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Abstract

Examining the distributional equity of urban tree canopy cover (UTCC) has increasingly

become an important interdisciplinary focus of ecologists and social scientists working

within the field of environmental justice. However, while UTCC may serve as a useful proxy

for the benefits provided by the urban forest, it is ultimately not a direct measure. In this

study, we quantified the monetary value of multiple ecosystem services (ESD) provisioned

by urban forests across nine U.S. cities. Next, we examined the distributional equity of

UTCC and ESD using a number of commonly investigated socioeconomic variables. Based

on trends in the literature, we predicted that UTCC and ESD would be positively associated

with the variables median income and percent with an undergraduate degree and negatively

associated with the variables percent minority, percent poverty, percent without a high

school degree, percent renters, median year home built, and population density. We also

predicted that there would be differences in the relationships between each response vari-

able (UTCC and ESD) and the suite of socioeconomic predictor variables examined

because of differences in how each response variable is derived. We utilized methods pro-

moted within the environmental justice literature, including a multi-city comparative analysis,

the incorporation of high-resolution social and environmental datasets, and the use of spa-

tially explicit models. Patterns between the socioeconomic variables and UTCC and ESD

did not consistently support our predictions, highlighting that inequities are generally not uni-

versal but rather context dependent. Our results also illustrated that although the variables

UTCC and ESD had largely similar relationships with the predictor variables, differences did

occur between them. Future distributional equity research should move beyond the use of

proxies for environmental amenities when possible while making sure to consider that the

use of ecosystem service estimates may result in different patterns with socioeconomic vari-

ables of interest. Based on our findings, we conclude that understanding and remedying the

challenges associated with inequities requires an understanding of the local social-ecologi-

cal system if larger sustainability goals are to be achieved.
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Introduction

Urban forests are an integral green infrastructure component that carry out many critical eco-

logical functions, including sequestering carbon and producing oxygen during photosynthesis

and supporting wildlife with the resulting biomass [1–4]. When humans benefit or are harmed

by these functions, they are often referred to as ecosystem services or disservices, respectively

[5–8]. Urban forests provide regulating ecosystem services such as carbon sequestration and

storage, atmospheric pollution removal, mitigation of the urban heat island effect, and storm-

water runoff reduction, in addition to other social, cultural, and human-health related benefits

[7,9–13]. Ecosystem disservices such as damage to infrastructure or the deposition of allergenic

pollen can also result [6,8,14]. Despite these potential liabilities, urban forests are widely con-

sidered an environmental amenity due to the many benefits they confer [15]. Examining the

distributional equity of urban tree canopy cover (UTCC) has increasingly become an impor-

tant interdisciplinary focus of ecologists and social scientists (Table 1) [15–22]. However,

while UTCC may serve as a useful proxy, it is ultimately not a direct measure of the ecosystem

services provided by trees [23–26].

Advances in ecosystem modeling have allowed for the derivation of quantitative estimates

of the benefits provided by urban forests occurring in distinct geographic regions based on

UTCC estimates and other local data [1,9,52]. Ground-based inventories that generate forest

structural data form the foundation for many calculations of forest function [1]. These in tan-

dem with data describing the abiotic environment, broader ecological community, and biology

of the species of interest can all inform models of an urban forest’s biogeochemical pools and

fluxes [52]. However, when the emphasis shifts from calculating ecosystem functions to ser-

vices, and in particular their monetary values, it becomes necessary to incorporate additional

parameters associated with the local human population (e.g. population density, economic

conditions). Based on these distinctions, two cities could conceivably have structurally similar

forests that carry out a function such as carbon sequestration at comparable rates, yet divergent

estimates of the monetary value associated with the service due to different human contexts.

Thus, equivalent levels of UTCC have the potential to provide differing levels of ecosystem ser-

vices from one geographic area to the next.

A number of tools have been developed in recent years that attempt to quantify ecosystem

services and their value [53]. One of the most widely used for urban forests is the i-Tree plat-

form (https://www.itreetools.org/). i-Tree is a publicly available suite of software programs

and applications backed by peer-reviewed research that allows users to obtain estimates of the

ecosystem services and monetary value of urban forests based on a variety of data collection

techniques. For example, i-Tree Eco (previously the Urban Forest Effects (UFORE) model

[1]), which requires ground survey data, has been used to compare urban forest communities

and their benefits across land use types and to estimate the expected value added through

large-scale tree planting initiatives [9,54]. Using ground survey data, i-Tree STRATUM (cur-

rently named i-Tree Streets) was used to estimate the ecosystem services and value of street

trees in Lisbon, Portugal while i-Tree Canopy was used to estimate UTCC for Williamstown (a

suburb of Melbourne), Australia entirely through random point sampling on Google Maps

[55,56]. When combined with data related to the local human population, these tools have the

potential to highlight inequities in the distribution of ecosystem services based on socioeco-

nomic status. For example, the UFORE model was used to document the inequitable provision

of the ecosystem services of air pollution removal and energy savings through shading among

White, African American, and Hispanic areas within Miami-Dade County, Florida [57].

Recent paradigm shifts within the field of urban ecology call for interdisciplinary research

approaches that view cities as social-ecological systems [58,59]. Ecology for the city (instead of
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in or of) highlights an important new focus of the field described as “shaping city form and

function to create better outcomes for people and places” [58]. Integrative environmental jus-

tice studies examining the distribution of UTCC in relation to socioeconomic patterns often

fall within the ecology for the city paradigm. These studies seek to understand both the social

and ecological dimensions of the urban ecosystem and advance sustainability goals through

increased and equitably distributed UTCC. To date, a substantive body of research has docu-

mented inequities in the distribution of UTCC, and urban vegetation abundance more gener-

ally (Table 1). Some of the most consistent patterns to emerge have been positive associations

between advantaged populations (e.g. high income, college educated) and negative associa-

tions between disadvantaged or marginalized populations (e.g. low income, racial and ethnic

minorities, no high school degree) and these environmental amenities (Table 1).

Efforts to understand if patterns of environmental inequity are universal across urban areas

have led to important advancements in methodologies. Shifts from case studies to compara-

tive, multi-location or large scale investigations [60–62], the incorporation of high-resolution

datasets [49,50], and the use of more sophisticated analytical methodologies [15,18,21,33,

37,63] are all approaches that aim to improve our understanding of underlying patterns of

environmental injustice. Schwarz et al. (2015) employed these strategies to examine the distri-

butional equity of UTCC in relation to income and race/ethnicity across seven U.S. cities. The

researchers utilized high-resolution UTCC and socioeconomic data and moved beyond con-

ventional correlation or regression analyses by using spatial autoregressive models [15]. In

doing so, Schwarz et al. (2015) determined that the more robust spatial models often decreased

or eliminated the significance of the socioeconomic predictors of UTCC. While acknowledg-

ing some caveats and limitations of UTCC distributional equity studies (Table 2), their

research demonstrates the value of utilizing high-resolution datasets in conjunction with

Table 1. Studies examining associations between indicators of urban vegetation presence or abundance and socioeconomic variables. Our predictions are based on

the prevailing patterns supported in the literature.

Socioeconomic Variables Predicted Association with

UTCC

Evidence Supporting Prediction Evidence in Opposition to

Prediction

No Pattern

Median Income Positive [15,17,19–21,27–44] [21,45] [22]

Percent Poverty Negative [28,31,41,46–48]

Percent Minority Negative [15,16,18,19,27–

30,35,37,41,45,46,48]

[15,20,21,28,38,45,46]

Percent without a High School

Degree

Negative [19,21,27,28,38,45] [20]

Percent with an Undergraduate

Degree

Positive [21,22,43–45] [45]

Median Year Home Built Negative [22,27,29,38,40,49,50] [21,34] [31,43]

Percent Renters Negative [16,18,21,28,37,40,42,43,46] [45] [29]

Population Density Negative [17,18,21,27,30,38–40,51] [22]

https://doi.org/10.1371/journal.pone.0228499.t001

Table 2. Caveats to consider when carrying out or interpreting results from urban tree canopy cover distribu-

tional equity studies. Reproduced with modifications from Schwarz et al. (2015), with permission from K. Schwarz.

1 Variables not examined might be better predictors of urban tree canopy cover or ecosystem services.

2 Examining patterns between socioeconomics and environmental amenities does not capture intent; it is equally

important to understand the processes driving inequitable distributions.

3 Vegetational structure and social structure may be mismatched. Trees can take a long time to mature while social

conditions in a city might change more rapidly.

4 Tree canopy cover is treated as homogenous across the unit of analysis however this is unlikely to be the case.

5 Trees are not always an environmental amenity.

https://doi.org/10.1371/journal.pone.0228499.t002
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spatially explicit models in a multi-city framework to understand the pervasiveness of environ-

mental inequities and identify where efforts are needed to address them [15].

In this study, we build upon Schwarz et al. (2015) by examining the distributional equity of

both urban tree canopy cover (UTCC) and the monetary value of ecosystem services (ESD)

provided by urban forests in nine cities from three regions across the United States. We uti-

lized high-resolution socioeconomic and environmental datasets that were obtained from the

i-Tree Landscape application and employed both correlation and spatial regression analyses.

Using these data and methodologies, we addressed two research questions: 1) Are UTCC and

ESD equitably distributed across socioeconomic groups in different urban contexts? and 2)

Are the relationships with socioeconomic predictor variables consistent for UTCC and ESD?

We predicted that UTCC and ESD would be positively associated with the variables median

income and percent with an undergraduate degree and negatively associated with the with the

variables percent minority, percent poverty, percent without a high school degree, percent

renters, median year home built, and population density (Table 1). We also predicted that

there would be differences in the relationships between each response variable (UTCC and

ESD) and the suite of socioeconomic predictor variables examined because UTCC solely rep-

resents a measurement of canopy extent while ESD incorporates numerous environmental

and demographic variables along with UTCC into its calculation.

Materials and methods

1. City descriptions

Nine case study cities from three geographic regions in the United States were selected for our

analysis. They included New York City, Philadelphia, and Washington, D.C. from the East

Coast, Chicago, Cleveland, and Pittsburgh from the Midwest, and Los Angeles, Sacramento,

and San Diego from the West Coast. City selection aimed to identify three large urban areas

(with 2010 populations greater than 250,000) within each geographic region for which high-

resolution UTCC data were available at the level of U.S. census block group (CBG; unit of anal-

ysis) in i-Tree Landscape (see below). Socioeconomic (Table 3) and environmental (Table 4)

characteristics varied across the cities and regions.

On the East Coast, case study cities ranged in population from over 8,000,000 (New York

City) to under 1,000,000 (Washington, D.C.) (Table 3). Two of the three cities experienced

population decline since the 1950’s while New York City experienced minor growth (Table 3).

Cities within the East Coast region had intermediate average values for most of the socioeco-

nomic characteristics examined relative to the other two regions with the exception of the vari-

ables percent minority, percent renters, and population density, which were each the highest

of the three regions (Table 3). Each of the three East Coast study cities occur within the Eastern

Temperate Forest ecoregion and could therefore be expected to have had high levels of canopy

cover historically [64]. Furthermore, in the absence of active land management, plant commu-

nities in these cities are likely to revert to a forested state on their own. On average, these cities

received the most rainfall of any region and had higher average annual temperatures than

those in the Midwest yet less average canopy cover per CBG (Table 4).

Many cities in the Midwest of the United States have experienced protracted population

decline over the last several decades, and this pattern can be seen with each of the three case

study cities in this region (Table 3) [58,65]. Severe urban population decline often results in

the proliferation of minimally managed vacant land, which can serve as suitable habit for the

establishment of spontaneous vegetation communities that in time can increase UTCC [9,66].

When considering that each of the Midwestern study cities also occur within the Eastern Tem-

perate Forest ecoregion and have historically been heavily forested, this phenomenon might be

Distributional equity of urban forests and their ecosystem services
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Table 3. Socioeconomic and demographic characteristics of case study cities and regions.

2010

Population

Population

Change from

1950

Median

Income

Percent

Poverty

Percent

Minority

Percent

without a

High School

Degree

Percent with an

Undergraduate

Degree

Median

Year

Home

Built

Percent

Renters

Population

Density

(#/km)

East New York 8193703 5.3 56396 18.6 55.0 7.3 38.3 1949 66.9 24.7

Philadelphia 1528271 -26.2 38082 26.0 62.0 3.9 26.2 1947 44.7 8.8

Washington 605040 -24.6 69622 18.1 62.8 3.2 50.1 1951 53.6 7.3

Region

Average

3442338 -15.2 54700 20.9 59.9 4.8 38.2 1949 55.1 13.6

Midwest Chicago 2697661 -25.5 49565 21.1 56.8 6.7 35.5 1948 53.3 8.2

Cleveland 395978 -56.7 29373 31.5 65.4 3.3 17.6 1944 54.3 2.9

Pittsburgh 305405 -54.9 39533 22.3 36.4 1.7 38.6 1945 49.2 3.3

Region

Average

1133015 -45.7 39490 25.0 52.9 3.9 30.6 1946 52.3 4.8

West Los Angeles 3796060 92.7 57366 18.7 49.2 13.4 35.1 1957 58.0 6.4

Sacramento 467382 239.7 51605 18.2 50.5 7.8 36.4 1967 50.5 2.5

San Diego 1306176 290.6 66717 14.4 38.2 6.0 46.7 1970 51.2 4.1

Region

Average

1856539 207.7 58563 17.1 46.0 9.1 39.4 1965 53.2 4.3

Values are based on the mean value of census block groups included for each city (with the exception of 2010 P and PC 1950). Data for 2010 P and PC 1950 came from

http://worldpopulationreview.com/; data for all other variables came from i-Tree Landscape and are for the year 2010. Region averages are calculated as the average of

the three city summary values (versus average of all census block groups across cities).

https://doi.org/10.1371/journal.pone.0228499.t003

Table 4. Environmental characteristics of case study cities and regions.

Mean Annual

Temperature (˚C)

Mean Annual

Precipitation

(mm)

Mean

UTCC

(%)

Carbon

Sequestration

(USD/year)

Total Air

Pollution

Removal (USD/

year)

Avoided

Runoff

(USD/year)

cbgESD

(USD/

year)

Mean

CBG Size

(km)

ESD

(USD/

year)

East New York 13.0 1268 16.8 418 11321 1559 13297 112 133.6

Philadelphia 13.0 1055 17.7 1409 15232 3499 20139 234 54.4

Washington 14.5 1009 26.9 3816 20405 5332 29553 368 65.3

Region

Average

13.5 1111 20.5 1881 15653 3463 20996 238 84.4

Midwest Chicago 10.0 937 19.8 866 10304 3030 14200 282 52.9

Cleveland 10.5 994 21.4 1644 9439 2955 14037 442 35.0

Pittsburgh 11.0 970 37.7 3351 19489 6646 29486 399 63.9

Region

Average

10.5 967 26.3 1954 13077 4210 19241 374 50.6

West Los Angeles 18.5 326 11.4 1426 9895 1977 13297 488 24.1

Sacramento 16.0 470 18.0 1962 8330 1131 11423 857 18.5

San Diego 17.5 263 12.3 1068 11803 2776 15646 738 17.5

Region

Average

17.3 353 14 1485 10009 1961 13455 694 20.0

Table 4 Note: Values are based on the mean value of census block groups included for each city (with the exception of Mean Annual Temperature and Mean Annual

Precipitation). Temperature and precipitation data came from https://www.currentresults.com/Weather/US/average-annual-temperatures-large-cities.php; data for all

other variables came from i-Tree Landscape and are for the year 2010. Region averages are calculated as the average of the three city summary values (versus average of

all census block groups across cities).

https://doi.org/10.1371/journal.pone.0228499.t004
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contributing to these cities having the most UTCC per CBG of any region examined (Table 4)

[64]. Numerous cities in the Midwest have also faced substantial economic hardship and as a

result, CBGs from the region had the lowest median income, highest percent poverty, and low-

est percent with an undergraduate degree on average (Table 3).

The West Coast study cities were the warmest based on mean annual temperature while

also receiving the least precipitation (Table 4). Each of the cities in this geographic area occurs

within the Mediterranean California ecoregion where warmer temperatures and less rainfall

are to be expected relative the Eastern Temperate Forest ecoregion [64]. This dearth of rainfall

is likely a significant driver of two of the cities in this region, Los Angeles and San Diego, hav-

ing the lowest mean UTCC of all study cities (Table 4). While plant community succession can

lead to increases in UTCC in this ecoregion, it is less likely than in forested ecoregions. As a

result, cities in the West Coast grouping may have markedly different urban forests than what

might be found across the other six study cities. From a socioeconomic standpoint, the West

Coast study cities had the highest median income, lowest percent minority, lowest percent

poverty, highest percent with an undergraduate degree, and lowest population density per

CBG (Table 3). CBGs in these cities had approximately double the percentage of people with-

out a high school degree compared with the other two regions (Table 3).

2. i-Tree landscape

The majority of data utilized in this study were obtained from the publicly available program i-

Tree Landscape v4.0.1 (https://landscape.itreetools.org/). The i-Tree platform includes a suite of

software programs and tools developed by the i-Tree Cooperative and based on peer-reviewed

research that can be used for quantifying the benefits and values of trees (https://www.itreetools.

org/). i-Tree Landscape specifically is a web-based application that allows users to explore the

tree canopy, land cover, ecosystem services (including their monetary value in USD), and demo-

graphic information for a specific geographic location. Users are able to specify the scale at

which data are obtained through the web-interface. For example, data can be provided at the

scale of U.S. census place or census block group, among other common boundaries. The pro-

gram also serves as a repository for high-resolution UTCC data from around the country, and

users can chose to view canopy cover and ecosystem service estimates based on high-resolution

data or National Land Cover Data (2011 or 2001) for a given location and geographic unit

(https://landscape.itreetools.org/hires). All data obtained and analyzed from i-Tree Landscape

are publicly available and our usage of them are in compliance with i-Tree’s terms of use.

A. Socioeconomic data. All socioeconomic data used in the study were obtained through

i-Tree Landscape. i-Tree Landscape derives all U.S. population statistics directly from the U.S.

Census Bureau (2010 data) and provides them for various geographic units, including CBGs.

The socioeconomic variables provided through i-Tree Landscape are only a subset of all vari-

ables measured by the U.S. Census. Predictor variable selection for this study was based on

those used in similar empirical urban ecology and environmental justice research (Table 1)

and what was available through i-Tree Landscape. The full list of socioeconomic predictor var-

iables includes: median income, percent with an undergraduate degree, percent minority, per-

cent without a high school degree, percent poverty, percent renters, median year home built,

and population density. While several researchers have examined individual racial/ethnic

group variables (i.e. percent Asian, Black, Hispanic) [15], i-Tree Landscape only presents a sin-

gle metric termed percent minority, which is calculated as one minus the value for the variable

percent White. Compared with other environmental justice studies, we do not use certain

socioeconomic variables strictly as controls between cities but rather as potentially relevant

predictors of UTCC or ecosystem services across distinct geographic areas [15]. Based on the

Distributional equity of urban forests and their ecosystem services
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environmental justice literature and in line with our second hypothesis, we consider the eight

variables to cluster into two groups (Table 1): those expected to be positively associated with

UTCC (median income, percent with an undergraduate degree) and those expected to be neg-

atively associated with UTCC (percent minority, percent poverty, percent without a high

school degree, population density, median year home built, percent renters).

B. Canopy data. All UTCC data used in the study were obtained through i-Tree Land-

scape. Any organization can submit high-resolution UTCC data for a geographic area to i-

Tree, which then processes it and makes any calculations derived from it publicly available.

While the sources of each geographic area’s data are different, i-Tree requires high-resolution

submissions to be 10 m or better resolution and to have over 90% accuracy. More information

on submission requirements can be found on the i-Tree Landscape High Resolution Land

Cover website (https://landscape.itreetools.org/hires). High-resolution UTCC data were

obtained for each CBG within a city. If a CBG within a city did not have high-resolution data

available (for example, a large portion of the CBG was outside the city boundary), no data

(including socioeconomic) was exported for that CBG and it was excluded from subsequent

analyses. Because the variable UTCC is a percentage, we consider it a CBG-size-controlled var-

iable; in other words, the coverage value can be compared across CBGs of varying sizes.

C. Ecosystem service calculations. All ecosystem service estimates and their monetary

values were obtained through i-Tree Landscape. Trees provide many ecosystem services,

including carbon sequestration and storage, atmospheric pollutant removal, and stormwater

runoff reduction [7,9]. The i-Tree Landscape program uses tree and impervious surface cover

data along with local county data to estimate the annual quantity and monetary value (USD)

of the following ecosystem services: carbon sequestration, atmospheric pollutant removal, and

stormwater runoff reduction provided per CBG on an annual basis. Because each service has

an associated monetary value, the monetary values can be aggregated into a single variable that

serves as an indicator of the magnitude of regulating ecosystem services provided. More infor-

mation on how each service and its monetary value are calculated can be found on the i-Tree

Landscape website (https://landscape.itreetools.org/references/data/). Importantly, parameters

such as land cover classification, total carbon storage, net annual sequestration, local tree

cover, leaf area index, percent evergreen, weather, pollution, transpiration, precipitation inter-

ception, avoided runoff, and population data all contribute to the models that generate state-

or county-specific estimates that influence ecosystem service calculations. The dollar values

provided by each service were then summed to create a single estimate of the monetary value

(USD) provided by the forest within a CBG on an annual basis (variable: census block group

ecosystem service dollars; cbgESD). Because a larger CBG has the potential to have more forest

and thus yield more monetary value than a smaller CBG with the same UTCC level, each sum-

mation was divided by the respective CBG area to create a new variable describing the density

of ecosystem service dollars provided by a kilometer of land within a CBG on an annual basis

(variable: ecosystem service dollars per square kilometer; ESD). This calculation assumes that

UTCC is evenly distributed throughout a CBG, which is unlikely to be the case for the majority

of CBGs (Table 2). However, controlling for the size of CBGs is necessary in order to make

comparisons between them. Our analyses examined ESD, controlling for CBG size, as well as

the individual monetary values of carbon sequestration, atmospheric pollutant removal, and

stormwater runoff reduction, which did not account for differences in the size of each CBG.

D. Limitations. While i-Tree Landscape is a valuable tool for large-scale ecosystem service

quantification, it is not without limitations and uncertainties. A detailed discussion of these

can be found on the i-Tree Methods and Files website (https://www.itreetools.org/support/

resources-overview/i-tree-methods-and-files) under the i-Tree Landscape Resources section.

Importantly, the outputs provided by the program are ultimately estimates based on available
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data and mathematical relationships involving various assumptions. These estimates can be

expected to change as data sources and computational methods evolve over time. For example,

the majority of i-Tree Landscape ecosystem service estimates for the United States are based

on tree canopy cover data obtained from the National Land Cover Database. While geographi-

cally comprehensive, the comparatively low resolution of the data (30 m) results in a higher

margin of error within spatially heterogeneous urban areas. A growing number of local and

regional organizations are acquiring high-resolution spatial datasets for their city or munici-

pality, and when provided to i-Tree, are allowing for more accurate estimates from the pro-

gram. Users should be aware of the limitations and uncertainties associated with i-Tree

Landscape estimates when considering the results discussed herein.

3. Geographic data and data processing

Shapefiles containing GIS data layers of census places and census block groups for the nine case

study cities were obtained from the U.S. Census TIGER (Topographically Integrated Geo-

graphic Encoding and Referencing System)/Line Geodatabases website (https://www.census.

gov/geographies/mapping-files/time-series/geo/tiger-line-file.html) for the year 2010. In Arc-

GIS, a layer of a larger geographic area (typically a county or state) containing all CBGs was

clipped to the extent of a census place (i.e. a study city). As CBGs and census places do not

always share the same borders, portions of some CBGs were clipped off. The remaining poly-

gons and any associated data were deleted for any CBGs that were over 50% outside of the

boundaries of a city. Associated with each CBG is a unique ‘GEOID’ code provided by the U.S.

Census. Exported data from i-Tree Landscape (socioeconomic, canopy, ecosystem services) for

each CBG were joined to the shapefile data using this unique identifier. If no high-resolution

tree canopy data were available for a CBG (see above), the CBG polygon was deleted from that

city’s layer. Because ecosystem services are benefits that humans receive from ecological func-

tions, for a CBG to be included, it had to have a population density greater than zero as well as a

non-zero value for median year home built. These requirements led to the removal of a small

number of the original number of records (less than five percent for New York City and Pitts-

burgh, less than three percent for San Diego, less than one percent for every other city).

4. Statistical analyses

A. Partial least squares correlation: Are environmental and socioeconomic variables

correlated?. The primary objective of this research was to investigate the associations

between socioeconomics, urban forest canopy cover abundance (UTCC), and ecosystem ser-

vices (ESD) across cities and regions. We began by examining correlations amongst the predic-

tor and response variables. Partial least squares correlation (PLSC) was used to elucidate

patterns among the full set of predictor and response variables concurrently. Predictor vari-

ables included the eight socioeconomic variables discussed above. Response variables included

UTCC, ESD, and the value (USD) of the ecosystem services carbon sequestration, total air pol-

lution removal, and avoided stormwater runoff provided per CBG. PLSC, or canonical partial

least squares as it is also known, is a multivariate correlational technique used to analyze asso-

ciations between two sets of data simultaneously [67–69]. PLSC operates by creating a new set

of variables (one latent variable from each set of data) from linear combinations of the original

variables. These latent variables are required to explain as much covariance between the two

data sets as possible. The procedure was carried out with the function pls (mode = canonical)

in the ‘mixOmics’ package [70] in R [71]. Next, the cim function in ‘mixOmics’ was used to

calculate a pair-wise similarity matrix with the similarity value between a pair of variables rep-

resenting a robust approximation of the Pearson correlation. The function then produces a
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Clustered Image Map (CIM, also known as a heatmap) depicting the similarity values between

all variable pairings. Variable pairs with a similarity value greater than or equal to 0.5 but less

than 0.75 were marked with one ‘�’ on the CIM; pairs greater than or equal to 0.75 but less

than or equal to 1 were marked with ‘��’. The same thresholds (but negative) and markings

were used for negative correlation values.

B. Spatial autoregression: When accounting for spatial structure, do socioeconomic var-

iables explain UTCC and ESD?. We also sought to examine the relationship between the

socioeconomic variables and each of the focal response variables (UTCC and ESD) when

explicitly accounting for the spatial structure of the datasets. Based on previous research, mul-

tivariate ordinary least squares (OLS) regression was hypothesized to be an unsuitable statisti-

cal method due to the presumed presence of spatial autocorrelation [15,18,37]. Spatial

autocorrelation describes the degree to which systematic spatial variation exists for a variable

[72]. When spatial autocorrelation is present, additional steps must be taken to avoid biasing

the coefficient estimates that would otherwise be obtained from a traditional OLS approach.

In order to first examine the extent to which spatial autocorrelation might be present, we

began by creating a queen contiguity-based spatial weight matrix in the order of one for each

city using the software program GeoDa v1.12.1.161 [73]. Two OLS models were then devel-

oped for each city. Both included seven of the eight socioeconomic variables described above

while one used UTCC as the response variable and the other used ESD. Because the calcula-

tions that yield the value for ESD incorporate population density, the variable was omitted

from all subsequent regression models. Among the outputs provided by GeoDa when running

an OLS regression are an Akaike Information Criterion (AIC) value and diagnostics for multi-

collinearity. The multicollinearity condition number was above the threshold value of 30 for

each of the 18 regression models (S1 Table) [74]. This indicates the presence of collinearity

among our variables [74], a feature that has been observed in similar studies utilizing several

socioeconomic predictor variables simultaneously [15]. Additionally, when running an OLS

regression with a weight matrix available, diagnostic indicators of spatial dependence are pro-

vided as an output. For each model, Moran’s I values were assessed and were found to be sig-

nificant at a p-value of less than 0.001, indicating strong spatial autocorrelation (S1 Table).

When spatial autocorrelation is present, spatial autoregressive (SAR) models generally rep-

resent a superior alternative to OLS regression [15]. Two increasingly utilized spatial autore-

gressive techniques include spatial error (SEM) and spatial lag (SLAG) models [15,75]. In this

study, SEM and SLAG models are used as an alternative to OLS regression in an effort to

account for the presence of spatial autocorrelation. The SEM model functions by incorporat-

ing spatial effects into the error terms, thereby attempting to account for the spatial structure

of unobserved variation. The SLAG model, on the other hand, introduces a spatially lagged

dependent variable. Using GeoDa, SEM and SLAG models identical to the aforementioned

OLS models were developed examining the effects of the full suite of predictor variables on the

two response variables. In all cases, SEM and SLAG models had lower AIC values than their

OLS counterparts, indicating an improved fit when accounting for the spatial structure of the

data. Additionally, both SAR models include an additional spatial coefficient (Lambda for

SEM and Rho for SLAG), which was highly significant in all SEM and SLAG models.

Results

1. Partial least squares correlation: Are environmental and socioeconomic

variables correlated?

Results from the PLSC analysis reveal correlations that largely align with our predictions (Fig

1). The socioeconomic variables median income and percent with an undergraduate degree
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were fairly consistently positively correlated with UTCC and ESD as well as the monetary val-

ues of the three ecosystem services examined individually (Fig 1). The variables often used to

describe disadvantaged or marginalized populations (percent minority, percent poverty,

Fig 1. Clustered image maps illustrating partial least squares correlation analysis results for each city. Cells shaded with warm colors (red, orange) have positive

correlations while cells shaded with cool colors (blue, green) have negative correlations. Variable pairs with a correlation value greater than or equal to 0.5 but less than

0.75 are marked with one asterisk; pairs greater than or equal to 0.75 but less than or equal to 1 were marked with two. The same thresholds (but negative) and markings

are used for negative correlation values.

https://doi.org/10.1371/journal.pone.0228499.g001
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percent without a high school degree, and percent renters) were generally neutral to negatively

correlated with UTCC and its benefits. The correlations between median year home built and

population density exhibited some of the greatest variability with the response variables both

within and across cities. For instance, median year home built was positively correlated with

the full set of environmental variables in New York City and Philadelphia, while it was nega-

tively correlated with UTCC and ESD and positively correlated with the economic values of

the carbon sequestration, atmospheric pollutant removal, and stormwater runoff reduction in

Chicago and San Diego. Population density displayed the opposite pattern. The variable was

often negatively correlated with the full set of environmental variables, but in some cities, pop-

ulation density was positively correlated with UTCC and ESD and negatively correlated with

the values derived from the individual ecosystem services. Interestingly, despite the fact that

population density is one of the many variables included in the calculation of ESD (but not

UTCC), correlation values between the predictor and the two response variables were similar.

In most cases, the response variables that controlled for CBG area (UTCC and ESD) and those

did not (individual ecosystem service monetary values) had similar correlations with each

socioeconomic variable, however some variability did exist and was more pronounced in some

cities (e.g. New York City) compared with others (e.g. San Diego).

2. Spatial autoregression: When accounting for spatial structure, do

socioeconomic variables explain UTCC and ESD?

Across most models, the direction of relationships between predictor and response variables

within the SEM and SLAG models were congruent, although the level of significance varied

(Table 5). For example, in New York City, percent poverty was positively related to UTCC

across SAR models but at p< 0.05 (SEM) versus p< 0.01 (SLAG). In some instances, however,

results deviated substantially between spatial models. In Chicago, percent with an undergradu-

ate degree and percent minority were both significant predictors of UTCC and ESD in the

SLAG models, but not in the SEM models (Table 5).

When examining the relationship between the full suite of socioeconomic variables and

each response variable, the patterns were far more variable across cities than the results from

the correlation analysis indicated (Fig 1, Table 5). With the exception of New York City, the

variables median income and percent with an undergraduate degree, when significant, were

positively related to both UTCC and ESD. Conversely, with the exception of Sacramento, the

variables percent without a high school degree and percent renters, when significant, were neg-

atively related to both response variables (Table 5). The variable percent minority varied

noticeably by region; in the Midwest, significant relationships were positive while the pattern

was reversed when the variable was a significant predictor for the East and West Coast study

cities. Median year home built had significant positive and negative relationships with the

response variables in approximately the same number of cities, and the directionality of the

patterns was consistent across response variables and SAR models for each city. Percent pov-

erty was not a consistent predictor of either UTCC or ESD, having a positive relationship in

just two of the nine cities. The most consistent pattern was the spatial coefficient, denoted

Lambda in SEM and Rho in SLAG. This variable was consistently positive and highly signifi-

cant, indicating the usefulness of the SAR models in accounting for spatial autocorrelation.

Additionally, the consistently lower AIC value for the SAR models versus the OLS models

again indicates the superior performance of the spatial models. When using the same type of

spatial model, results were generally consistent whether examining UTCC or ESD, however,

there were a few deviations. For example, median income was negatively related to UTCC but

had no relationship with ESD in New York City (Table 5).
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Table 5. Spatial autoregressive (SAR) model results using urban tree canopy cover (UTCC) and ecosystem service dollars (ESD) as response variables.

MI PP PM WOHS WUDG MYHB PR L/R ΔAIC

East New York SEM UTCC (��) � ns (���) ns ns (���) ��� -1845.5

ESD ns �� ns (��) ns ns ns ��� -2486.0

SLAG UTCC (���) �� ns (���) ns ns (���) ��� -1910.7

ESD ns ��� ns (��) ��� ns ns ��� -2542.2

Philadelphia SEM UTCC �� ns (�) ns �� �� ns ��� -887.5

ESD �� ns (�) ns �� �� ns ��� -928.3

SLAG UTCC �� ns ns ns �� ��� ns ��� -897.4

ESD �� ns ns ns �� ��� ns ��� -937.2

Washington SEM UTCC ns ns ns ns ns ns ns ��� -300.4

ESD ns ns ns ns ns ns ns ��� -326.7

SLAG UTCC ns ns ns ns ns ns ns ��� -309.8

ESD � ns ns ns ns ns ns ��� -337.4

Midwest Chicago SEM UTCC Ns ns ns ns ns (���) (���) ��� -979.0

ESD Ns ns ns ns ns (���) (���) ��� -1008.1

SLAG UTCC Ns ns � (�) � (���) (���) ��� -1016.1

ESD � ns � (�) � (���) (���) ��� -1046.0

Cleveland SEM UTCC Ns ns Ns Ns ��� ns ns ��� -100.3

ESD Ns ns � Ns ��� ns ns �� -103.7

SLAG UTCC Ns ns Ns Ns ��� ns (�) ��� -100.4

ESD Ns ns Ns Ns ��� ns Ns ��� -102.5

Pittsburgh SEM UTCC Ns ns � (�) Ns �� (���) ��� -117.8

ESD Ns ns � (�) Ns � (���) ��� -126.4

SLAG UTCC Ns ns ��� (�) Ns � (���) ��� -121.1

ESD Ns ns ��� Ns Ns � (���) ��� -130.8

West Los Angeles SEM UTCC ��� ns (���) (�) � (�) (���) ��� -1121.7

ESD ��� ns (���) (�) � (�) (���) ��� -1217.1

SLAG UTCC ��� ��� (���) (�) ns (���) (���) ��� -1091.7

ESD ��� ��� (���) ns ns (���) (���) ��� -1190.7

Sacramento SEM UTCC Ns ns (��) ns �� (���) � ��� -167.6

ESD Ns ns (���) ns �� (���) ns ��� -114.4

SLAG UTCC Ns ns ns ns �� (���) ns ��� -162.7

ESD � ns ns ns �� (���) ns ��� -124.3

San Diego SEM UTCC �� ns (���) ns ns ns ns ��� -190.6

ESD � ns (���) ns ns ns ns ��� -196.1

SLAG UTCC ��� ns ns ns ns ns (��) ��� -202.4

ESD �� ns ns ns ns ns (��) ��� -206.2

SEM: Spatial Error Model; SLAG: Spatial Lag Model; UTCC: Urban Tree Canopy Cover; ESD: Ecosystem Service Dollars per square kilometer; MI: Median Income;

PP: Percent Poverty; PM: Percent Minority; WOHS: Percent without a High School Degree; WUDG: Percent with an Undergraduate Degree; MYHB: Median Year

Home Built; PR: Percent Renters; PD: Population Density; L/R: Lambda or Rho, Spatial Coefficients; Delta AIC: SAR AIC value minus OLS AIC value. Red cells with

no parentheses around asterisks indicate positive relationships; Blue cells with parentheses around asterisks indicate negative relationships. Yellow highlighted and

bolded cells in the delta AIC column indicate the SAR model with the greatest decrease in AIC value between equivalent SEM and SLAG models. All SAR models had

lower AIC values relative to OLS models.

� denotes p < 0.05

�� denotes p < 0.01

��� denotes p < 0.001.

https://doi.org/10.1371/journal.pone.0228499.t005
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Discussion

Increasing the extent of urban forests while preventing the loss of existing canopy cover are

viewed as key sustainability initiatives for municipalities given the multitude of benefits trees

provide [54,76–79]. Interdisciplinary research efforts have sought to understand how urban

forests can influence the well-being of residents and contribute to urban ecosystem health

[4,11,80]. Ecologists, for example, might focus on how forest structure translates to ecosystem

functions that in turn yield ecosystem services [9,81], while social scientists might center their

attention on the distributional equity of the forest as an environmental amenity [16,18]. With

the ongoing development and advancement of ecosystem service modeling tools and technolo-

gies, researchers from across disciplines can begin to move beyond the use of tree canopy

cover as a proxy for urban forest amenities and begin to examine the distributional equity of

ecosystem services. In this study, we employed an integrated approach to answer two guiding

research questions: 1) Are UTCC and ESD equitably distributed across socioeconomic groups

in different urban contexts? and 2) Are the relationships with socioeconomic predictor vari-

ables consistent for UTCC and ESD? We determined that the patterns between UTCC and

ESD and the socioeconomic predictors varied markedly depending on the statistical analysis

used. When we accounted for the spatial structure of the data and examined all socioeconomic

variables simultaneously, we observed substantial variability in their significance as predictors

of either UTCC or ESD. This is contrary to what is often suggested within the environmental

justice literature, wherein persistent patterns have generally been reported (Table 1). We also

noted that although patterns were largely the same between the predictor variables and the

response variables UTCC and ESD, deviations did occur. These findings not only have impor-

tant implications for future research investigating the distributional equity of environmental

amenities, but also for natural resource managers and policymakers investing in urban sustain-

ability initiatives.

1. Are UTCC or ESD equitably distributed across socioeconomic groups in

different urban contexts?

A key goal of this study was to compare the relationships between socioeconomic variables

and the response variables UTCC and ESD in different urban contexts. To examine these rela-

tionships, we utilized both correlation (PLSC) and regression (SAR) analyses. Importantly, we

found inconsistencies in the results of these approaches, which have implications for future

distributional equity research. First, the conclusions that could be drawn about the relation-

ships with the socioeconomic predictors varied between the correlation and regression analysis

because of inconsistencies in the degree of significance (using a threshold of ± 0.5 for correla-

tions, p-value < 0.05 for regressions), and in some cases, changes in the direction of the

response between analyses. Second, when performing regressions, spatial models were consis-

tently more robust than OLS regression models as evidenced by lower AIC values and consis-

tently significant spatial coefficients. Finally, although the results between the SAR models

were largely congruent, some variability did occur. These findings highlight the need to move

beyond correlation analysis when attempting to understand relationships between variables

distributed in space and point to the utility of SAR models as one such tool to do so.

Regarding the socioeconomic predictors, we expected that the variables median income

and percent with an undergraduate degree would be positively associated with the variables

UTCC and ESD based on the large body of literature that has reported similar associations

(Table 1). This prediction was mostly supported by the PLSC results, wherein most cities had

strong, positive correlations between these predictors and UTCC and ESD. However, when

incorporating the other predictor variables and accounting for the spatial structure of the data
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through the SAR models, both median income and percent with an undergraduate degree

were significant positive predictors of UTCC and ESD in fewer cities. In one instance (New

York City), while median income had a strong, positive correlation with UTCC, that relation-

ship was reversed in the SAR models. Interestingly, in four of the nine study cities (Washing-

ton, D.C., Cleveland, Pittsburgh, and San Diego), either one or both of these predictor

variables had no significant relationship with either UTCC or ESD across SAR models. These

findings suggest that despite a large body of research that has frequently reported positive asso-

ciations between measures of socioeconomic advantage (i.e. wealth and education) and UTCC

(Table 1), these relationships are not always consistent across disparate urban settings.

Likewise, our second prediction that variables associated with disadvantaged or marginal-

ized groups and those describing the concentration of residents and neighborhood age would

be negatively associated with UTCC and ESD was based on prevailing trends reported in the

literature (Table 1). While the variables percent minority, percent poverty, and percent with-

out a high school degree carry inherent connotations of community disadvantage based on

historic socioeconomic conditions in the United States, percent renters has a greater degree of

ambiguity with regards to what high or low values signal about community status. In some

urban contexts, affluent communities can be composed primarily of rental units, while in oth-

ers it is only low-income neighborhoods where renters abound. However, as Heynen et al.

(2006) highlight, renters “also have less direct ability and incentive to invest in the planting

and maintenance of trees on rental property”, and it is because of this that we consider them to

be disadvantaged in terms of the lack of agency they possess over the forest community occur-

ring on the land they inhabit [16]. Similarly, high or low values for population density and

median year home built do not carry inherent connotations of community advantage or disad-

vantage, and it is possible for a densely populated urban area to be affluent or poor, just as it is

possible for older homes to be well maintained and valuable or in various states of disrepair.

Correlation analysis revealed that the variables percent minority, percent poverty, percent

without a high school degree, percent renters, population density, and median year home built

were generally neutral to negatively correlated with UTCC and ESD across cities. When signif-

icant in the SAR models, the direction of these patterns was largely consistent for percent rent-

ers and percent without a high school degree, mixed for percent minority and median year

home built, reversed for percent poverty. Our results again suggest notable inconsistencies in

the universality of patterns of inequity across socioeconomic groups occurring in different

urban socio-ecological systems. Further, even when patterns of inequity exist for a given vari-

able (e.g. percent renters), it may still be difficult to infer what the implications of that inequity

are.

2. Are the relationships with socioeconomic predictor variables consistent

for UTCC and ESD?

Overall, the relationships observed between UTCC and ESD and the socioeconomic predictor

variables were fairly consistent across statistical analyses. The heat maps displaying the results

from the correlation analysis reveal a high level of similarity in correlation values between

UTCC and ESD for a given socioeconomic variable, as indicated by the color of the cell. Simi-

larly, the majority of the relationships and even their degree of the significance are the same

between models utilizing UTCC or ESD as the response variable in the SAR models. Given i-

Tree Landscape’s emphasis on regulating ecosystem services, the high degree of similarity

between the two response variables is expected. For these services, increases in UTCC should

correspond with increases in the size of the biogeochemical pools and fluxes associated with it.

Although we examined just a subset of the regulating ecosystem services provided by urban
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forests, we predict that many additional benefits such as temperature regulation and noise

reduction (and their monetary value) would scale with increases in UTCC in a predictable and

similar manner.

While UTCC and ESD appeared to be highly similar variables, they were different enough

to result in some variation in their relationships with the socioeconomic predictors examined

within PLSC and SAR models. For example, in New York City, there were several instances

where the correlation values differed between UTCC and ESD for a given socioeconomic pre-

dictor variable. Similarly, the SAR model results for Cleveland showed that the variable percent

minority was a significant predictor of ESD but not UTCC (SEM) and that the variable percent

renters was a significant predictor of UTCC but not ESD (SLAG). These findings suggest that

while UTCC may be an excellent proxy for many of the benefits provided by trees, it is ulti-

mately not equivalent, and important variation may exist. What’s more, the utility of the variable

may be diminished further when considering additional ecosystem services not included in this

study. For instance, services such as the recreational value of the habitat or its value for wildlife

are likely to be more difficult to quantify. These variables do not necessarily scale with increasing

forest coverage, and instead depend on factors such as resident perceptions and cultural values,

as well as forest configuration and community composition [25,82–86].Thus, researchers seek-

ing to examine the distributional equity of an environmental amenity such as urban forests

should attempt to quantify specific benefits of interest directly when possible, and acknowledge

the limitations associated with the variable UTCC cover as a proxy. This is an especially impor-

tant point when considering issues of environmental justice, as inequities produced by varying

levels of UTCC may be more or less pronounced based on the value of the benefits provided by

the forest in that geographic area (or, conversely, the costs of the disamenities).

3. Additional considerations

Beyond the caveats and limitations mentioned in Table 2, additional considerations are rele-

vant to the study of urban forest distributional equity. First, the absence of a relationship

between any given socioeconomic variable and either UTCC or ESD does not guarantee the

equitable distribution of that environmental amenity across individuals. As an example, con-

sider the unique context of a shrinking city. In cities that have experienced protracted eco-

nomic decline, vacant land proliferates within neglected inner-city neighborhoods that are

often predominately composed of vulnerable populations [58,87]. In the absence of regular

vegetation management and upkeep, the plant communities on vacant land can undergo suc-

cession resulting in an increase in UTCC levels [66], particularly in ecoregions where forests

typify the climax community. For example, in the shrinking city of Toledo, Ohio, a weakening

relationship was observed between housing vacancy and greenness (as measured through the

normalized difference vegetation index; NDVI) between 1980 and 2014 [88]. Schwarz et al.

(2018) proposed that the change in this relationship over time could be attributable to an

increase in spontaneous vegetation in high vacancy areas due to the loss of infrastructure and

reduced vegetation maintenance. Such a phenomenon could potentially explain the positive

relationships we observed between the variables percent minority and UTCC and ESD in

many of the Midwest study cities, patterns that did not exist for study cities on the East or

West Coast where shrinkage is not nearly as pronounced if occurring at all. While these find-

ings would suggest that minority populations in these cities might have greater access to

UTCC, the reality may be that the green spaces that are dominated by spontaneous vegetation

are of low quality or even yield an excess of environmental disamenities [66].

We must also consider the importance of historical social and economic patterns and pro-

cesses on the distributional equity of tree canopy cover that we see today [89]. Our analysis
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identified the patterns that could be observed during the snapshot of time when the socioeco-

nomic and environmental data we analyzed were obtained, however it offers no insights into

what might have generated them. Unlike herbaceous plant communities, trees and the forest

communities they form can take years if not decades to develop, and so the canopy cover levels

present today are in many ways a reflection of the planting programs, preferences, and habits

of past residents and neighborhoods [21]. The process of “redlining” represents one example

of a historic practice applied in neighborhoods across U.S. cities that may have contributed to

the distribution of UTCC and ESD that can be observed today [89]. As a form of spatial segre-

gation, the redlining of neighborhoods resulted in long-term patterns of disinvestment and

property value stagnation in predominately African American neighborhoods [89]. However,

the act of a neighborhood experiencing redlining in the past does not necessarily result in a

depauperate forest community at present. The Bolton Hill neighborhood in Baltimore, Mary-

land experienced redlining beginning in the 1930s, but was selected to undergo redevelopment

in the 1960s via a number of urban renewal projects that have resulted in the neighborhood

currently having one of the most impressive street tree presences in the city [90]. Thus, the

urban forests seen today in cities across the United States are very much a product of the lega-

cies of a variety of social and economic processes of the past.

As a result of these considerations, policy makers and natural resource managers must be

aware that even when there appears to be equitably distributed quantities of an environmental

amenity such as UTCC, the metric do not capture the full suite of benefits (or conversely, disame-

nities) that people derive from urban green spaces. When urban planners are aware of the limita-

tions of distributional equity research, it can serve as a useful form of exploratory analysis capable

of revealing where inequities might exist across large geographic areas. However, the results

should serve primarily as a starting point for local agencies or organizations to further explore the

distribution and condition of the natural resources they manage. In doing so, they can seek to bet-

ter understand how inequities might be amplified or lessened by differences in the quality of the

resource of interest (e.g. urban tree canopy cover). Furthermore, when possible, practitioners

should also attempt to move beyond the use of proxies for environmental amenities and consider

the distribution of the specific ecosystem services (and disservices) that they provide.

Conclusion

This study utilized an integrated approach to inform urban forest sustainability initiatives. The

majority of studies within the field of environmental justice have examined the distributional

equity of urban forests using UTCC as a proxy for ecosystem services. With the advent of new

methodologies, it is possible to study a subset of ecosystem services directly and quantify their

value and distributional equity, which represents an important advancement in the field.

When focusing on regulating ecosystem services such as carbon sequestration or air pollution

removal that are likely to scale with increasing forest biomass in a predictable manner, mea-

surements of canopy cover extent (i.e. UTCC) may be closely linked with estimates of services

or their monetary values (i.e. ESD). However, as additional services are evaluated and quanti-

fied, particularly those that might share a more complicated relationship with canopy extent,

we expect further deviations between the two variables to occur.

Not surprisingly, we also found that experimental design and the approach taken with sta-

tistical analyses can significantly influence the findings and conclusions of distributional equity

research studies. Traditionally, researchers in this field have focused on single case studies and

utilized correlation analysis [15]. This approach does not allow for the universality of patterns

to be examined across disparate urban contexts and fails to consider that socioeconomic data

are often spatially distributed, and as a result, spatially autocorrelated. We determined that the
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conclusions drawn from the correlation analysis differed significantly from those gathered

from the SAR models. Further, variation even existed in what socioeconomic variables were

significant predictors between the two types of SAR models. Despite this variability, the spatial

models represented an improvement over OLS regression in all cases. This finding has been

reported by other researchers [15,21,33] and should be considered in both large-scale and

case-study investigations of the distributional equity of environmental amenities in the future.

Finally, from our examination of the relationship between eight common socioeconomic

predictors, we highlight that substantial variability exists in the patterns of UTCC and ESD dis-

tribution across socioeconomic groups. These findings run in contrast to what has frequently

been reported in the environmental justice literature. While not universally consistent, most

distributional equity studies report positive associations between advantaged communities

and access to environmental amenities. Our results therefore serve as a reminder that while

environmental inequities often exist, understanding and remedying them will often be depen-

dent on the local context.
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