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We investigate the spread of American foulbrood (AFB), a disease caused by

the bacterium Paenibacillus larvae, that affects bees and can be extremely dama-

ging to beehives. Our dataset comes from an inspection period carried out

during an AFB epidemic of honeybee colonies on the island of Jersey during

the summer of 2010. The data include the number of hives of honeybees,

location and owner of honeybee apiaries across the island. We use a spatial

SIR model with an underlying owner network to simulate the epidemic and

characterize the epidemic using a Markov chain Monte Carlo (MCMC)

scheme to determine model parameters and infection times (including unde-

tected ‘occult’ infections). Likely methods of infection spread can be inferred

from the analysis, with both distance- and owner-based transmissions being

found to contribute to the spread of AFB. The results of the MCMC are corro-

borated by simulating the epidemic using a stochastic SIR model, resulting in

aggregate levels of infection that are comparable to the data. We use this

stochastic SIR model to simulate the impact of different control strategies on

controlling the epidemic. It is found that earlier inspections result in smaller

epidemics and a higher likelihood of AFB extinction.
1. Introduction
Globally, bees contribute immensely to agriculture through crop pollina-

tion. A recent report indicated that 71 out of 100 important crop species are

bee-pollinated [1]. Honeybees (Apis mellifera) are a commercially important

managed pollinator and the most common bee species in the world [2]. The

impact of pollination by honeybees upon the global economy has therefore

been estimated to be hundreds of billions of dollars [3,4].

In the past 20 years, there has been a marked increase in the level of disease in

bee populations [5]. The Varroa parasite (Varroa destructor), along with a host of

bacterial pathogens such as European foulbrood (EFB) and American foulbrood

(AFB) [6,7], parasitic insects such as the small hive beetle [8–10] and Tropilaelaps
mite [11] and viruses such as the Kashmir bee virus [9,10] and the Israeli acute

paralysis virus [12], have all been implicated in honeybee colony loss. Such

losses have led to reduced pollination leading to lower crop yields, such as

almonds in California [13]. AFB has been found to be an unusually virulent

pathogen with a high kill rate (see [14]).

In an effort to control disease spread between apiaries, a variety of strategies

have been implemented in the past, with varying degrees of success. Different

strategies are employed by the respective authorities in charge between

countries. In England and Wales, for example, AFB is always treated by burning

infected colonies to eradicate the disease [15]; by contrast, oxytetracycline (OTC)

has been used in the USA since the 1950s, as an antibiotic for treating both AFB

and EFB [16]. An alternative treatment is shook swarm; this involves the trans-

fer of only the adult bees from diseased combs to fresh disease-free equipment,

in order to separate the bees from the disease and avoid total colony destruc-

tion. This method has been considered to be comparable to the use of OTC

in recent years [17–19]. As with any farmed species, the destruction of animals

is always the last resort where all other measures are insufficient to halt the
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continued spread of the disease. An internationally accepted

method for preventing disease spread between apiaries has

yet to be reached.

The disease we investigate here is AFB, caused by the

pathogenic bacterium Paenibacillus larvae, that affects only

the larval stages of honeybees, by infecting them 12–36 h

after hatching and spreading via spores after the death of

the larvae [7,14]. The main mode of AFB transmission is hori-

zontal, via honeybee behaviours such as robbing and the

movement of infected honey stores, as well as indirect bee-

to-bee contact such as contaminated water [14]. This paper

deals with an AFB epidemic that took place during the

summer of 2010 on the island of Jersey, a relatively small

island (with an area of 46 square miles) situated off the north-

west coast of France. All apiarists registered their hives with

the States of Jersey, and thus information about the location

and owner of all hives on the island was known (the wild

population of honeybees is relatively small, and so a complete

dataset was assumed). Visits were arranged to inspect all api-

aries during June (with each apiary containing one or more

hives), and repeat visits in August were made to apiaries

found to contain AFB-positive hives at the first visit.

With the information provided in the dataset, we con-

struct a robustly parametrized spatial SIR model with an

underlying network of ownership. The aim of this model is

to elucidate the main features of transmission and to under-

stand the impact of alternative control strategies. A rigorous

Bayesian Markov chain Monte Carlo (MCMC) methodology

(using exact likelihoods) is developed to infer distributions

of parameter constants in the model, as well as the infection

time of all AFB-positive hives in the dataset. Similar MCMC

methods have been used to describe livestock diseases

[20,21], but not to our knowledge applied to epidemics in

honeybee populations until now. Our system is also compli-

cated by the lack of owner reporting and the sparsity of the

inspection data. The results of the analysis are tested by

using parameter values from the MCMC in a stochastic SIR

model, and we compare predicted levels of infection in

June and August to those from the data. Finally, a suite of

simulated control strategies are implemented to compare

plausible methods for eliminating or limiting the spread of

future AFB outbreaks.
2. Data and methods
2.1. Data collection
The dataset was acquired by an initial census carried out

between 1 and 18 June 2010, following a report of suspected

EFB on 31 May 2010, which was confirmed to be AFB 3 days

later. Follow-up inspections were carried out of infected apiaries

between 8 and 16 August; some follow-up inspections were also

carried out even if the apiary was AFB-negative. In total, 199

visits were carried out on 130 different apiaries, with a total of

458 hives being examined for AFB. The data collected from

the survey comprised the following information: colony refer-

ence (a unique identifier for each apiary on the island, so

repeat visits can be identified), owner reference (a unique label

for each owner, who may own one or multiple apiaries on

Jersey), number of honeybee colonies at each apiary (this

occasionally changed between inspections, owing to hive

addition or removal), x- and y- coordinates, number of AFB-

positive hives in the apiaryand the date of inspection. Whenever
an inspection was carried out, if AFB was presented in the hive,

then the hive was destroyed and the parts scorched, to guaran-

tee removal of the disease. Thus, after reporting an infection, the

hive can no longer transmit infection to other hives.

Although information about the number of combs of brood

and bees was available for some inspections, it was not com-

plete, so we choose not to use the apiary-specific data; instead,

we assume hives are homogeneous with equal susceptibility

and infectiousness.
2.2. Model formulation
We capture the dataset using an SIR model (standing for,

respectively: susceptible, infected, removed). We introduce

the vectors S, I and R to denote, respectively, the creation,

infection and removal times of all hives. For inspections

where AFB is not detected, the time of the negative inspection

is recorded in an additional vector R2. We label the number of

hives n, and the date of the last inspection T. Our model adds to

the complexity of the classic SIR model by way of spatial inter-

actions, a network of ownership and stochasticity in the spread

of infection.

Diseases such as foot-and-mouth involve authorities

following up on alerts from farmers [22,23], in which case a

relationship can be assumed between infection time and

detection time. This is not the case with AFB, which can be

hard to identify by sight in the hive by beekeepers; several

reports from farmers received in 2010, who were suspicious

of infected hives, were both revealed to be free of AFB. The

initial inspections were carried out on all hives indiscrimi-

nately as a census; in this sense, AFB is similar to bovine

tuberculosis [24,25] in that it is difficult to detect by farmers.

We use the removal times from the data to estimate infection

times which are, as is often the case with epidemiological

data, unknown.

We allow for a time period where a hive is infected but

not yet infectious; we call this time the latent period, which

we denote as l(t). In theory, any function that increases

from 0 to 1 could be used, such as a step function; for our

model, we choose a more biologically realistic function,

lðtÞ ¼ (1þ eð4=uÞðu�tÞ)�1 if t � 0;
0 if t , 0;

�
ð2:1Þ

where 4/u determines the steepness of the switching function

and u determines the time where the switch from infected to

infectious occurs (so as the latency period increases, the

switch from 0 to 1 becomes more gradual).

The disease transmission rate between an infected hive i
and susceptible hive j is constructed as

rij ¼ bðlðKijÞ þ ð1� lÞvAijÞ þ jBij; j [ S; i [ I; ð2:2Þ

with

Kij ¼
K̂

d2
ij þ a2

; K̂ s.t.
X
i=j

Kij ¼ n; ð2:3Þ

where b is the overall rate multiplier for the infection rate

from infectious hives to susceptible ones; l is the proportion

of the infection spread due to distance, as opposed to owner-

ship (0 � l � 1); v scales the amount of infection spread by

the owner (constant and independent of apiary size), while

Aij ¼ 1 if hives i and j have the same owner and is zero other-

wise; jij is additional apiary-specific infectious pressure,

while Bij ¼ 1 if hives i and j are on the same apiary and is
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zero otherwise; a is the distance exponent, which controls

how quickly infectiousness drops off as the distance between

hives increases (smaller values of a cause a more rapid

decline in distance-related transmission); dij is the Euclidean

distance in kilometres between hives i and j (d ¼ 0 for hives

on the same apiary) and n is the number of hives present

on the entire island.

Thus, the total rate of infectious pressure upon a suscep-

tible apiary j at time t is

tjðtÞ ¼
X

IðiÞ�T

rij � lðt� IðiÞÞ þ e; ð2:4Þ

where e is a constant background infection rate, unrela-

ted to the infection status of all other hives. This is to

account for other sources of infection not explicitly covered

in the model, such as immigration of the disease from

abroad and also improves the likelihood calculated in the

MCMC scheme.

As all suspected infections were immediately confirmed

in the field using test kits for AFB (Vita Europe Ltd) similar

to those reported for EFB [26], we assume that the data are

accurate, with no false positives. However, as the disease

takes time to become symptomatic in the hive, we assume

that infections may exist, which were not present in the

data. This may be either because of the inspection being too

soon after the infection reached a particular hive, or because

of infection spreading to the hive between the last inspection

and the end of the inspection period. For the former case, we

introduce a detection probability function independent of

the latency of the disease (2.1), as the ability to detect AFB

in the hive may not correlate directly with infectivity. Thus,

the probability of a positive result given that the hive is

infected with P. larvae is modelled as

DðtÞ ¼ dþ ð1� dÞ(1þ e3ðtd�tÞ)�1; ð2:5Þ

where d . 0 ensures non-zero probabilities of detection for

small values of t, and td determines where the switch to

almost guaranteed detection occurs. Information about the

detectability of the disease was acquired from contacts on

Jersey and at FERA, and from this we set td ¼ 10 days. Unde-

tected infections in colonies are labelled as occults, following

previous work [20,21]. The MCMC scheme in §2.3 is used to

determine the number of occult infections (if any), which may

exist within the dataset.
2.3. MCMC scheme
We set up a statistical model for analysing our epidemic data,

based on techniques developed by O’Neill & Roberts [27],

designed to analyse spatial epidemic data using Bayesian

MCMC methodology (an applied example is modelling

foot-and-mouth disease in cattle, see [20,21]). The basic

premise involves: setting the model up an initial parameter

set V (i.e. both values for the model constants and infec-

tion times for AFB-positive hives), calculating the initial

likelihood, and then with each iteration altering one of

the parameters, recalculating the likelihood and choosing

whether to accept the new set of parameters based on a

comparison of the likelihoods (for more information in accep-

tance, see appendix A.3). This MCMC algorithm efficiently

explores the whole parameter space, and the sets of par-

ameters accepted define the (posterior) distributions taking

fully into account all uncertainties in the data.
The likelihood is calculated as follows:

LðI;VjR;R�Þ ¼
YT
t¼1

Y
j[SðtÞ;
Ið jÞ.t

e�tj �
YT
t¼1

Y
Ið jÞ¼t

ð1� e�tjÞ

�
Y

Ið jÞ,Rð jÞ�T

DðRð jÞ � Ið jÞÞ

�
Y

Ið jÞ,R�ð jÞ�T

ð1�DðR�ð jÞ � Ið jÞÞÞ:

ð2:6Þ

The four products are, respectively, the probabilities of

(1) remaining susceptible while under infectious pressure

from other hives,

(2) becoming infected on day t,
(3) AFB being detected at an inspection, where the hive is

diseased, and

(4) AFB not being detected at an inspection, where the hive

is infected but not yet symptomatic.

Prior distributions for all parameters are required to carry

out the MCMC scheme. As no previous analyses have been car-

ried out on disease spread in honeybee populations that we are

aware of, information about likely parameter values is difficult

to find. Thus, gamma distributions were used as priors for all

parameter constants in the model, except where upper limits

could be imposed, in which case beta distributions were used

(for more information see appendix A.2).

The timescale that we choose to work on is from 1 January

2009 (to account for the possibility that AFB was present from

the previous year) until the last inspection date, 16 August

2010. Sources from both the NBU and local bee inspectors

informed us that little to no beekeeping activity generally

occurs outside the March–October period. To account for this,

we assume that no AFB is spread between hives outside the

beekeeping season. To this end, we allocate a four-month

‘freeze’ period over the 2009/2010 winter (1 November 2009–

28 February 2010), during which no disease transmission occurs.
2.4. Stochastic susceptible, infected, removed model
To confirm that the results from the MCMC are reliable, we con-

struct a spatial SIR model, using the coordinates and owner

network from the dataset, with which to test the output from

the MCMC scheme. For each simulation, we require values for

the parameter constants, as well as the initial infection time

and hive. For each run of the SIR model, we randomly sample

a set of parameters from 104 saved outputs from the MCMC

scheme, and allow the model to run until the end of the inspec-

tion period. The primary inspections from the data are used,

and wherever an infection is found during a primary inspection,

the hive is removed and a follow-up inspection is carried out on

a random day within the August period (8–16 August 2010).

This is in keeping with the strategies involved during the epi-

demic on Jersey. The validity of the model formulation and

parameters is tested by comparing the predicted total number

of detected infections in the two censuses to the data; this pro-

vides a test that is largely independent of the fitting procedure.

(In appendix A.5, we also show receiver operating characteristic

(ROC) curves that provide an additional level of validation.)

We then simulate different control strategies and observe

the consequences they have on the spread of AFB. Control

methods are relatively simple to simulate and can provide
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invaluable insights into their potential to limit the spread of

infection. The inspections carried out in Jersey involved

destruction of any diseased hives immediately upon detec-

tion of AFB. We also test the effects of: performing a

complete census with the follow-up inspections, carrying

out secondary inspections of any apiaries within a fixed

radius of any infected hives [22,28], carrying out secondary

inspections on any hives owned by the same owners, and car-

rying out the initial and follow-up inspections earlier in the

year than the original June and August 2010 (respectively).

We also test combinations of these strategies to find an

optimum strategy.

For a detailed breakdown for the set-up and components

which make up the MCMC scheme, along with the resulting

plots, see appendix A.5.; in §3, we present the main findings

of our analysis of the Jersey data.

size of apiary with one hive

0.2

0.4

0.6

0.8

1.0

1.2

initial infected owner
distance

(b)

(c)

Figure 1. Summary of results from the MCMC. All plots show the island of
Jersey with characteristics of the observed epidemic overlaid. (a) The infection
status of apiaries by the end of the 2010 inspection period. The four cat-
egories are susceptible, infected (first inspection), infected (second
inspection) and infected (both inspections). (b) The apiaries present on
Jersey during the 2010 epidemic, scaled by the number of hives present
during the epidemic. Overlaid are the ownership network (black lines) and
the likelihood map for the location of the primary infection during the
AFB outbreak (see colour scale). (c) An example of a typical infection map
obtained from the MCMC scheme (i.e. a random iteration selected from
the scheme). Uninfected apiaries are in yellow, apiaries containing one or
more infected hives are in red, apiaries containing occult hives are in blue.
Arrows show the probable source of infection for each hive; solid white
arrows indicate transmission by the owner, dashed black arrows indicated
distance-based transmission. The initial infection is highlighted.

10:20130650
3. Results
3.1. Model constants
Figure 6 shows the results of running the MCMC scheme (see

§2.3 for an outline, and §5 for a detailed breakdown of the

methods and complete analysis), to determine credible

values of the model constants. The constants are taken from

equations (2.2) to (2.5), with descriptions given under the

respective equations.

The MCMC chain is well mixed and appears to explore

the parameter space thoroughly. The model constants are

well defined, with Gaussian-shaped histograms. The scheme

was initialized at a variety of regions of parameter space to

test the convergence, and similar values for both the model

constants and the likelihood were consistently observed.

3.2. Characteristics of the epidemic
Using the MCMC scheme, we are able to ascertain various

information about the data from the observed epidemic.

The results are summarized in figure 1.

As shown in figure 1, most apiaries were AFB-negative,

with 46 out of 130 being classed as infected during the

inspection period. Primary cases of AFB appear to be scat-

tered across the island, although most cases tended to be in

the Eastern area and across the north; the south and southeast

regions of the island were relatively AFB-free.

Figure 1b shows the size of the apiaries on Jersey (a larger

number of hives is indicated by a larger radius). Overlaid is

the owner network which connects apiaries owned by the

same beekeeper. By repeatedly running the MCMC scheme,

it is possible to plot the distribution of initial infections, to

estimate where the origin of the AFB outbreak may have

been; the resulting ‘likelihood’ map is also shown in figure 1b.

From the MCMC output, there is a greater frequency of

the initial infection being in either the northeast, the east

or the southwest coastlines, with much higher likelihood

in the northeast. It seems probable based on this evidence

that the AFB infection originated in this area of Jersey. The

specific cause cannot, of course, be ascertained from the data-

set, although probable factors include, for example, the

import of infected honeybees or equipment.

Infection times are resampled during the MCMC, and the

order of infection for hives (including occult hives) are

derived by the scheme. We can also use the changing
infectious pressure throughout the epidemic to calculate

the most probable source of infection for each infected

hive, and whether the infection was more likely to be via

the owner or by distance (by calculating the two terms in
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runs, approximately 3% of epidemics were eradicated by the control strategies.
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(2.2) and picking the larger). The one exception to this is the

initial infection, which from our model set-up must be

infected by random background transmission of AFB. One

such example of the likely spread of infection of AFB from

the MCMC scheme is shown in figure 1.

AFB generally seems to enter the island from the East, with

more transmission events occurring by distance rather than the

owner network. The length of jumps varies quite dramatically;

most are less than 2 km, although there are rare instances

where over half of the island is covered in a single transmission

event. In the example in figure 1c, the majority of transmission

events are due to the owner transmitting the disease (46 infec-

tions, compared to 40 by distance). Most of the longer range

transmissions are caused by owners, although there are seve-

ral infection events by distance that cover a large portion of

the island.

The potential transmission rate of the average hive in the

MCMC scheme was found to be approximately 0.02 hives per

day. We stress that this is not an estimate of R0—as honeybee

colonies are not observed to recover from AFB, a direct

calculation of R0 from the dataset is not possible.

The number of occults present stays relatively low through-

out the MCMC scheme. There are an average of around four

undetected infections by the end of the inspection period, out

of a possible 458 colonies.
3.3. Simulating epidemics
The dataset was generated by inspecting all hives on the

island in the month of June (i.e. a complete census), and
burning any hives that were found to be AFB-positive. This

method of culling is the surest way to remove AFB from

infected apiaries, but it is still not clear whether alternative

measures could be used with increased efficacy in limiting

an epidemic in honeybee populations. Using simulations,

we test alternative methods of dealing with diseased hives,

to find which is the most suitable for dealing with AFB. For

each of the following methods, we use the spatial SIR

model, begin with an infection at one hive (the hive and infec-

tion time are sampled from the MCMC output), and allow

the disease to spread while imposing whatever control

measures we choose. For all control strategies, we follow

the same basic actions as the bee inspectors of Jersey did in

2010. For each control strategy, we run 10 000 replicates of

the SIR model, and then investigate the resulting epidemics.
3.3.1. Standard control practices
Recreating the actions that bee inspectors took in Jersey (i.e.

burning of infected hives, and secondary inspections of

infected apiaries in August) results in the range of epidemics

displayed in figure 2.

As seen in the two histograms, the mean sizes of epi-

demics, at the end of both the primary and follow-up

inspections, are very similar to those observed in the dataset.

This observation increases confidence that our model rep-

resents the true spread of disease, and the reliability of the

parameter estimations in figure 6. This corroboration of a like-

lihood scheme to determine parameter values is not often

observed in the literature, and we consider it important in
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backing up the choices made when constructing the math-

ematical model for disease spread. Another striking feature

of the graph is that the epidemic is only very rarely stamped

out by the inspection process. In the vast majority of cases,

the June census removes only a portion of the infected

hives, and then numbers begin to rise again during the (unin-

spected) period between the end of June and August, and the

follow-up inspections are usually insufficient to eradicate the

disease (with an average of around 11 undetected AFB-

positive hives by the end of the August inspections). Thus,

it is predicted that AFB was still present at the end of the

inspection period in August 2010. This is corroborated by

beekeepers’ reports of AFB-infected hives the following

year and again in 2012.
erface
10:20130650
3.3.2. Radial inspections
A common practice when dealing with infectious diseases is

to cull all farms, regardless of infection status, within a cer-

tain radius of any infected animals discovered (contiguous

premise culling, see [22]). The logic is that, if the disease

spreads via local transmission, then by eradicating all ani-

mals within a certain distance of any cases, the chances of

the disease spreading further are reduced. The effectiveness

of this strategy is highly dependent upon the pathogen in

question, and the method of transfer from animal to animal.

A course of action which could be taken with regards to

honeybee diseases is to check all apiaries within a certain

radius of any AFB-positive hives found via inspection.

Inspections take place on the same day, in order to reduce

transmission as much as possible. We refer to these extra

checks as secondary inspections. If AFB is discovered with

these extra checks, then those hives are also destroyed, but

otherwise the hives are not burned, and assumed to be sus-

ceptible. Figure 3 shows the size of epidemics when using

such a method for secondary inspections.

The average behaviour of an epidemic is similar until the

start of inspections (as control measures are yet to be

applied), at which point the average decreases dramatically;

by the end of June, the average number of infected hives is

less than half of the value when secondary inspections are

not carried out. By the end of the inspection period, approxi-

mately 90% of simulations result in smaller epidemics than

without secondary inspections on average, as shown in

figure 3a.

An obvious question when following this method of

inspection is what radius is required to make a significant

impact on disease prevalence. Invariably, the amount of man-

power available will restrict how large a radius of secondary

inspections are possible. Figure 3b shows the resulting epi-

demics from using different sized inspection radii, along

with the probability that AFB is wiped out for each radius.

As may be expected, the larger a checking radius that is

used, the more disease is removed by inspections. Both the

average and variance of the size of epidemics decrease as

the size of the radius increases. The probability of wiping

out AFB also increases from around 3 to 48% with a 3 km

radius. It is intuitive that the more inspections that are carried

out, the more infected hives will be detected and burned to

prevent further disease spread; what is less obvious is how

large to make this radius for secondary inspections. Unfortu-

nately, detailed data on the costs of inspections were not

available to us, so a detailed cost–benefit analysis is
beyond the scope of this paper. However, it is worth noting

that the entire area of Jersey is only 120 km2, so radii larger

than 3 km would result in large portions of the island being

inspected following detection of an AFB-positive hive (for

example, if the radius was increased to 5 km, each single

radial sweep around an infected hive would cover 78.5 km2,

approximately 65% of the whole island).

3.3.3. Earlier inspections
The number of infections during an epidemic tends to rise

nonlinearly; owing to the initial geometric growth phase of

a typical epidemic, a commonly posed question is how

much the size of the epidemic could have been reduced if

the initial detection had been earlier. If the initial census

had been performed at an earlier stage, in theory fewer

hives would be infected, and so the spread of disease

would be more likely to be reduced. The results of allowing

inspections to be earlier is shown in figure 4.

As expected, earlier inspections lead to the initial dip in

the number of infected hives occurring earlier—during May

in figure 4a, and during March in figure 4b. In March, after

the end of the 2009–2010 winter freeze period, the number

of infected hives is much lower, as AFB has not had the

three extra months to spread before the original June inspec-

tions; thus, the drop in the number of infected hives is less

pronounced than with standard practices (red line). As can

be seen in the June histograms for both plots, there are on

average fewer AFB-positive hives found by the end of the pri-

mary census than were observed during the actual epidemic

(68.8 positive cases in May and 32.2 in March, compared to 70

from the data).

Interestingly, in neither case is the epidemic wiped out the

majority of the time; the lower limit for the 50th percentile

never reaches zero, although it is much lower for the March

inspections than for the May ones. Thus, it seems the epi-

demic is more likely to be wiped out by performing the

census earlier in time. This is confirmed in figure 4c, where

the numbers detected, as well as the percentage likelihood

of epidemic extinction, are plotted against how early the

inspections are. Increasing the time that all inspections are

rewound by has the effect of decreasing the number of detected

AFB cases in the inspection period. This is because the epi-

demic is caught at an earlier stage, so fewer hives have been

infected by the inspection dates. Because of this, the chance

of eradicating the disease completely also increases, shown

by the increasing chance of AFB eradication in figure 4c. The

line is not monotonically increasing; owing to the stochastic

nature of the SIR model, there is some variation in the chance

of extinction. When the primary inspections are carried out

90 days earlier, the average chance of infection is around 9%,

which is roughly equivalent to that when a 0.3 km secondary

inspection radius is used (figure 3b).

3.4. Comparing control strategies
The previous two sections showed in detail the results of run-

ning two different control strategies. A whole suite of strategies

were implemented, and the overall results comparing the

different schemes are shown in figure 5.

Depending upon the desired result of the control stra-

tegy or the expense of carrying out inspections, different

strategies would be optimal. Generally, the number of infec-

tions decrease the earlier the primary (and follow-up)
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inspections are carried out. This is indicated by the green

points in figure 5a, representing initial inspections in March,

being lower than the yellow points (May), which in turn are
lower than inspections at normal times (June). Apart from

inspections involving a follow-up census, all strategies result

in 500–670 visits; employing a follow-up census pushes the
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number of inspections up to 780–850 inspections. Radial

checks require fewer inspections than owner inspections,

although all scenarios are within 100 inspections. For standard

timing, it is better to do more inspecting early (e.g. radial

checks for all inspections rather than just at the follow-

up inspections), as more of the epidemic is stamped out early

on. Note that in the case of two censuses, fewer inspec-

tions are carried out if inspections are carried out later in

the year; this is caused by more hives being burned

during the initial census (due to the epidemic being at a later

stage), so that there are fewer hives to check during the

follow-up inspections.
Conversely to figure 5a, earlier inspections result in a

highest number of infections remaining at the end of August

(figure 5b). This is due to the extra one or three months that

any infected hives remaining have after the follow-up inspec-

tions in May/July, to spread disease unchecked to other

hives during the remaining time. Thus, figure 5b may give an

unrealistic view on the effectiveness of control strategy if

observed on its own; we also need to look at the probability

of wiping out AFB using the strategies (figure 5c). This

shows a very different trend: making the primary inspections

three months earlier with two complete censuses results in

an extinction likelihood of around 26%, compared to only

2.5% using standard strategies. All other strategies result in

an extinction likelihood of 10% or less, so if wiping out the dis-

ease is imperative, two censuses are required. Generally, for

each control strategy type, the earlier the inspections begin,

the better for controlling the size of the epidemic, as shown

by the regular pattern of increasing chance of extinction in

figure 5c.
4. Conclusion
Our starting point for the analysis carried out here was a data-

set detailing the outbreak of AFB on Jersey during the summer

of 2010. A census in June was proceeded by follow-up inspec-

tions in August, effectively providing two ‘snapshots’ of the

epidemic, from which we attempted to reconstruct the entire

epidemic. Such reconstructions are common for livestock,

where generally data are more widely available [22,23,29],

but are less common for honeybees. Using a Bayesian frame-

work, an MCMC scheme was constructed to calculate both

the parameter constants and infection times (of both known

and unknown ‘occult’ infections, see Jewell et al. [20,21]) of a

spatial SIR model with an underlying owner network, which

we predicted would account for the majority of infection

spread. We then used derived parameter values from the

MCMC scheme to simulate epidemics, resulting in similar-

sized epidemics (on average) as the data implied over the

same time period (figure 2). We then simulated the conse-

quences of implementing different control strategies in

addition to the standard strategy (of burning infected hives

and visiting the apiary two months later to confirm its AFB-

negative status), to see what the best actions would have

been, to reduce the size of the epidemics and/or increase the

chances of wiping out the disease.

The mathematical model we built from the dataset is

shown in §2.2. The results of the MCMC, with likelihood

values calculated from (2.6), are summarized in figure 6

and show several key results. Both distance and ownership

contributed significantly to the spread of AFB during the epi-

demic (shown by the distribution of l in figure 6). This is

confirmed by a sample run of the MCMC, where the most

probable spread of infection is shown (figure 1c). Just over

half of the infection spread was attributed to owner trans-

mission in that instance, with the remaining spread due to

distance. Long-distance transmission of AFB via the owner

has been shown in the past [30], and our results corroborate

this. The analysis also reveals the probability of the epidemic

origin on the island, shown in figure 1b, to be in the north-

east, or with a lower likelihood, in the east or the southwest

of the island. This information could be key in determining

how exactly the epidemic began—if one of the major sources
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of bee or equipment imports happens to be in the area, then

the evidence heavily suggests that the disease entered the

island via this method. Thus, measures could be taken to

prevent future epidemics.

We constructed a stochastic SIR model to attempt to recre-

ate the epidemic, using appropriate information from the

data. The results were shown to correlate well with the data

(figure 2)—the mean numbers of detected infections, in both

June and August, were very close to the Jersey data, which

shows that the model is a good indicator for the actual trans-

mission process. We consider the forward simulation of

epidemics using the results from the MCMC a key step in
proving the reliability of the derived parameter values. The

range of epidemic sizes over 104 runs is, however, quite

large, and the size of the actual epidemic (i.e. number of infected
hives, not just detected hives) is likely to be significantly larger

than the number of confirmed cases. We thus predict from

our results that the disease was present after the end of the

August inspections, and this hypothesis is backed up by sev-

eral reports of AFB on Jersey the following year.

The control strategies we implemented include secondary

radial checks and earlier inspections. In both cases, the

measures were found to reduce the size of the epidemics and

make disease extinction more likely. In the case of radial
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inspections, carrying out secondary inspections within 3 km of

any confirmed cases resulted in an extinction probability of

approximately 45% (figure 3b); however, the extra manpower

involved to test so many extra hives may make this strategy

prohibitive, and there will be a limit to how large a check can

be carried out in the vicinity of AFB-positive hives. Unfortu-

nately, data on the cost of AFB inspections were not available

to us, so a rigorous cost–benefit analysis for secondary inspec-

tions is beyond the scope of this work.

Carrying out inspections earlier decreased the size of the

epidemic by limiting the amount of initial spread before

inspections began (figure 4a,b). Earlier inspections were also

found to make disease extinction more likely (figure 4c); how-

ever, the increase over the three-month period that we

examined did not lead to as large an increase in the likelihood

of complete AFB removal as the radial inspections; primary

inspections in June gave a 3% chance of disease extinction,

whereas moving them back to March increased the prob-

ability to 8%. This probability is still relatively low, so

further steps would be required to eradicate AFB entirely.

When comparing control strategies, results were mixed.

Given that the first census occurred in June, all control strat-

egies resulted in similar-sized epidemics (figure 5a), and the

actions taken by Jersey bee inspectors resulted in fewer inspec-

tions than any further control strategies. Hence, if the cost of

inspections is a limiting factor, the control measures taken

were appropriate. In terms of limiting the spread of infection,

the earlier the epidemic is discovered and action is taken, the

smaller the resulting epidemic is (figure 5a). However, in prac-

tice with epidemics this is not always possible; depending on

the disease, it may or may not be easily spotted by farmers,

and by the time action is taken the epidemic may have

already taken off. If wiping out the disease is the main aim,

then two censuses are required to increase the chance of

wiping out AFB (figure 5c). However, the number of inspec-

tions required to carry out this strategy is much higher, and

the costs may be too prohibitive for such action to be taken.

We have provided a general framework here which can be

used, in conjunction with economic data about inspections

costs, to provide an optimum strategy to follow for future

epidemics.

Other control measures not carried out in our simulations

include shook swarm methods [17] and the use of OTC as an

antibiotic against AFB and EFB [7,17]. There is no unified

approach to the control of honeybee diseases; for example,

only recently, experimental work has shown the benefits of

shook swarm over OTC-based measures [19], and measures

differ between countries (for comparisons between the

USA, the UK and New Zealand, see [15,16,31]). OTC resist-

ance has been observed in recent experiments [32,33], and

alternative measures to antibiotics have been explored such

as breeding bees for an increased immune response to AFB

[34] and natural alternatives to antibiotics [35,36]. The

reason we chose to avoid simulating extra control measures

is a lack of quantitative data about the effectiveness of

shook swarm and OTC. With more specific data, such control

measures would not be difficult to implement computation-

ally. Depending upon the performance of such control

measures, smaller epidemics may result in the future.

This is the first rigorous statistical analysis carried out on a

honeybee disease epidemic that we are aware of, and several

issues were found. First of all, the methods of disease trans-

mission that we accounted for included: distance, owner,
within-apiary and random (background) transmission. A

more rigorous model would include other links to facilitate dis-

ease transmission, such as apiarists sharing equipment and

hive movement between apiaries. Unfortunately, this required

much higher resolution data than we possessed; livestock

movement data are usually well documented (see [22,37]),

and in our model, we assumed all hives stay in the same

apiary for the period of the simulation. Information about

imports of bees (which is controlled by legislation on Jersey,

and a licence required for the import of queens) would no

doubt be useful in determining the likely origin of epidemics,

especially for an island such as Jersey where bees are unlikely

to travel from other locations (although one beekeeper did

report seeing a swarm travelling mid-Channel between

Jersey and France, highlighting the possibility of honeybee

influxes from mainland Europe).

Nevertheless, as a starting point, we believe that our analy-

sis shows great potential in helping to limit future epidemics in

honeybees. We have established clear links between both

proximity and ownership and the spread of AFB, and shown

the speed at which the epidemic probably grew. There is a

very high probability that the disease was present from the

previous year, but at low enough numbers to go unnoticed.

We have also shown how control measures can be used to mini-

mize the size of the overall epidemic. In the future, we hope to

use the statistical framework established in this analysis

to investigate the spread of EFB in England and Wales, using

data available since 1993. It is hoped that a much larger data-

set will enable us to provide more robust conclusions, and

comparisons between the spread of EFB and AFB could poten-

tially lead to different control strategies needed to reduced

the size of epidemics. Finally, the fact that all these findings

can be revealed from two spatial snapshots of the infection

status suggests that these techniques can be applied to a

wide range of outbreak scenarios without the need for costly

high-resolution temporal data.
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Appendix A
A.1. Model construction
The overall aim of any MCMC scheme is to try to reconstruct

the series of events which took place, leading to the dataset

possessed at present. For this, an appropriate model which

captures the behaviour of the system accurately is paramount

for good results. In the case of epidemic data, it is thus impor-

tant to capture the main methods for the spread of the

disease, in order to have a high chance of recreating the epi-

demic. As we have information about both the geographical

location and owner of each hive, it makes sense to use this

information in construction of the function for disease

spread. Owing to a lack of knowledge about the relative

strengths of distance and ownership in the transmission of
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disease between hives, we set up our transmission function as

rij ¼ bðlðKijÞ þ ð1� lÞvAijÞ þ jBij; j [ S; i [ I; ðA 1Þ

In this way, 0 � l � 1 shows the relative amount of spread due

to the two factors—the closer to 1 that l is, the more important

the proximity between hives is for infection spread. We

include j as an extra pressure which applies between hives

on the same apiary—this is due to extra interactions which

may occur at the within-apiary level, such as bees travelling

between neighbouring hives, acting as a vector for AFB.

With the inclusion of disease latency and the background

transmissions of disease, the infectious pressure upon any

hive is thus given by (2.4).

The likelihood function for our epidemic has to take the

following probabilities into account:

— susceptible hives staying uninfected, either for the entire

inspection period (in which case we set I( j ) ¼ T þ 1) or

from the beginning of the inspection period until I( j ) (if

I( j ) � T );

— susceptible hives becoming infected at time t, under

infectious pressure from other hives or random infection;

— infected hives being detected when an inspection takes

place; and

— infected hives not being detected when an inspection

takes place (i.e. false negatives).

We model the inspection period as a discrete-time pro-

cess, with each step being 1 day; this is logical, as the

inspection data are categorized by the date each inspection

occurred. In discrete time, we convert our infectious pressure

(2.4) into a probability of infection, which is a Poisson process

with probability

PðinfectionÞ ¼ 1� e�Rate�dt: ðA 2Þ

For a detailed method of dealing with discrete-time

models, see [38]. The likelihood calculation is thus

LðI;VjR,R�Þ ¼
YT
t¼1

Y
j[SðtÞ;
Ið jÞ.t

e�tj �
YT
t¼1

Y
Ið jÞ¼t

ð1� e�tjÞ

�
Y

Ið jÞ,Rð jÞ�T

DðRð jÞ � Ið jÞÞ

�
Y

Ið jÞ,R�ð jÞ�T

ð1�DðR�ð jÞ � Ið jÞÞÞ:

ðA 3Þ

Here, the first term is the probability of not being infected on

day t, which is 1� P (infection) from (A 2), while the second

term follows (A 2) exactly; both terms involve summing over

all hives. The third and fourth terms correspond, respectively,

to AFB-positive hives being detected and not detected,

following the detection function (2.5).

Initially, owner compliance was included in the model,

which allows for owner-based transmission to be reduced

once inspectors were made aware of the presence of AFB and

alerted farmers. However, it was not significant to the model

results (i.e. there was no information gained from the likeli-

hood scheme) and thus was not included. We hypothesize

that the nature of the data collection (i.e. returning only to

infected apiaries in August rather than a second complete

census of all hives) provided insufficient information to test

for owner compliance.
A.2. Prior distributions
To set up the MCMC scheme, we must first set initial values

for all our parameters; the job of the MCMC algorithm will

then be to calibrate these parameters, and the output tends

to the most probable system configuration. For our model,

the unknowns are the constants in the model (b, l, a, j, u, e)

and the infectious periods for all confirmed infected hives.

As well as this, we attempt to locate any occult infections

which were not detected during the inspection period.

In the case of the constants, values must be positive. For

parameters with no obvious upper limit, we choose priors

to be gamma distributions,

Y � Gð1; 5Þ: ðA 4Þ

By definition l needs to be in the range [0,1] so we use a

beta distribution as our prior,

Y � Betað2; 2Þ; ðA 5Þ

centred at 0.5. With information from FERA and the bee

inspection team from Jersey, we assume an upper limit of

20 days for the latency period. Thus, we use a modified

beta distribution as our prior for u,

Y � 20 � Betað2; 2Þ: ðA 6Þ

For setting infectious periods, we opt for either shifting

infection times by 1 day either side or picking random

values from an exponential distribution (see §A.3).
A.3. MCMC Algorithm
We are now ready to run the MCMC scheme. As likelihood

values tend to be very low, it is beneficial (for machine accuracy)

to work with log likelihoods, henceforth denoted by L. The

initial likelihood is set extremely low, Lold ¼ 2106. There are

five possibilities for the adjustment of parameters in our

scheme, and one adjustment is chosen at each iteration. In gen-

eral, whatever step is taken, we calculate the new likelihood

after the change (Lnew), before calculating the following value:

A ¼ Lnew � Lold þQ; ðA 7Þ

where Q is the proposal distribution (e.g. [39]). Generally, Q is

made up of two components: the probability of picking the

old value given the new value, and the probability of picking

the new value given the old value. Together, these give

Q ¼ ln
PðxoldjxnewÞ
PðxnewjxoldÞ

� qðxnewÞ
qðxoldÞ

� �
; ðA 8Þ

where q(x) is the prior distribution for the parameter x (this can

be either a model constant or an infection time).

The new set of parameters is accepted if A . u, where

u � U [0,1]; in other words, the new parameters are definitely

accepted if A . 0, and with probability eA if A , 0. The

method of updating values, along with the calculation of the

value of Q is as follows for the five different parameter changes:

(1) Varying the value of one of the model constants. We

choose one of the model constants at random, and move

a small amount from the old value of the constant. We

sample from a normal distribution and add this value to

the old parameter value

xnew ¼ xold þNð0;sxÞ; ðA 9Þ
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where the variance s is proportional to the initial value of

the constant; initial values used are estimates of the con-

stants from preliminary runs of the MCMC, so constants

with higher initial values have higher variances. As we

are using a symmetrical distribution to calculate the new

value, the first fraction of (A 8) is 1.

(2) Varying the infection time of some of the infected hives.

This involves first picking a random number of infected

hives to resample infection times for. Secondly, we

resample infection times for each hive; for this we

either move the infection time either side by 1 day, or

sample from an exponential distribution

Rð jÞ � Ið jÞ � expðgÞ: ðA 10Þ

For early iterations, infection times are often generated

by moving 1 day to either side of the old time, so that

we explore the parameter space of infection times

thoroughly. As the number iteration increases, times are

resampled more frequently from the exponential distri-

bution (A 10). We set g ¼ 200 days for sampling infection

times from, to allow a wide range of infectious periods.

We also impose an upper limit of 300 days, such that infec-

tious periods are resampled if a period greater than 300

days is calculated.

(3) Introducing an infection to one of the susceptible hives,

and setting its infection time (known as an occult infec-

tion). A susceptible hive is selected at random to

become infected, and the infectious period T 2 I( j ) is

sampled from a uniform distribution

T � Ið jÞ � UðR�ð jÞ � 30;TÞ: ðA 11Þ
This is subtracted from the end of the inspection period T
to give the infection time. We use a uniform distribution

instead of the exponential distribution (A 10) for occult

infections, as an occult is extremely unlikely to be infected

long before the inspection date; we assume a 30-day limit

before the inspection. The value of Q for a new infection is

adapted from Jewell et al. [20,21] and is defined as

Q ¼ jI . Tj � ðT � R�ð jÞ þ 30Þ
jOj þ 1

; ðA 12Þ

where O is the number of occults before the current addition.

(4) Removing one of the occult infections. The value of Q is

again adapted from Jewell et al. [20,21] and is defined as

Q ¼ jOj
ðT � R�ð jÞ þ 30Þ � ðjI . Tj þ 1Þ : ðA 13Þ

(5) Varying the addition or the removal time of one of

the hives which is not present for the entire inspection

period (as the numbers of hives in apiaries sometimes

varied between inspections without explanation). As

the lower and upper limits for the removal/addition

time are fixed (as the two inspection dates R�1 ð jÞ and

R�2 ð jÞ), we simply use a uniform distribution

Cð jÞ � UðR�1 ð jÞ þ 1;R�2 ð jÞ � 1Þ; ðA 14Þ

where the time of the change C( j ) must be after the first

inspection day and before the second. As we are

sampling from a uniform distribution, Q ¼ 0.

The parameter change that we choose is selected from the

above five options such that infection times are resampled
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with a higher frequency at the beginning of the MCMC

scheme. Thus by the time we start to vary other parameters,

we are more likely to be in the right region of parameter

space for the infection times of diseased hives.
A.4. MCMC output
For the MCMC scheme to have explored the multi-dimen-

sional parameter space thoroughly, we allow the scheme to

run for 1.8 � 106 iterations, including a burn-in period of

2 � 105 steps where values are not recorded. The results are

shown in figure 6.

The plot of the log-likelihood varies throughout the iter-

ations, as expected in an MCMC scheme, with the values

distributed roughly around log(L) ¼ 2800. The shape
confirms that the parameter space is being explored

thoroughly, with an acceptance of 56.3%. This acceptance

rate is higher than the ideal acceptance range of 16–40%,

although we highlight that the quoted range is applicable

when only step 1 of the MCMC scheme is carried out (i.e. alter-

ing parameter constants, see §5), and the acceptance rate for

this step alone is 29.2%. The histograms for the model constants

mostly have Gaussian shapes, with the exception of 50%

latency day, which is more evenly spread over the 20-day

period. The histogram for l is centred around 0.6, meaning

that just over half of all transmission is due to distance-

dependent transmission rather than by owner. Thus, both

pathways are significant in controlling the spread of AFB.

To test for parameter independence, we plot the model

constants against each other, producing a set of cloud plots

(figure 7).
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A.5. ROC curves
To test the reliability of the SIR model used to simulate

epidemics, we plot ROC curves to test the sensitivity and

specificity of the model compared to the data, along with a

histogram comparing the infection status of the model and

data (figure 8).

The ROC curve is formulated by defining a cut-off c
between 0 and 1; apiaries are determined to be positive, if

they are infected in more than a proportion c of simulations

and negative otherwise. The ROC curve is then drawn by

varying the value of c. For all c . 0.5, our ROC curve lies

above the diagonal line, showing that our simulations have

better than random predictive accuracy.

The constants appear to be independent, with little

covariance between them (i.e. positive and/or negative corre-

lations). This corroborates our model formulation.

However, our modelling methodology is not a simple

statistical fit to the data (in the traditional sense), but aims

to generate the underlying mechanistic processes driving

transmission. For this reason, simple measures of agreement

between predictions and data are not readily applicable,

especially given the stochastic variation between simulations.

To overcome this issue, we also use the ROC curve to assess

how well the model performs at predicting a single model
simulation (i.e. treating one simulation from the model as

the true data), and use this comparison to generate mean

and 95% prediction intervals of this ideal (green lines in

figure 8a). This model–model comparison highlights the

effects of stochasticity and provides an upper bound on

what could be achieved even if the model perfectly captured

the underlying mechanisms. We find that the ROC curve that

compares model and data lies within the 95% prediction

intervals of what can be expected for c . 0.5.

Finally in figure 8b, we separate apiaries that we found

positive in the June census (red) from those found negative

(blue). For each of these, we show frequency histograms of

the proportion of simulations in which an apiary is infected.

Clearly, apiaries positive in the June census are more likely to

be infected in the model, while apiaries rarely infected in the

model are generally ones where AFB was not detected.

The difficulty of forming a simple statistical comparison

between model and data is complicated by two main factors:

(i) the variability in model results due to both the stochastic

nature of transmission but also the uncertainty in parameter

values from the MCMC scheme; (ii) the fact that the observed

epidemic is simply one realization of the possible epidemics

that could occur, and there is no reason to believe that this

was in any way a typical epidemic.
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