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We present the prevention of avian influenza pandemic by adjusting multiple control functions in the human-to-human
transmittable avian influenza model. First we show the existence of the optimal control problem; then by using both analytical
and numerical techniques, we investigate the cost-effective control effects for the prevention of transmission of disease. To do this,
we use three control functions, the effort to reduce the number of contacts with human infected with mutant avian influenza, the
antiviral treatment of infected individuals, and the effort to reduce the number of infected birds. We completely characterized the
optimal control and compute numerical solution of the optimality system by using an iterative method.

1. Introduction

Highly pathogenic avian influenza is a zoonotic disease
caused by H5N1 virus and it has a devastating impact on
poultry causing above 90 percentmortalitywithin 48 hours of
infection [1]. The disease also spreads to humans through the
direct contact with the infected poultry. Despite all advances
of medical, avian influenza still poses a significant threat to
health and economy of the society. The laboratory confirmed
that the fatality rate in human case is about 60 percent [2].

Several reports have so far been made of possible coin-
fection of humans with an H5N1 strain and a human strain
[3, 4]. One of the coinfection reports is of a Turkish family
cluster. In late December 2005 and early January 2006, a
cluster of 8 confirmed highly pathogenic avian influenza
(H5N1) cases was detected in Dogubayazit district in eastern
Turkey [5]. All confirmed case patients were hospitalized
after onset of symptoms. Four of them were died and the
other four recovered. Another cluster of 8 cases of HPAI
(H5N1) was detected in the village of Kubu Sambilang,
Samatra, Indonesia, in April-May 2006 [6]. Only one of them
recovered and the remaining seven members died. Though

the human-to-human transmission of the disease is rare, its
potential to change into an extremely high virulent human-
to-human transmittable pandemic strain is the real danger to
human health. Due to this threat, some international orga-
nizations have developed and began to implement different
strategies (biosecurity, isolation, and antiviral treatment) for
forestalling the onset of a pandemic. It has been estimated
that a future avian influenza pandemic could cause hundreds
of billions of dolors due to lost productivity, associated
medical policies, and prevention policies.

Mathematical models have been widely used to evaluate
the effects of control measures of avian influenza [7–9]. In
2007, Iwami et al. [10] proposed a mathematical model of
the spread of avian influenza from bird population to human
population. They discussed that to minimize the spread of
the disease in human population, we must take the measures
for the infected human with bird flu to quarantine when
mutant bird flu has already occurred. Lee et al. [11] show
that the optimal control strategies that rely on the use of
antiviral treatment or isolation strategies can reduce the
number of clinical cases; therein they emphasize isolation
strategies in mitigation of pandemic of influenza particularly
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when the access to antiviral resources is limited. Later on
Ullah et al. [12] proposed the control strategies where they
focus on minimizing the impact of influenza by minimizing
the vaccine wanning.

In this paper, we focus on identifying the optimal control
strategies for the model developed in [13]; these controls
minimize the impact of avian influenza by isolating the
infected individuals, the judicious use of drug supply, and
eliminating the infected birds. Recommended medicines like
oseltamivir or zanamivir must be taken within two days after
the appearance of symptoms. The clinically ill and infectious
individuals can be isolated by reasonably effective ways to
reduce the transmission of disease, like to educate them to
cover their sneeze and cough, not to spit openly, and to
avoid the closed contacts with others, sanitizing the rooms or
equipments occupied by the patients.The diagnosed infected
birds should be culled within a few hours and all the infected
dead birds and other contaminated objects (faeces, blood, and
feathers) must be destroyed properly (burying, incineration)
as soon as possible. We can get the most effective results if we
use the isolation, treatment of clinically infectious humans,
and elimination of infected birds concurrently.

2. Model Frame Work

In this section, the compartmental model that divides the
human and birds populations into two different classes
presents the optimal control problem for the transmission
dynamics of avian influenza. Our main aim is to show that
it is possible to implement the time-dependent antiavian
influenza control techniques while minimizing the cost of
such measures. In order to do this, we introduce three time-
dependent control functions 𝑢

1
, 𝑢
2
, and 𝑢

3
. The control 𝑢

1

represents the effort to reduce the number of contacts with
human infected by mutant avian influenza, 𝑢

2
represents the

fraction of clinically infectious cases treatedwith antiviral per
unit of time, and 𝑢

3
is the effort to reduce the number of

infected birds. Note that the controls are fully effective when
𝑢
𝑖

= 1 for 𝑖 = 1, 2, 3, while there is no control if 𝑢
𝑖

= 0.
We divide the total human population at time 𝑡 denoted by
𝑁
ℎ
into five distinct epidemiological subclasses which are

susceptible 𝑋
ℎ
, exposed 𝐸

ℎ
, clinically ill and infectious 𝐼

ℎ
,

treated𝑇
ℎ
, and recovered𝑅

ℎ
and the birds population𝑁

𝑏
into

three distinct subclasses which are susceptible 𝑋
𝑏
, exposed

𝐸
𝑏
, and infected 𝐼

𝑏
. Taking into account the assumptions

above, the dynamics of the control problem is given by

𝑑𝑋
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(1)

with the initial conditions
𝑋
ℎ
(0) ≥ 0, 𝐸

ℎ
(0) ≥ 0, 𝐼

ℎ
(0) ≥ 0,

𝑇
ℎ
(0) ≥ 0, 𝑅

ℎ
(0) ≥ 0, 𝑋

𝑏
(0) ≥ 0,

𝐸
𝑏
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𝑏
(0) ≥ 0.

(2)

The human population is recruited at a constant birth rate
Λ, 𝜖
ℎ
is the rate of immunity loss, 𝜙

ℎ
is the progression rate

from 𝐸
ℎ
to 𝐼
ℎ
, 𝜌
ℎ
represents the treatment rate of human,

𝜇
ℎ
and 𝜇

𝑏
are the natural death rates of humans and birds,

respectively, 𝛽
ℎ
and 𝛽

𝑏
are disease induced death rates in

humans and birds, respectively, 𝜋 represents recruitment rate
of birds population, 𝛾

ℎ
shows recovery due to treatment, 𝜙

𝑏
is

progression rate of birds from 𝐸
𝑏
to 𝐼
𝑏
, and 𝛼

1
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3
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effective contact rates between 𝑋
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ℎ
, 𝑋
ℎ
and 𝐼
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, and 𝑋

𝑏

and 𝐼
𝑏
, respectively.

The objective of our control problem is to minimize the
number of clinically infectious humans and infected birds
and the cost of implementing the control by using possible
minimal control variables 𝑢

𝑖
(𝑡) for 𝑖 = 1, 2, 3. We use

the Lebesgue measurable control and define our objective
functional as
𝐽 (𝑢
1
, 𝑢
2
, 𝑢
3
)

= ∫

𝑡end

0

(𝐴
1
𝐼
ℎ
+ 𝐴
2
𝐼
𝑏
+

1

2

(𝐶
1
𝑢
2

1
+ 𝐶
2
𝑢
2

2
+ 𝐶
3
𝑢
2

3
)) 𝑑𝑡,

(3)

where 𝐴
1
and 𝐴

2
are positive constants to keep a balance in

the size of 𝐼
ℎ
and 𝐼
𝑏
.The square of the control variables reflects

the severity of the side effects of the controls. 𝐶
1
, 𝐶
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are positive weight parameters such that 0 < 𝐶
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optimal control problem is to seek optimal control functions
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where the control set is defined as
𝑈={𝑢 = (𝑢

1
, 𝑢
2
, 𝑢
3
) | 𝑢
𝑖
is Lebesgue measurable on [0, 1] ,

0 ≤ 𝑢
𝑖
(𝑡) ≤ 1, 𝑡 ∈ [0, 𝑡end] , for 𝑖 = 1, 2, 3} ,

(5)

subject to the system (2) with appropriate initial conditions.
Pontryagin’s maximum principle [14] is used to solve this
optimal control problem and the derivation of the necessary
conditions. First we prove the existence of an optimal control
for the system (2) and then derive the optimality system.
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3. Existence of Control Problem

In this section, we consider the control system (2) with initial
conditions at 𝑡 = 0 to show the existence of the control
problem. Note that, for the bounded Lebesgue measurable
controls and nonnegative initial conditions, nonnegative

bounded solutions to the state system exist (see [15]). To prove
the existence of the solution of system (2), we can write
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where 𝑌
𝑡
denotes derivative of 𝑌 with respect to time 𝑡.

Equation (3) is a nonlinear systemwith a bounded coefficient.
We set

𝐷 (𝑌) = 𝐵𝑌 + 𝐹 (𝑌) . (8)
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where 𝑉 = max{𝑀, ‖𝐵‖}, which shows that 𝐷 is uniformly
Lipschitz continuous; hence by definition, the solution of the
system exists (see [15]).

Let us go back to the optimal control problem (2)–(3).
In order to find an optimal solution, first we should find
the Lagrangian and Hamiltonian for the optimal control
problem. The Lagrangian is
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We seek for the minimal value of the Lagrangian. To do this,
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Table 1: Parameter values used for numerical simulations.

Notation Parameters definition Value
Λ Recruitment rate of humans 1.7/day
𝛼
1

Effective contact rate between 𝑋
ℎ
and 𝐼
ℎ

0.3
𝛼
2

Effective contact rate between 𝑋
ℎ
and 𝐼
𝑏
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𝑏
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0.12
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𝜖
ℎ
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𝜇
ℎ

Natural death rate of humans 0.1/day
𝜇
𝑏

Natural death rate of birds 0.3/day
𝛾
ℎ

Recovery due to treatment 0.3
𝜌
ℎ

Treatment rate 0.75
𝛽
ℎ

Disease induced death rate in humans 0.4/day
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𝑏
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ℎ
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ℎ
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For the existence of the control system (2), we state and
prove the following theorem.

Theorem 1. There exists an optimal control 𝑢
∗

= (𝑢
∗

1
, 𝑢
∗

2
,

𝑢
∗

3
) ∈ 𝑈 such that

𝐽 (𝑢
∗

1
, 𝑢
∗

2
, 𝑢
∗

3
) = min
(𝑢
1
,𝑢
2
,𝑢
3
)∈𝑈

𝐽 (𝑢
1
, 𝑢
2
, 𝑢
3
) (13)

subject to the control system (2) with the initial conditions (2).

Proof. Toprove the existence of an optimal control, we use the
result in [16–18]. Note that the control and the state variables
are non-negative values. In this minimizing problem, the
necessary convexity of the objective functional in 𝑢

1
, 𝑢
2
, and

𝑢
3
is satisfied.The set of all the control variables (𝑢

1
, 𝑢
2
, 𝑢
3
) ∈

𝑈 is also convex and closed by definition.The optimal system
is boundedwhich determines the compactness needed for the
existence of an optimal control. In addition the integrand in
the functional (3), 𝐴

1
𝐼
ℎ
+𝐴
2
𝐼
𝑏
+ (1/2)(𝐶

1
𝑢
2

1
+ 𝐶
2
𝑢
2

2
+ 𝐶
3
𝑢
2

3
),

is convex on the control set𝑈. Also we can see that there exist
a constant 𝜌 > 1 and positive numbers 𝜔

1
and 𝜔

2
such that

𝐽 (𝑢
1
, 𝑢
2
, 𝑢
3
) ≥ 𝜔
1
(
󵄨
󵄨
󵄨
󵄨
𝑢
1

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑢
2

󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑢
3

󵄨
󵄨
󵄨
󵄨

2

)

𝜌/2

− 𝜔
2
, (14)

because the state variables are bounded, which complete the
existence of an optimal control.

In order to derive the necessary conditions, we use
Pontryagin’s maximum principle [14] as follows. If (𝑥, 𝑢) is
an optimal solution of an optimal control problem, then
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Figure 1: The plot represents the population of susceptible humans
with and without control.

there exists a nontrivial vector function 𝜆 = (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
)

satisfying the following equations:

𝑑𝑥

𝑑𝑡

=

𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝜆

, 0 =

𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝑢

,

𝑑𝜆

𝑑𝑡

=

𝜕𝐻 (𝑡, 𝑥, 𝑢, 𝜆)

𝜕𝑥

.

(15)

We now derive the necessary conditions that optimal control
functions and corresponding states must satisfy. In the
following theorem, we present the adjoint system and control
characterization.

Theorem 2. Let 𝑋∗
ℎ
, 𝐸∗
ℎ
, 𝐼∗
ℎ
, 𝑇∗
ℎ
, 𝑅∗
ℎ
, 𝑋∗
𝑏
, 𝐸∗
𝑏
, and 𝐼

∗

𝑏
be opti-

mal state solutions with associated optimal control variables
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(𝑢∗
1
, 𝑢∗
2
, and 𝑢

∗

3
) for the optimal control problem (2)–(3). Then

there exist adjoint variables 𝜆
𝑖
, for 𝑖 = 1, 2, . . . , 8, satisfying

𝑑𝜆
1

𝑑𝑡

= (𝜆
1
− 𝜆
2
) (1 − 𝑢

1
) (𝛼
1
𝐼
ℎ
+ 𝛼
2
𝐼
𝑏
) + 𝜆
1
𝜇
ℎ
,

𝑑𝜆
2

𝑑𝑡

= (𝜆
2
− 𝜆
3
) 𝜙
ℎ
+ 𝜆
2
𝜇
ℎ
,

𝑑𝜆
3

𝑑𝑡

= (𝜆
1
− 𝜆
2
) (1 − 𝑢

1
) 𝛼
1
𝑋
ℎ
+ (𝜆
3
− 𝜆
4
) 𝜌
ℎ

+ 𝜆
3
(𝛽
ℎ
+ 𝜇
ℎ
+ 𝑢
2
) − 𝜆
5
𝑢
2
− 𝐴
1
,

𝑑𝜆
4

𝑑𝑡

= (𝜆
4
− 𝜆
5
) 𝛾
ℎ
+ 𝜆
4
𝜇
ℎ
,

𝑑𝜆
5

𝑑𝑡

= (𝜆
5
− 𝜆
1
) 𝜖
ℎ
+ 𝜆
5
𝜇
ℎ
,

𝑑𝜆
6

𝑑𝑡

= (𝜆
6
− 𝜆
7
) (1 − 𝑢

3
) 𝛼
3
𝐼
𝑏
+ 𝜆
6
𝜇
𝑏
,

𝑑𝜆
7

𝑑𝑡

= (𝜆
7
− 𝜆
8
) 𝜙
𝑏
+ 𝜆
7
𝜇
𝑏
,

𝑑𝜆
8

𝑑𝑡

= (𝜆
6
− 𝜆
7
) (1 − 𝑢

3
) 𝛼
3
𝑋
𝑏
+ 𝜆
8
(𝛽
𝑏
+ 𝜇
𝑏
) − 𝐴
2

(16)

with transversality conditions

𝜆
𝑖
(𝑡end) = 0, 𝑖 = 1, 2, . . . , 8. (17)

Furthermore the control functions 𝑢∗
1
, 𝑢∗
2
, and 𝑢

∗

3
are given by

𝑢
∗

1
=max{min{

(𝜆
2
− 𝜆
1
) 𝛼
1
𝑋
∗

ℎ
𝐼
∗

ℎ

𝑐
1

, 1} , 0} ,

𝑢
∗

2
=max{min{

(𝜆
3
− 𝜆
5
) 𝐼
∗

ℎ

𝑐
2

, 1} , 0} ,

𝑢
∗

3
=max{min{

(𝜆
7
− 𝜆
6
) 𝛼
3
𝑋
∗

𝑏
𝐼
∗

𝑏

𝑐
3

, 1} , 0} .

(18)

Proof. To determine the adjoint equations and the transver-
sality conditions, we use the Hamiltonian 𝐻 in (12). The
adjoint system results from Pontryagin’s maximum principle
[14]:

𝑑𝜆
1

𝑑𝑡

= −

𝜕𝐻

𝜕𝑋
ℎ

,

𝑑𝜆
2

𝑑𝑡

= −

𝜕𝐻

𝜕𝐸
ℎ

,

𝑑𝜆
3

𝑑𝑡

= −

𝜕𝐻

𝜕𝐼
ℎ

,

𝑑𝜆
4

𝑑𝑡

= −

𝜕𝐻

𝜕𝑇
ℎ

,

𝑑𝜆
5

𝑑𝑡

= −

𝜕𝐻

𝜕𝑅
ℎ

,

𝑑𝜆
6

𝑑𝑡

= −

𝜕𝐻

𝜕𝑋
𝑏

,

𝑑𝜆
7

𝑑𝑡

= −

𝜕𝐻

𝜕𝐸
𝑏

,

𝑑𝜆
8

𝑑𝑡

= −

𝜕𝐻

𝜕𝐼
𝑏

(19)

with 𝜆
𝑖
(𝑡end) = 0, 𝑖 = 1, 2, . . . , 8.

To get the characterization of the optimal control given
by (18), solving the equations

𝜕𝐻

𝜕𝑢
1

= 0,

𝜕𝐻

𝜕𝑢
2

= 0,

𝜕𝐻

𝜕𝑢
3

= 0, (20)
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Figure 2: The plot represents the population of exposed humans
with and without control.
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Figure 3: The plot represents the population of infected humans
with and without control.

on the interior of the control set, and setting the property of
the control space 𝑈, we can derive the desired characteriza-
tion (18).

4. Numerical Results and Discussion

In this section, we present a semi-implicit finite difference
method by discretizing the interval [𝑡

0
, 𝑡
𝑓
] at the points 𝑡

𝑖
=

𝑡
0
+ 𝑖𝑙, (𝑖 = 0, 1, . . . , 𝑛), where 𝑙 represents the time step such

that 𝑡
𝑛
= 𝑡
𝑓
. We define the state and adjoint variables 𝑋

ℎ
, 𝐸
ℎ
,
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Figure 4:The plot represents the population of treated humans with
and without control.

𝐼
ℎ
, 𝑇
ℎ
, 𝑅
ℎ
, 𝑋
𝑏
, 𝐸
𝑏
, 𝐼
𝑏
, 𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
, 𝜆
7
, and 𝜆

8
and

the controls 𝑢
1
, 𝑢
2
, and 𝑢

3
in terms of nodal points 𝑋

𝑖

ℎ
, 𝐸𝑖
ℎ
,

𝐼
𝑖

ℎ
, 𝑇𝑖
ℎ
, 𝑅𝑖
ℎ
, 𝑋𝑖
𝑏
, 𝐸𝑖
𝑏
, 𝐼𝑖
𝑏
, 𝜆𝑖
1
, 𝜆𝑖
2
, 𝜆𝑖
3
, 𝜆𝑖
4
, 𝜆𝑖
5
, 𝜆𝑖
6
, 𝜆𝑖
7
, 𝜆𝑖
8
, 𝑢𝑖
1
, 𝑢𝑖
2
,

and 𝑢
𝑖

3
. By combination of forward and backward difference

approximation, the method developed by [19] to adopt it in
our case is given by

𝑋
𝑖+1

ℎ
− 𝑋
𝑖

ℎ

𝑙

= Λ − 𝜇
ℎ
𝑋
𝑖+1

ℎ
− (1 − 𝑢

𝑖

1
) 𝛼
1
𝑋
𝑖+1

ℎ
𝐼
𝑖

ℎ

− 𝛼
2
𝑋
𝑖+1

ℎ
𝐼
𝑖

𝑏
+ 𝜖
ℎ
𝑅
𝑖

ℎ
,

𝐸
𝑖+1

ℎ
− 𝐸
𝑖

ℎ

𝑙

= (1 − 𝑢
𝑖

1
) 𝛼
1
𝑋
𝑖+1

ℎ
𝐼
𝑖

ℎ
+ 𝛼
2
𝑋
𝑖+1

ℎ
𝐼
𝑖

𝑏

− (𝜇
ℎ
+ 𝜙
ℎ
) 𝐸
𝑖+1

ℎ
,

𝐼
𝑖+1

ℎ
− 𝐼
𝑖

ℎ

𝑙

= 𝜙
ℎ
𝐸
𝑖+1

ℎ
− (𝜌
ℎ
+ 𝛽
ℎ
+ 𝜇
ℎ
+ 𝑢
𝑖

2
) 𝐼
𝑖+1

ℎ
,

𝑇
𝑖+1

ℎ
− 𝑇
𝑖

ℎ

𝑙

= 𝜌
ℎ
𝐼
𝑖+1

ℎ
− (𝛾
ℎ
+ 𝜇
ℎ
) 𝑇
𝑖+1

ℎ
,

𝑅
𝑖+1

ℎ
− 𝑅
𝑖

ℎ

𝑙

= 𝛾
ℎ
𝑇
𝑖+1

+ 𝑢
𝑖

2
𝐼
𝑖+1

ℎ
− (𝜇
ℎ
+ 𝜖
ℎ
) 𝑅
𝑖+1

ℎ
,

𝑋
𝑖+1

𝑏
− 𝑋
𝑖

𝑏

𝑙

= 𝜋 − 𝜇
𝑏
𝑋
𝑖+1

𝑏
− (1 − 𝑢

𝑖

3
) 𝛼
3
𝑋
𝑖+1

𝑏
𝐼
𝑖

𝑏
,

𝐸
𝑖+1

𝑏
− 𝐸
𝑖

𝑏

𝑙

= (1 − 𝑢
𝑖

3
) 𝛼
3
𝑋
𝑖+1

𝑏
𝐼
𝑖

𝑏
− (𝜇
𝑏
+ 𝜙
𝑏
) 𝐸
𝑖+1

𝑏
,

𝐼
𝑖+1

𝑏
− 𝐼
𝑖

𝑏

𝑙

= 𝜙
𝑏
𝐸
𝑖+1

𝑏
− (𝛽
𝑏
+ 𝜇
𝑏
) 𝐼
𝑖+1

𝑏
.

(21)

To approximate the time derivative of the adjoint variables by
the first-ordered backward difference, we use the appropriate
scheme as follows:

𝜆
𝑛−𝑖

1
− 𝜆
𝑛−𝑖−1

1

𝑙

= (𝜆
𝑛−𝑖−1

1
− 𝜆
𝑛−𝑖

2
) (1 − 𝑢

𝑖

1
) (𝛼
1
𝐼
𝑖+1

ℎ
+ 𝛼
2
𝐼
𝑖+1

𝑏
)

+ 𝜆
𝑛−𝑖−1

1
𝜇
ℎ
,

𝜆
𝑛−𝑖

2
− 𝜆
𝑛−𝑖−1

2

𝑙

= (𝜆
𝑛−𝑖−1

2
− 𝜆
𝑛−𝑖

3
) 𝜙
ℎ
+ 𝜆
𝑛−𝑖−1

2
𝜇
ℎ
,

𝜆
𝑛−𝑖

3
− 𝜆
𝑛−𝑖−1

3

𝑙

= (𝜆
𝑛−𝑖−1

1
− 𝜆
𝑛−𝑖−1

2
) (1 − 𝑢

𝑖

1
) 𝛼
1
𝑋
𝑖+1

ℎ

+ 𝜆
𝑛−𝑖−1

3
(𝜌
ℎ
+ 𝛽
ℎ
+ 𝜇
ℎ
+ 𝑢
𝑖

2
)

− 𝜆
𝑛−𝑖

5
𝑢
𝑖

2
− 𝜆
𝑛−𝑖

4
𝜌
ℎ
− 𝐴
1
,

𝜆
𝑛−𝑖

4
− 𝜆
𝑛−𝑖−1

4

𝑙

= (𝜆
𝑛−𝑖−1

4
− 𝜆
𝑛−𝑖

5
) 𝛾
ℎ
+ 𝜆
𝑛−𝑖−1

4
𝜇
ℎ
,

𝜆
𝑛−𝑖

5
− 𝜆
𝑛−𝑖−1

5

𝑙

= (𝜆
𝑛−𝑖−1

5
− 𝜆
𝑛−𝑖−1

1
) 𝜖
ℎ
+ 𝜆
𝑛−𝑖−1

5
𝜇
ℎ
,

𝜆
𝑛−𝑖

6
− 𝜆
𝑛−𝑖−1

6

𝑙

= (𝜆
𝑛−𝑖−1

6
− 𝜆
𝑛−𝑖

7
) (1 − 𝑢

𝑖

3
) 𝛼
3
𝐼
𝑖+1

𝑏
+ 𝜆
𝑛−𝑖−1

6
𝜇
𝑏
,

𝜆
𝑛−𝑖

7
− 𝜆
𝑛−𝑖−1

7

𝑙

= (𝜆
𝑛−𝑖−1

7
− 𝜆
𝑛−𝑖

8
) 𝜙
𝑏
+ 𝜆
𝑛−𝑖−1

7
𝜇
𝑏
,

𝜆
𝑛−𝑖

8
− 𝜆
𝑛−𝑖−1

8

𝑙

= (𝜆
𝑛−𝑖−1

6
− 𝜆
𝑛−𝑖−1

7
) (1 − 𝑢

𝑖

3
) 𝛼
3
𝑋
𝑖+1

𝑏

+ 𝜆
𝑛−𝑖−1

8
(𝛽
𝑏
+ 𝜇
𝑏
) − 𝐴
2
.

(22)

The algorithm that describes the approximation method for
obtaining the optimal control is as follows.

Algorithm 3. Consider the following.

Step 1. Consider 𝑋
ℎ
(0) = 𝑋

ℎ0
, 𝐸
ℎ
(0) = 𝐸

ℎ0
, 𝐼
ℎ
(0) = 𝐼

ℎ0
,

𝑇
ℎ
(0) = 𝑇

ℎ0
, 𝑅
ℎ
(0) = 𝑅

ℎ0
, 𝑋
𝑏
(0) = 𝑋

𝑏0
, 𝐸
𝑏
(0) = 𝐸

𝑏0
,

𝐼
𝑏
(0) = 𝐼

𝑏0
, 𝑢
1
(0) = 𝑢

2
(0) = 𝑢

3
(0) = 0, and 𝜆

𝑖
(𝑡
𝑓
) = 0,

𝑖 = 1, . . . , 8.

Step 2. For 𝑖 = 1, . . . , 𝑛 − 1, do

𝑋
𝑖+1

ℎ
=

𝑋
𝑖

ℎ
+ 𝑙 [Λ + 𝜖

ℎ
𝑅
𝑖

ℎ
]

1 + 𝑙 [𝜇
ℎ
+ (1 − 𝑢

𝑖

1
) 𝛼
1
𝐼
𝑖

ℎ
+ 𝛼
2
𝐼
𝑖

𝑏
]

,

𝐸
𝑖+1

ℎ
=

𝐸
𝑖

ℎ
+ 𝑙 [(1 − 𝑢

𝑖

1
) 𝛼
1
𝑋
𝑖+1

ℎ
𝐼
𝑖

ℎ
+ 𝛼
2
𝑋
𝑖+1

ℎ
𝐼
𝑖

𝑏
]

1 + 𝑙 [𝜇
ℎ
+ 𝜙
ℎ
]

,

𝐼
𝑖+1

ℎ
=

𝐼
𝑖

ℎ
+ 𝑙𝜙
ℎ
𝐸
𝑖+1

ℎ

1 + 𝑙 [𝜌
ℎ
+ 𝛽
ℎ
+ 𝜇
ℎ
+ 𝑢
𝑖

2
]

,

𝑇
𝑖+1

ℎ
=

𝑇
𝑖

ℎ
+ 𝑙𝜌
ℎ
𝐼
𝑖+1

ℎ

1 + 𝑙 [𝛾
ℎ
+ 𝜇
ℎ
]

,
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Figure 5: The plot represents the population of recovered humans
with and without control.

𝑅
𝑖+1

ℎ
=

𝑅
𝑖

ℎ
+ 𝑙 [𝛾𝑇

𝑖+1

ℎ
+ 𝑢
𝑖

2
𝐼
𝑖+1

ℎ
]

1 + 𝑙 [𝜇
ℎ
+ 𝜖
ℎ
]

,

𝑋
𝑖+1

𝑏
=

𝑋
𝑖

𝑏
+ 𝑙𝜋

1 + 𝑙 [𝜇
𝑏
+ (1 − 𝑢

𝑖

3
) 𝛼
3
𝐼
𝑖

𝑏
]

,

𝐸
𝑖+1

𝑏
=

𝐸
𝑖

𝑏
+ 𝑙 (1 − 𝑢

𝑖

3
) 𝛼
3
𝑋
𝑖+1

𝑏
𝐼
𝑖

𝑏

1 + 𝑙 [𝜇
𝑏
+ 𝜙
𝑏
]

,

𝐼
𝑖+1

𝑏
=

𝐼
𝑖

𝑏
+ 𝑙𝜙
𝑏
𝐸
𝑖+1

𝑏

1 + 𝑙 [𝛽
𝑏
+ 𝜇
𝑏
]

,

𝜆
𝑛−𝑖−1

1
=

𝜆
𝑛−𝑖

1
+ 𝑙𝜆
𝑛−𝑖

2
(1 − 𝑢

𝑖

1
) [𝛼
1
𝐼
𝑖+1

ℎ
+ 𝛼
2
𝐼
𝑖+1

ℎ
]

1 + 𝑙 [(1 − 𝑢
𝑖

1
) 𝛼
1
𝐼
𝑖+1

ℎ
+ 𝛼
2
𝐼
𝑖+1

ℎ
+ 𝜇
ℎ
]

,

𝜆
𝑛−𝑖−1

2
=

𝜆
𝑛−𝑖

3
+ 𝑙𝜆
𝑛−𝑖

3
𝜙
ℎ

1 + 𝑙𝜆
𝑛−𝑖−1

2
[𝜙
ℎ
+ 𝜇
ℎ
]

,

𝜆
𝑛−𝑖−1

3
= 𝜆
𝑛−𝑖

3
+ 𝑙 [(𝜆

𝑛−𝑖−1

2
− 𝜆
𝑛−𝑖−1

1
) (1 − 𝑢

𝑖

1
) 𝛼
1
𝑋
𝑖+1

ℎ

+𝜌
ℎ
𝜆
𝑛−𝑖

4
+ 𝑢
𝑖

2
𝜆
𝑛−𝑖

5
+ 𝐴
1
]

× (1 + 𝑙 [𝜌
ℎ
+ 𝛽
ℎ
+ 𝜇
ℎ
+ 𝑢
𝑖

2
])

−1

,

𝜆
𝑛−𝑖−1

4
=

𝜆
𝑛−𝑖

4
− 𝑙𝛾
ℎ
𝜆
𝑛−𝑖

1 − 𝑙 [𝛾
ℎ
+ 𝜇
ℎ
]

,

𝜆
𝑛−𝑖−1

5
=

𝜆
𝑛−𝑖

5
+ 𝑙𝜖
ℎ
𝜆
𝑛−𝑖−1

1

1 + 𝑙 [𝜖
ℎ
+ 𝜇
ℎ
]

,

𝜆
𝑛−𝑖−1

6
=

𝜆
𝑛−𝑖

6
+ 𝑙 (1 − 𝑢

𝑖

3
) 𝐼
𝑖+1

𝑏
𝜆
𝑛−𝑖

7

1 + 𝑙 [𝜇
𝑏
+ (1 − 𝑢

𝑖

3
) 𝛼
3
𝐼
𝑖+1

𝑏
]

,

𝜆
𝑛−𝑖−1

7
=

𝜆
𝑛−𝑖

7
+ 𝑙𝜙
𝑏
𝜆
𝑛−𝑖

8

1 + 𝑙 [𝜙
𝑏
+ 𝜇
𝑏
]

,

𝜆
𝑛−𝑖−1

8
=

𝜆
𝑛−𝑖

8
+ 𝑙 [(𝜆

𝑛−𝑖−1

7
− 𝜆
𝑛−𝑖−1

6
) (1 − 𝑢

𝑖

3
) 𝛼
3
𝑋
𝑖+1

𝑏
+ 𝐴
2
]

1 + 𝑙 [𝛽
𝑏
+ 𝜇
𝑏
]

,

𝑢
𝑖+1

1
= max{min{

(𝜆
𝑛−𝑖−1

2
− 𝜆
𝑛−𝑖−1

1
) 𝛼
1
𝑋
𝑖+1

ℎ
𝐼
𝑖+1

ℎ

𝑐
1

, 1} , 0} ,

𝑢
𝑖+1

2
= max{min{

(𝜆
𝑛−𝑖−1

3
− 𝜆
𝑛−𝑖−1

5
) 𝐼
𝑖+1

ℎ

𝑐
2

, 1} , 0} ,

𝑢
𝑖+1

3
= max{min{

(𝜆
𝑛−𝑖−1

7
− 𝜆
𝑛−𝑖−1

6
) 𝛼
3
𝑋
𝑖+1

𝑏
𝐼
𝑖+1

𝑏

𝑐
3

, 1} , 0} ,

(23)

end for.

Step 3. For 𝑖 = 1, . . . , 𝑛 − 1, write 𝑋
∗

ℎ
(𝑡
𝑖
) = 𝑋

𝑖

ℎ
, 𝐸∗
ℎ
(𝑡
𝑖
) = 𝐸

𝑖

ℎ
,

𝐼
∗

ℎ
(𝑡
𝑖
) = 𝐼
𝑖

ℎ
, 𝑇∗
ℎ
(𝑡
𝑖
) = 𝑇

𝑖

ℎ
, 𝑅∗
ℎ
(𝑡
𝑖
) = 𝑅

𝑖

ℎ
, 𝑋∗
𝑏
(𝑡
𝑖
) = 𝑋

𝑖

𝑏
, 𝐸∗
𝑏
(𝑡
𝑖
) =

𝐸
𝑖

𝑏
, 𝐼∗
𝑏
(𝑡
𝑖
) = 𝐼
𝑖

𝑏
, 𝑢∗
1
(𝑡
𝑖
) = 𝑢
𝑖

1
, 𝑢∗
2
(𝑡
𝑖
) = 𝑢
𝑖

2
, and 𝑢

∗

3
(𝑡
𝑖
) = 𝑢
𝑖

3
end

for.

We have plotted susceptible, exposed, infected, treated,
and recovered population of humans and susceptible,
exposed, and infected population of birds with and without
control by considering parameter values given in Table 1, with
initial values 𝑋

ℎ
(0) = 40, 𝐸

ℎ
(0) = 20, 𝐼

ℎ
(0) = 10, 𝑇

ℎ
(0) = 8,

𝑅
ℎ
(0) = 5, 𝑋

𝑏
(0) = 70, 𝐸

𝑏
(0) = 30, and 𝐼

𝑏
(0) = 20. In each of

the given figures the undashed and the dashed lines represent
the individuals without and with control, respectively. The
weight constant of the objective functional 𝐴

1
= 0.035,

𝐴
2

= 0.0015, 𝐶
1

= 0.05, 𝐶
2

= 0.08, and 𝐶
3

= 0.002 is
considered for numerical simulation. Figure 1 shows that the
population of the susceptible humans increased after control,
in Figures 2 and 3 we see that the number of the exposed and
infected humans with control decreased more sharply than
that without control, Figure 4 shows that per day clinically
reported humans decreased after control, Figure 5 shows that
the number of recovered human individuals increased after
control, Figure 6 shows that the birds population increased
after control, and in Figures 7 and 8 we see that the number
of the exposed and infected birds decreased after control.
Figure 9 shows the graphs of control variables.

5. Conclusion

An optimal control problem of the transmission dynamics
of the human-avian influenza disease has been presented.
We sought to determine three types of control functions
associated with isolation and antiviral treatment of the clin-
ically infectious individuals and elimination of the infected
birds. Our control plots indicated that the number of
exposed, infected, and hospitalized humans and the number
of exposed, infected birds decreased in the optimal system.
We developed the necessary conditions for the existence
of the optimal control by using Pontryagin’s maximum
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Figure 6: The plot represents the population of susceptible birds
with and without control.
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Figure 7: The plot represents the population of exposed birds with
and without control.

principle. Using the state and adjoint system together with
the characterization of the optimal control, we solved the
problem numerically by an efficient numerical method based
on optimal control with the estimated parameter values based
on avian influenza.The results show that the control practices
are very effective in reducing the incidence of infectious
population.
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Figure 8: The plot represents the population of infected birds with
and without control.
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