.9 0.922 0.963 0.957

0.1 0.35 0.946 0.951 0.951 0.1 0.65 0.35 0.943 0.947 0.946

0.3 0.944 0.949 0.949 0.3 0.945 0.950 0.950

0.5 0.944 0.950 0.950 0.5 0.944 0.953 0.952

0.7 0.941 0.950 0.949 0.7 0.939 0.953 0.952

0.9 0.931 0.960 0.953 0.9 0.927 0.963 0.954

0.7 0.2 0.944 0.950 0.949 0.7 0.5 0.2 0.942 0.955 0.954

0.9 0.929 0.956 0.951 0.9 0.927 0.961 0.955

SA, FZ, and PV refer to 95% confidence intervals for common AC1 using the simple asymptotic, Fisher’s Z transformation, and profile variance
methods, respectively
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The Additional file 4 provides the simulation code
of confidence intervals for common AC1 using R
language.

An example
As an example, we used data from a randomized clinical
trial called the Silicon Study, which was conducted to in-
vestigate the effectiveness of silicone fluids versus gases in
the management of proliferative vitreoretinopathy (PVR)
by vitrectomy [45]. The PVR classification, determined at
the baseline visit, defines the severity of the disease as a
continuum of increasing pathology graded as C3, D1, D2
or D3. The presence or absence of retinal injury in the
superior nasal cavity was evaluated clinically by the oper-
ating ophthalmic surgeon and photographically by an
independent fundus photograph reading center [46].
The data and results are summarized in Table 6. For

reference, the results of the homogeneity score test pro-
posed by Nam for the intra-class κ are also provided
[15]. The probabilities of agreement in each stratum
were from 0.800 to 0.880 and not so different. However,
the values of κ in each stratum were from 0.117 to 0.520
and were greatly different. This might be due to the
prevalence effect caused by the small values of π. In
contrast, the values of γ were 0.723 to 0.861 and did not
differ greatly among strata.
The proposed homogeneity score statistic Tð~γ0; ~πÞ

was 2.060 (p-value = 0.560) and the homogeneity
hypothesis was not rejected. The estimate of common
AC1 was 0.808 and its 95% confidence intervals were
0.743–0.873 (SA method), 0.732–0.864 (FZ method) and
0.730–0.862 (PV method). Also, the score statistic for
testing the homogeneity of κ’s [15] was 2.700 (p-value =
0.440) and the common κ was 0.352.
The Additional file 5 provides the code for clinical

data examples using R language.
To investigate the sensitivity of the indicators to πk,

we hypothetically considered more balanced and less

balanced πk under fixed pa and nk in each stratum. The
generated data set and analysis results are summarized
as Table S3 in the Additional file 1. κ was more sensitive
to changes in the value of π, but AC1 was less sensitive
to changes in the value of π than κ. The common AC1

was not affected as much as the common κ even if the π
balance was lost.

Discussion
It is well known that Cohen’s κ depends strongly on the
marginal distributions, and Gwet proposed alternative
and more stable measures of agreement, AC1 for nom-
inal data and its extended agreement AC2 for ordinal
data [24, 25]. A number of alternative measures have
also been proposed, as in Holley and Guilford’s G [19],
Aickin’s α [20], Andres and Marzo’s delta [21] and
Marasini’s s* [22, 23]. Gwet [24] and Shankar and
Bangdiwala [28] compared some measures and showed
that AC1 has better properties than other kappa-type
measures. In addition, AC1 has been utilized in the field
of medical research over the past decade [29–35]. How-
ever statistical inference procedures of AC1 have not been
discussed sufficiently. Therefore, Ohyama expressed AC1

using population parameters to develop a likelihood-based
inference procedure and constructed confidence intervals
of AC1 based on profile variances and likelihood ratios.
Inclusion of subjects’ covariates, hypothesis testing and
sample size estimation were also presented [36]. In the
present study, the case of stratified data was discussed as
one development of Ohyama [36] for two raters with
binary outcomes. Furthermore, tests were derived for the
homogeneity of AC1 between K independent strata and
the inference of common AC1 was discussed.
In the numerical evaluation of type I error, both tests

were conservative when the sample size was small and
γ0 was 0.9, but the conservativeness was relaxed when
the sample size was as large as 80. In other settings of
simulation, the score test performed well while GOF
sometimes could not achieve the nominal level. There-
fore, we recommend using the score test for testing the
homogeneity of AC1 among K strata. Note that, when
zero cells are observed, the homogeneity score test stat-
istic cannot be calculated. In such cases in our simula-
tion study, we simply added 0.5 to the data set, which
had no serious effect on the performance of the pro-
posed score test in our simulation settings.
If the homogeneity assumption is reasonable, it may

be desired to provide an estimate of the common AC1 as
a summary measure of reliability. In the present study,
we proposed an estimator of common AC1 and con-
structed its confidence intervals based on the SA, FZ,
and PV methods. We also evaluated the performance of
each numerically. The bias and MSE tended to be small
as the sample size increased, and the results were nearly

Table 6 Agreement between ophthalmologist and reading center
classifying superior nasal retinal breaks stratified by PVR grade

PVR grade

C3 D1 D2 D3

Both (x1) 1 6 5 3

One (x2) 9 8 11 9

Neither (x3) 65 46 54 33

Total (n) 75 60 70 45

π 0.073 0.167 0.150 0.167

pa 0.880 0.867 0.843 0.800

κ (MLE) 0.117 0.520 0.384 0.280

AC1 (MLE) 0.861 0.815 0.789 0.723
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0 when n = 80. The PV method provides coverage levels
close to nominal in most situations, while the SA
method tends to provide a shortage of coverage and the
FZ method tends to provide excess coverage in some sit-
uations. Therefore, we recommend the PV method for
calculating confidence intervals.
As in the PVR example, AC1 in each stratum is less af-

fected by the prevalence or marginal probability than by
the κ. It is suggested that the proposed homogeneity test
and the general framework of common AC1 estimation
are also essentially more stable than those of the κ.
There were some limitations in this study. First, as de-

scribed above, the performance of the proposed score
test was very conservative when γ0 = 0.9 and sample size
was small. An exact approach might be an alternative
method in such cases.
Next, in this study, the cases were limited to two raters

with binary outcomes in each stratum. However, in the
evaluation of medical data, it is often the case that multiple
raters classify subjects into nominal or ordered categories.
Our proposed method may be extended to the case of mul-
tiple raters with binary outcomes using the likelihood func-
tion for multiple raters. In the cases of two raters with
nominal outcomes, Agresti [47] proposed a quasi-
symmetry model with kappa as a parameter, and this tech-
nique may be extended to AC1 in the case of stratified data.
Finally, continuous covariates need to be categorized

adequately to apply the proposed approach. The regres-
sion model proposed by Ohyama [36] can be used to as-
sess the effect of continuous covariates on AC1, but it is
limited to the case of two raters with binary data. Nelson
and Edwards [48] and Nelson, Mitani and Edwards [49]
proposed a method for constructing a measure of agree-
ment using generalized linear mixed-effect models by
introducing continuous latent variables representing the
subject’s true disease status and for flexibly incorporat-
ing rater and subject covariates. These approaches might
be applicable to AC1 and AC2.

Conclusion
The method proposed in this study is considered to be
useful for summarizing evaluations of consistency per-
formed in multiple or stratified inter-rater agreement
studies. In addition, the proposed method can be applied
not only to medical or epidemiological research but also
to assessment of the degree of consistency of character-
istics, such as biometrics, psychological measurements,
and data in the behavioral sciences.

Appendix
First and second derivatives of the log-likelihood function
The first and second derivatives of l(γ, π), γ = (γ1, ∙ ∙
∙, γK)

′, π = (π1, ∙ ∙ ∙, πK)′ with respect to rk and πk are ob-
tained as follows:

∂l
∂γk

¼ 1
2
AkRk ;

∂l
∂πk

¼ x1k
P1k

−
x3k
P3k

þ 1−γk
� �

1−2πkð ÞRk ;

∂2l
∂γ2k

¼ −
1
4
A2
kSk ;

∂2l
∂γk∂πk

¼ −
Ak

2
x1k
P2
1k

−
x3k
P2
3k

þ 1−γk
� �

1−2πkð ÞSk
� �

− 1−2πkð ÞRk ;

∂2l
∂π2

k

¼ −
x1k
P2
1k

−
x3k
P2
3k

−2
x1k
P2
1k

−
x3k
P2
3k

� �
1−γk
� �

1−2πkð Þ−2 1−γk
� �

Rk− 1−γk
� �2

1−2πkð Þ2Sk ;
∂2l

∂γk∂γk 0
¼ ∂2l

∂πk∂πk 0
¼ ∂2l

∂γk∂πk 0
¼ 0 k≠k

0	 

;

where

Ak ¼ 1−2πk 1−πkð Þ;
Rk ¼ x1k

P1k
−
2x2k
P2k

þ x3k
P3k

;

Sk ¼ x1k
P2
1k

þ 4x2k
P2
2k

þ x3k
P2
3k

:

Since E(xhk) = nkPhk(γk) (h = 1, 2, 3),

E −
∂2l
∂γ2k

� �
¼ nk

4
A2
kBk ;

E −
∂2l

∂γk∂πk

� �
¼ nk

2
AkCk ;

E −
∂2l
∂π2

k

� �
¼ nkDk ;

where

Bk ¼ 1
P1k

þ 4
P2k

þ 1
P3k

;

Ck ¼ 1
P1k

−
1
P3k

þ 1−γk
� �

1−2πkð ÞBk ;

Dk ¼ 1
P1k

þ 1
P3k

þ 1−γk
� �

1−2πkð Þ 1
P1k

−
1
P3k

þ Ck

� �
:

Thus, the Fisher information matrix is given as
follows:

I γ;πð Þ ¼ 1
4

diag nkA
2
kBk

� �
diag 2nkAkCkð Þ

diag 2nkAkCkð Þ diag 4nkDkð Þ
� �

:

Score test statistic for the null hypothesis
Define the score function U as

U γ;πð Þ ¼ ∂l=∂γ1; ∙∙∙; ∂l=∂γK ; ∂l=∂π1; ∙∙∙; ∂l=∂πK
� �0

The score statistic for testing the null hypothesis H0 :
γ1 =⋯ = γK = γ0 is asymptotically distributed as a χ2 with
K-1 degrees of freedom, and then expressed as

Tð~γ0; ~πÞ ¼ Uð~γ0; ~πÞ′Ið~γ0; ~πÞ−1Uð~γ0; ~πÞ;
where ~γ0 and ~πk are the maximum likelihood estimators
under H0, and then score function vector is expressed as

Uð~γ0; ~πÞ ¼
1
2
ð~A1~R1;…; ~AK ~RK ; 0;…; 0Þ

0
:
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The upper left K × K matrix of Ið~γ; ~πÞ−1 is expressed
as follows:

Iγγð~γ0; ~πÞ ¼ 4ðdiagðnk ~A2
k
~BkÞ−diagð2nk ~Ak ~CkÞ

diag−1ð4nk ~DkÞdiagð2nk ~Ak ~CkÞÞ−1

¼ 4diag
h ~Dk

nk ~A
2
kð~Bk ~Dk−~C

2
kÞ
i
;

so that, the score test statistic Eq. (11) is derived.

Confidence interval for γ0 based on Fisher’s Z
transformation
Fisher’s Z transformation of ~γ0 is defined by

~z ¼ 1
2

log
1þ ~γ0
1−~γ0

:

Using the delta method, the asymptotic variance of ~z is
represented by

Var ~zð Þ ¼ 1
1−γ20

� �2

Var ~γ0
� �

;

where Varð~γÞ is given by Eq. (14). Then a confidence
interval for z = 0.5 log[(1 + γ0)/(1 − γ0)] is obtained by

C� ¼ ~z � Zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar ~zð Þ
q

;

where dVarð~zÞ is defined by substituting ~γ0 and ~πk into
Varð~zÞ. Thus the confidence interval for γ0 based on FZ
method is obtained as follows:

exp 2C−ð Þ−1
exp 2C−ð Þ þ 1

;
exp 2Cþð Þ−1
exp 2Cþð Þ þ 1

� �
:

Derivation of Eq. (14)
By the second-order partial derivatives of the log-
likelihood function l0(γ0, π) and taking expectations, we
obtain

Iγγ ¼ E −
∂2l0
∂γ02

� �
¼ 1

4

XK
k¼1

nkA
2
kB

0ð Þ
k ;

Ikk ¼ E −
∂2l0
∂π2

k

� �
¼ nkD

0ð Þ
k ;

Iγk ¼ E −
∂2l0

∂γ0∂πk

� �
¼ 1

2
nkAkC

0ð Þ
k ;

where Bð0Þ
k ;Cð0Þ

k and Dð0Þ
k are values using γk = γ0 in Bk,

Ck and Dk respectively. Let

I ¼ Iγγ Iγπ
I
0
γπ Iππ

� �
;

where Iγπ = (Iγ1,…, IγK) and Iππ = diag(Ikk). When P1k ≠

0, P2k ≠ 0 and P3k ≠ 0 for all k, Iππ is non-singular
matrix and then the element corresponding to Iγγ of
the inverse matrix of I, which is the variance of ~γ0, is
given by

Iγγ ¼
	
Iγγ−IγπI

−1
ππI

′
γπ


−1
¼ ðIγγ−

XK
k¼1

I2γkI
−1
kk Þ

−1

¼ 4
hXK

k¼1

nkAk
2
	
Bð0Þ
k −

Cð0Þ
k

2

Dð0Þ
k


i−1
:

Since

4D 0ð Þ
k

B 0ð Þ
k D 0ð Þ

k −C 0ð Þ2
k

¼ 1−pa;k
	 


pa;k þ 1−γ0
� �

1−2p�e;k
	 


� 1þ pa;k
	 


;

where pa;k ¼ γ0ð1−p�e;kÞ þ p�e;k is the probability of agree-
ment in the k-th stratum and p�e;k ¼ 2πkð1−πkÞ is the

probability of chance agreement in the k-th stratum, and
using the variance formula for the single stratum case
given by Ohyama [36], Iγγ can be reduced to the right-
most expression in Eq. (14).

Profile variance approach
The profile variance of a statistic is defined as the vari-
ance similar to the estimated variance but without sub-
stituting the estimate for the parameter corresponding
to the statistic [41].
In this study, ~πk is substituted for πk in Eq. (15),

and then we obtain the profile variance gVarð~γ0Þ from
(14). Since ~γ0 is distributed asymptotically as the nor-
mal distribution with mean γ0 and variance (14), we
have

ð~γ0−γ0Þ2
~Varð~γ0Þ

→χ21:

Thus we can obtain the confidence limits as the two
admissible roots of Eq. (17).
Since Eq. (17) is a cubic equation for γ0 and is compli-

cated to solve, thus we calculated the confidence limit
by numerical calculation. The program is given in add-
itional file. Other examples of the profile variance ap-
proach for obtaining confidence intervals can be found
in many literatures. For example, Bickel and Doksum
[50] reported a confidence interval based on the profile
variance for the one-sample binomial proportion. Roth-
man [51] and Afifi, Elashoff and Lee JJ [52] described
profile variance type of confidence intervals for survival
probability.
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