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Abstract 

Although recent modeling suggests that needle–syringe programs (NSPs) have reduced parenteral HIV transmission among people who 
inject drugs (PWID) in Kenya, the prevalence in this population remains high (∼14–20%, compared to ∼4% in the larger population). 
Reducing transmission or acquisition requires understanding historic and modern transmission trends, but the relationship between 
the PWID HIV-1 sub-epidemic and the general epidemic in Kenya is not well understood. We incorporated 303 new (2018–21) HIV-1 pol
sequences from PWID and their sexual and injecting partners with 2666 previously published Kenyan HIV-1 sequences to quantify rela-
tive rates and direction of HIV-1 transmissions involving PWID from the coast and Nairobi regions of Kenya. We used genetic similarity 
cluster analysis (thresholds: patristic distance <0.045 and <0.015) and maximum likelihood and Bayesian ancestral state reconstruc-
tion to estimate transmission histories at the population group (female sex workers, men who have sex with men, PWID, or general 
population) and regional (coast or Nairobi) levels. Of 1081 participants living with HIV-1, 274 (25%) were not virally suppressed and 303 
(28%) had sequences available. Of new sequences from PWID, 58% were in phylogenetic clusters at distance threshold <0.045. Only 21% 
of clusters containing sequences from PWID included a second PWID sequence. Sequences from PWID were similarly likely to cluster 
with sequences from female sex workers, men who have sex with men, and the general population. Ancestral state reconstruction 
suggested that transmission to PWID from other populations was more common than from PWID to other populations. This study 
expands our understanding of the HIV-1 sub-epidemic among PWID in Kenya by incorporating four times more HIV-1 sequences from 
this population than prior studies. Despite recruiting many PWID from local sexual and injecting networks, we found low levels of 
linked transmission in this population. This may suggest lower relative levels of parenteral transmission in recent years and supports 
maintaining NSPs among PWID, while also strengthening interventions to reduce HIV-1 sexual acquisition and transmission for this 
population.
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Introduction
To address harms associated with injection drug use, including 
risk of parenteral HIV-1 transmission, the Kenyan Government 
introduced needle and syringe programs (NSPs) in 2013 and 
methadone maintenance treatment in 2014 [National AIDS and 
STI Control Programme (NASCOP) 2014, Rhodes et al. 2015]. How-
ever, the prevalence of HIV-1 in people who inject drugs (PWID) in 
Nairobi and the coastal region of Kenya remains four-fold higher 
than in the larger Kenyan population, at 14–21%, [Degenhardt 
et al. 2017, National AIDS and STI Control Programme (NASCOP) 
2020, Stone et al. 2022] and is similar to the prevalence among 
men who have sex with men (MSM), but likely lower than the 
estimated prevalence among female sex workers (FSW, 12–31%) 
[National AIDS Control Council, National AIDS & STI Control 
Program (NASCOP) 2018].

Recent modeling suggests that NSPs have been highly effec-
tive at reducing recent HIV transmission among PWID in Kenya, 
as was already understood to be the case in the USA and Western 
Europe (Asher et al. 2013, Ragonnet-Cronin et al. 2019, Stone et al. 
2022). These models suggest that PWID, and particularly women 
who inject drugs, are increasingly likely to acquire HIV sexually, as 
opposed to from contaminated needles (Stone et al. 2022). How-
ever, the question of primary sources and mechanisms of HIV-1 
acquisition and transmission among Kenyan PWID has not been 
extensively addressed through phylogenetic methods based on 
HIV-1 genetic data. Questions also remain about the extent to 
which the HIV-1 epidemic among PWID is self-sustaining, ver-

sus part of, or a reflection of, the epidemic in the larger pop-
ulation. Injection drug use in Kenya is heavily concentrated in 

urban areas (primarily in coastal cities and Nairobi), and inter-
regional HIV-1 transmission dynamics involving PWID are also 

not well-understood [National AIDS and STI Control Programme 

(NASCOP) 2019, Nduva et al. 2022a]. The most recent HIV biobe-
havioral survey in Kenya was conducted in Kisumu and Nairobi 
counties in 2011, prior to the introduction of needle–syringe pro-

grams and methadone clinics (Tun et al. 2015). Epidemiological 
and molecular epidemiological modeling can empirically fill gaps 
in behavioral data for PWID and connect behavioral changes to 

changes in HIV prevalence and/or transmission patterns.
Phylogenetic analyses are well-suited to resolve questions 

about HIV transmission patterns between populations, between 

regions, and over time (Suchard et al. 2018, Bbosa et al. 2019, 
Brenner et al. 2021, Magosi et al. 2022). By overlaying geograph-
ical or epidemiological data onto a molecular phylogeny, we can 

also infer how the behaviors or experiences of individuals living 
with a disease relate to transmission trends. Rapid virus evolution, 
which occurs within the timescale of transmission, makes HIV-
1 particularly conducive to phylogenetic analysis (Grenfell et al. 
2004).

Prior phylogenetic analysis of HIV-1 in Kenya primarily focused 
on populations other than PWID and showed more HIV-1 trans-
mission from the higher prevalence western regions to lower 
prevalence eastern regions (Bezemer et al. 2014, Nduva et al. 
2022a). However, because HIV prevalence among PWID is highest 
in coastal Kenya (Kurth et al. 2015, Sambai et al. 2022) [oppo-
site of regional prevalence trends in the general population (GP)] 
and because prior phylodynamic studies have shown differing 
regional transmission patterns among MSM, another key popula-
tion, (Nduva et al. 2022b) it is not clear if this HIV-1 transmission 
trend is replicated among PWID. Prior research identified a clus-
ter of 41 HIV-1 sequences collected from PWID in the coastal city 
of Mombasa in 2010 (Nduva et al. 2022a). This finding suggested 

substantial, isolated transmission within the PWID population, 
with needle-sharing likely playing a role, but also contradicted 
a common and potentially stigmatizing narrative that transmis-
sion from PWID “seeds” cases in other populations (Beckerleg and 
Hundt 2004, Nduva et al. 2020, 2022a). In light of substantial addi-
tions to harm reduction programs for PWID in Kenya in the last 
10 years, this analysis seeks to evaluate more recent and geo-
graphically diverse trends in HIV transmission involving PWID. 
This study reports a four-fold higher number of HIV-1 sequences 
from PWID in Kenya and is the first to collect HIV-1 sequences 
from PWID after the introduction of NSPs in Kenya.

Methods
Study population and enrollment

The study of HIV, hepatitis C (HCV), APS, and Phylogenetics for 
PWID (SHARP) is a prospective cohort study that recruited peo-
ple who had injected drugs in the last 3 years and were living with 
HIV (indexes) from 2018 to 2021 and used assisted partner services 
(APS) to identify, test, and treat their sexual and injecting partners 
(Monroe-Wise et al. 2021). Index participants were recruited from 
NSPs and methadone clinics in Nairobi (central Kenya) and Kil-
ifi and Mombasa counties (coastal region). Eligibility criteria for 
indexes was: ≥18 years of age, injected at least once in the past 
year, tested positive for HIV, had not experienced intimate partner 
violence in the last month, and gave written informed consent. 
Indexes were enrolled in APS, through which they identified sexual 
(vaginal, anal, or oral intercourse) and injecting (regardless of nee-
dle sharing) partners (≥18 years of age) from the previous 3 years, 
who were also invited to enroll in the study.

Sociodemographic data, HIV and HCV history, and sexual 
and injection drug use history were obtained for all partici-
pants by a survey. Rapid HIV-1 testing using fingerstick samples 
was performed during the interview sessions following an estab-
lished Kenya national algorithm (Guidelines for HIV Testing 2010). 
Detailed study procedures are reported in the published study 
protocol (Monroe-Wise et al. 2021).

Laboratory procedures and sequencing
Blood samples were collected from all participants who tested 
positive for HIV and used to prepare dried blood spots and plasma 
samples for viral load testing and sequencing. Plasma samples 
(for 15 samples, dried blood spots were used) were shipped to 
the Kwazulu-Natal Research Innovation and Sequencing Plat-
form (KRISP) laboratory at the University of KwaZulu-Natal, 
South Africa for Sanger sequencing (N = 255) or next-generation 
sequencing (NGS; N = 48).

For Sanger sequencing, PCR amplification was performed on 
the HIV-1 polymerase (pol) region using Genotyping Kit Amplifi-
cation Module (ThermoFisher Scientific). The HIV-1 Genotyping 
Kit Cycle Sequencing Module (ThermoFisher Scientific) was used 
for cycle sequencing followed by purification (BigDye Xterminator 
kit, ThermoFisher Scientific) and capillary electrophoresis using a 
3730xl DNA Analyser (Applied Biosystems).

For NGS, short overlapping amplicons spanning the full 
genome were generated using a tiling PCR approach, (Quick et al. 
2017) and consensus sequences were later trimmed to the pol 
region. All sequencing libraries were prepared using the Nextera 
DNA Flex Library Prep kit with Nextera CD indexes (Illumina, 
San Diego, CA, USA) and quantified using the Qubit dsDNA High 
Sensitivity assay kit on a Qubit fluorometer (Life Technologies, 
Carslbad, CA, USA). Sequencing was performed on an Illumina 
MiSeq platform (Illumina).



A phylogenetic assessment of HIV-1 transmission trends  3

Sequence dataset and phylogenetic 
determination of clusters
A total of 4058 previously published HIV-1 pol sequences (approxi-
mately 1020 nucleotides, HXB2 [K03455] positions 2267–3287) were 
available from Kenya (Nduva et al. 2022a), of which we incorpo-
rated 3587 into an alignment based on: year >2000 and not from 
a person <15 years old or a maternal to child transmission study 
(where known). SHARP and previously published sequences were 
annotated as being from: PWID, MSM, FSW, or GP (defined in this 
analysis as not known to be <15 years old and not known to be in a 
key population). Because participants from the SHARP study were 
not asked about recent sex work and because transactional sex 
among PWID is often highly connected with obtaining and using 
drugs, (Mburu et al. 2019), we conducted secondary cluster anal-
yses on a subset of HIV-1 sequences from female PWID SHARP 
study participants who had transactional sex risk factors: ≥3 sex-
ual partners in the prior month and having ever received money 
for sex.

For previously published sequences, subtypes were determined 
by maximum-likelihood phylogenetic analysis in PhyML under 
the general time reversable (GTR) + Γ4 + I model and the SH-aLRT 
algorithm for branch support (Guindon et al. 2010), and circulat-
ing recombinant forms (CRFs) were resolved by bootscan anal-
ysis in Simplot as described by Nduva and colleagues (Nduva 
et al. 2022a). For the new SHARP study sequences, we assessed 
HIV-1 subtypes using REGA HIV subtyping tool v3.6 (available 
at http://dbpartners.stanford.edu:8080/RegaSubtyping/stanford-
hiv/typingtool/) and resolved CRFs using a combination of REGA, 
COMET (available at https://comet.lih.lu/), and clade placement 
on a phylogenetic tree with reference sequences (Pineda-Peña 

et al. 2013).
For alignment, we excluded all NRTI and NNRTI mutations 

listed on the Stanford Drug Resistance Database [Bennett et al.] 

and performed multiple sequence alignment using fast Fourier 
transform (MAFFT) (defaults: 200PAM scoring matrix, transitions-

transversions ratio: 2, gap open penalty: 1.53, offset value: 0.123), 
implemented in Geneious Prime v11.0.11 (Katoh et al. 2002, Kearse 
et al. 2012, Katoh and Standley 2013).

We used a two-pronged approach [i.e. maximum likelihood 
(ML) and Bayesian inference] to construct phylogenies, with ML 

trees used for analysis of trait distribution across clusters and 
Bayesian trees used for coalescence ( Royer-Carenzi et al. 2013, 
Joy et al. 2016). Both methods were used for ancestral state recon-

struction. For the ML approach, we used IQ-Tree, (Nguyen et al. 
2015, Minh et al. 2020) a maximum likelihood calculator, and used 
the built-in model selection tool (Kalyaanamoorthy et al. 2017) 
to choose the general time-reversable substitution model with 
gamma-distributed rate variation (GTR + R(9)) (Soubrier et al. 2012, 
Kalyaanamoorthy et al. 2017). Cluster summaries were combined 
across HIV-1 subtype-specific ML trees (N tips: SHARP subtype A1: 
196, published subtype A1: 2650; SHARP subtype C: 38, published 
subtype C: 270; SHARP subtype D: 19, published subtype D: 436; 
total: 3432) and defined using maximum patristic distances <0.015 
and ≤0.045; these are commonly used thresholds for defining 
recent transmission and more distantly related networks, respec-
tively (Guindon et al. 2010, Oster et al. 2015, Junqueira et al. 2019). 
Only clusters containing at least one sequence from the coast or 
Nairobi were included in summary statistics. The primary out-
come of interest in cluster analysis was the percent of clusters for 
each population group that contained a sequence from a PWID ([N 
clusters with 1+ PWID sequence and 1+ sequence from population 
group X]/[N clusters with 1+ sequence from population group X]).

We estimated the dates of origin (time to most recent common 
ancestor; tMRCA) of clusters containing subtype A1 sequences 
from a PWID. For coalescent analysis, sequences were limited to 
the 316 that fell into a cluster containing at least 1 PWID sequence 
based on the ML tree. We implemented a Bayesian coalescent tree 
model in BEAST (v1.10.4) using the SkyGrid model (Drummond 
et al. 2002, Gill et al. 2013) with GTR + Γ4 substitution model, and 
specifying an uncorrelated, relaxed clock (Drummond et al. 2006). 
We calculated Markov chain Monte Carlo (MCMC) runs with a 
chain frequency of 300 million generations, logging every 50 K iter-
ations. After discarding 10% as burn-in, we built a maximum clade 
credibility tree and calculated the average and IQR for origin dates 
of both clusters containing PWID sequences and PWID-exclusive 
clusters, based on a patristic distance threshold of 0.045.

Ancestral state reconstruction
We performed ancestral state reconstruction using subsets of 
2342 SHARP and previously published HIV-1 subtype A1, C, and D 
sequences from the coastal and Nairobi regions. We excluded from 
ancestral state reconstruction, 43 HIV-1 subtype A1 sequences (41 
from PWID and 2 from the GP) that formed a previously identified 
cluster (Nduva et al. 2022a). This cluster is a substantial outlier in 
terms of size and, given the relatively small sample size available 
from PWID, would likely drive transmission pattern estimates. 
Having noted the importance of this cluster analysis, we wanted 
to draw inference relevant to the rest of the PWID population.

For geographic ancestral state reconstruction, we considered 
two discrete states: Coastal region or Nairobi County. For risk-
group ancestral state reconstruction, we specified four discreet 
states: FSW, MSM, PWID, and GP. The ML and Bayesian approach 
were used to perform three main ancestral state reconstruction 
analyses, stratified by HIV-1 subtype. The first approach assessed 
regional transmission (coast and Nairobi) among PWID recruited 
from the SHARP study (ML method only; uniform subsampling: 
76 sequences each; proportionate subsampling (based on esti-
mated regional HIV-1 prevalence and PWID population sizes): 40 
sequences from coast and 76 sequences from Nairobi). The second 
approach assessed transmission between different population 
groups (uniform sampling, 74 sequences each from GP, FSW, MSM, 
PWID). The third approach estimated transitions between PWID 
and not-PWID from the coast and Nairobi regions (110 sequences 
per group). As a secondary analysis to test agreement with prior 
studies, we assessed regional transmission between the coast and 
Nairobi overall. Analyses were performed for HIV-1 subtype A1 and 
for subtypes C and D where sample-size permitted.

Sequences from other regions in Kenya were incorporated as 
references when constructing ML trees, but were excluded from 
ancestral state reconstruction, as no sequences were available 
from PWID, the primary population of interest, in these regions. 
ML trees were further filtered to obtain proportionate (approach 
#1 only) or uniform subsampling. For Bayesian analysis, because 
it is computationally intensive and because ancestral-state recon-
struction is conducted concurrently in the MCMC chain, align-
ments were filtered prior to tree reconstruction to include only 
coast and Nairobi sequences and to achieve uniform subsampling 
of the trait of interest.

Ancestral state reconstruction was performed on ML trees 
using a marginal ML algorithm (Phanghorn package, R), which 
calculates the likelihood of each state at each ancestor (Schliep 
2011, R: A Language and Environment for Statistical Computing 
2019). We defined a state transition when the trait of the descen-
dant node differed from the state of its immediate ancestor on the 

http://dbpartners.stanford.edu:8080/RegaSubtyping/stanford-hiv/typingtool/
http://dbpartners.stanford.edu:8080/RegaSubtyping/stanford-hiv/typingtool/
https://comet.lih.lu/
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tree. We resolved ancestor states according to their estimated like-
lihood, averaging over 20 resolutions. We also averaged transition 
counts across 10 subtrees for HIV-1 subtype A1 (and 30 subtrees 
for the smaller HIV-1 subtypes C and D). P-values were calculated 
for the statistic: (transitions from state 0 to state 1)/(transitions 
from state 1 to state 0) for each pair of traits in order to assess the 
hypothesis that transitions were more common in one direction. 
The non-parametric null distribution is based on 200 resampling 
of the tree tip traits (X20 resolutions of ML ancestor states X10 
subtrees). We also conducted secondary analyses of “terminal 
transitions” (whether a transition event occurred on the termi-
nal branch of the tree leading to an observed sequence). We did 
this to investigate more recent trends and to address uncertainty 
that develops for ancestral state reconstruction deeper in the tree, 
where states tend to converge near the tree root.

Ancestral state reconstruction in BEAST was conducted con-
currently with the tree-building process. Trees were developed 
under the assumption of constant population size with a strict 
clock (to improve computational efficiency) and inferred under 
the GTR + Γ4 substitution model (Lemey et al. 2009, Suchard 
et al. 2018). For each subset, chains of 250–500 million iterations 
were run to ensure convergence to the correct posterior distribu-
tion. Convergence was assessed using Tracer, and 10% of states 
were removed to account for burn-in. Convergence was deter-
mined in Tracer V1.7.2 [defined as an effective sample sizes (ESS) 
≥100 for most traits]. Bayesian ancestral state reconstruction was 
performed using an asymmetric continuous-time Markov chain 
(CTMC) model, as it relaxes the assumption of constant diffu-
sion rates through time to realistically model phylogeographic 
processes (Lemey et al. 2009, Edwards et al. 2011). We used the 
PrioriTree Software to empirically derive a prior on the dispersal 
rate for each discrete trait—using the first quantile of the par-
simony score; this decreased the dependance of the estimated 
dispersal rate on the prior (Gao et al. 2022, 2023). Well-supported 
movements and Bayes factors (BF) assessing statistical support 
were summarized using SPREAD v0.9.6, (BF ≥3 was considered 
significant) (Bielejec et al. 2016). We also used a robust count-
ing approach implemented in BEAST to estimate the forward and 
reverse HIV-1 movement events (Markov jumps) between loca-
tions and population group states along the branches of time-
dated phylogenetic trees (Suchard et al. 2018). We averaged jump 
counts across 7-9 subtrees.

Unless otherwise stated, we report transition counts (for 
ML methods) or Markov jumps (the corresponding measure for 
Bayesian methods) as a percent of all branches and indicate the 
null as the random probability of the transition event based on the 
frequency of the sampled traits. Transitions or jumps are reported 
in the text for the A1 subtype.

Cluster and ancestral state reconstruction summary statis-
tics, tables, and figures were developed using the ape (Paradis 
et al. 2019), ggtree (Wickham et al. 2016, Yu et al. 2017) and R 
(R: A Language and Environment for Statistical Computing 2019) 
packages.

Ethical consideration
Ethical approval was provided by the Institutional Review Board 
at the University of Washington (STUDY00001536) and the Ethi-
cal Review Committee at Kenyatta National Hospital/University of 
Nairobi (P265/05/2017). All the participants in this study provided 
informed consent for inclusion in the study.

Results
Study participants and HIV-1 sequences

This study enrolled 1081 participants living with HIV, of whom 274 
(25%) did not have viral suppression (viral load >1000 copies/ml). 
We were able to sequence 313 samples; we excluded 1 sequence 
for missing epidemiological data, 2 for failure to capture the 
partial pol region, and 7 for >15% missing or ambiguous bases, 
leaving 303 HIV-1 sequences (representing 28% of all SHARP study 
participants with an HIV diagnosis).

Of the 303 participants with a sequence available, most (80%) 
were diagnosed prior to study enrolment, primarily after 2013 
(N = 156, 64%), when NSPs were introduced (Supplementary Table 
S1). The vast majority had injected drugs (96%) and 81% had 
injected in the previous month, but recent self-reported needle-
sharing was <10% in both regions. While receiving money or goods 
for sex was more common among women in Nairobi (48% com-
pared to 33% on the Kenyan coast), participants on the coast 
reported more sexual partners, on average. Fifty-three female par-
ticipants fit our definition of having transactional sex risk factors: 
having ever received money or goods for sex and reporting ≥3 sex 
partners in the prior month.

The most common subtypes were A1 (SHARP: 67.0%, all: 
71.0%), C (SHARP: 12.5%, all: 7.3%), and D (SHARP: 6.6%, all: 10.0%), 
with 28 (9.2%) recombinants in the SHARP data and 288 (10.8%) 
recombinants in the full dataset (Supplementary Tables S1 and S2, 
Fig. 1). After incorporating previously published sequences, sub-
type A1, C, or D Sequences were available from 148 FSW, 300 MSM, 
295 PWID, and 1598 people in the GP from the coast and Nairobi 
regions (Supplementary Table S2, Supplementary Fig. S1). The esti-
mated sampling density of people living with HIV from Nairobi 
was 0.7% of people in the GP, 0.7% of FSW, 7.4% of MSM, and 10.6% 
of PWID. Sampling density from the coast was 0.6% of people in the 
GP, 6.1% of FSW, 17.8% of MSM, and 12.2% of PWID (Supplementary 
Table S3). Most HIV-1 sequences from FSW, MSM, and the GP were 
from the previously published sequence dataset (Table 1), while 
most PWID HIV-1 sequences were newly collected through this 
study. HIV-1 subtype distribution was similar between the coast 
and Nairobi regions (Supplementary Table S2).

Cluster analysis
Using a maximum patristic distance threshold of 0.045, there were 
680 phylogenetic clusters of subtypes A1 (N = 540), C (N = 59), or 
D (N = 81) (Supplementary Table S4, Fig. 2) containing at least 
1 sequence from the coast or Nairobi region, and 120 (18%) of 
these clusters also contained at least one sequence from a PWID 
(Table 2, Supplementary Fig. S2). The mean estimated year of ori-
gin (for the common ancestor sequence) for clusters containing 
a PWID sequence was 2001 (IQR: 1995–2005) and the mean esti-
mated year of origin for PWID-exclusive clusters was 2010 (IQR: 
2004–2017); however, the estimated root age of the A1 phylogeny 
[1955 (HPD: 1939–68)] was relatively low, given that the first HIV 
case in Kenya was detected in 1984 (Simat 2022).

Overall, 142 (58%) of new (SHARP study: 2018-2021) and 190 
(63%) of all sequences from PWID fell into clusters at thresh-
old 0.045. The previously identified cluster of 41 sequences (40 of 
which fell within distance 0.015) from PWID in Mombasa (Sup-
plementary Tables S4 and S5, Supplementary Fig. S1) represented 
the largest cluster in our data and the only cluster with >5 PWID 
sequences. The next-largest cluster contained sequences from 13 
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Figure 1. A molecular phylogeny of 303 HIV-1 sequences from the SHARP study. The phylogeny was assembled using a ML approach (IQ-Tree; Nguyen 
et al. 2015, Minh et al. 2020) using the general time-reversable substitution model with gamma-distributed rate variation (GTR + R(9)). Visualization 
was developed in R. (R: A Language and Environment for Statistical Computing 2019).

individuals (Supplementary Fig. S3). Sequences from PWID most 
commonly clustered with sequences from other PWID but were 

similarly likely to cluster with sequences from each of the other 
three populations considered: Sequences from PWID were found 
in 16% of all clusters containing at least 1 GP sequence, 12% of 

all clusters containing FSW sequences, and 14% of clusters con-
taining MSM sequences (Table 2, Supplementary Table S6). Of new 

PWID sequences clustering with sequences from other popula-
tions, 50 (45%) came from men and 61 (55%) came from women. 

Despite most PWID sequences being collected through partner 
referral within the SHARP study, only 25 (21%) of clusters with 
PWID sequences contained another sequence from a PWID (5 with 

PWID sequences only from women, 5 only from men, 12 from men 
and women, and 3 missing data). This represents 52 (21%) of all 
non-recombinant SHARP sequences from PWID.

HIV-1 sequences from female PWID with transactional sex risk 
factors also did not cluster substantially more with sequences 
from any one population nor did sequences from PWID who 
reported sharing needles (Supplementary Table S7). When using 
the more stringent <0.015 distance threshold, population-specific 
clustering was more common (8 out of 15 clusters containing a 
PWID sequence, 53%); nevertheless, as this represents only 8% 
(N = 20) of all non-recombinant SHARP PWID sequences clustering 
with a second PWID sequence (Table 2, Supplementary Fig. S2).

Transmission between PWID and other 
populations
After adjusting for population size via uniform subsampling, 
ancestral state reconstruction in the A1 subtype suggests that 
about half of transmissions occurred within the defined popula-
tion groups (ML: 48.9%; Bayesian: 47.5%; null: 25%); there was 
no excess transmission within the PWID population (ML: 5.8%; 
null: 6.3%). Transitions to the PWID population were 1.5-times 
(ML) to 2.8-times (Bayesian) more common than transitions from 
the PWID population (Table 3). Both methods found that transi-
tions/jumps between PWID and MSM were rare in either direction. 
ML methods estimated most transitions to the PWID popula-
tion came from the GP (31, P < .01), followed by FSW (23, P < .01) 
and Bayesian methods estimated the highest number of jumps 
to PWID came from FSW (37, BF = 15.3), followed by the GP (24, 
BF = 10.6). In an analysis stratified by region, however, excess 
transmission from the GP to PWID populations was significant 
only for the coast and only with the ML approach.

Secondary analysis restricted transition counts to terminal 
branches (the branches leading to the observed sequences on the 
tree using ML methods only) to assess more recent transmission 
trends. This revealed similar patterns for population groups, with 
2.20-times more transitions to PWID than from PWID to other 
populations (Supplementary Table S8).
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Table 1. Demographics and distribution of new (from SHARP study) and previously published Kenyan HIV-1 pol sequences by popula-
tion. New sequences from the SHARP study are indicated in bold, as are sequences with A1, C, or D subtype (the primary sequences 
incorporated in these analyses).

FSW (N = 207), n (%) MSM (N = 376), n (%) PWID (N = 341), n (%) GP (N = 2966), n (%) Total (N = 3890), n (%)

Source
 Published 206 (99.5) 368 (97.9) 58 (17.0)a 2955 (99.6) 3587 (92.2)
 SHARP (new) 1 (0.5) 8 (2.1)b 283 (83.0) 11 (0.4) 303 (7.8)
Sampling year
 2001–15 178 (86.0) 144 (38.3) 58 (17.0) 2709 (91.3) 3089 (79.4)
 2015+ 29 (14.0) 232 (61.7) 283 (83.0) 257 (8.7) 801 (20.6)
Region
 Central 0 (0.0) 0 (0.0) 0 (0.0) 44 (1.5) 44 (1.1)
 Coast 110 (53.1) 178 (47.3) 171 (50.1) 700 (23.6) 1159 (29.8)
 Eastern 0 (0.0) 0 (0.0) 0 (0.0) 6 (0.2) 6 (0.2)
 Nairobi 82 (39.6) 141 (37.5) 170 (49.9) 1114 (37.6) 1507 (38.7)
 Nyanza 14 (6.8) 57 (15.2) 0 (0.0) 501 (16.9) 572 (14.7)
 Rift Valley 1 (0.5) 0 (0.0) 0 (0.0) 497 (16.8) 498 (12.8)
 Western 0 (0.0) 0 (0.0) 0 (0.0) 104 (3.5) 104 (2.7)
HIV subtype
 Missing 0 2 11 1 14
 G 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 1 (0.0)
 A1 122 (58.9) 276 (73.8) 243 (73.6) 2040 (68.8) 2681 (69.2)
 A2 0 (0.0) 0 (0.0) 9 (2.7) 2 (0.1) 11 (0.3)
 B 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0 1 (0.0)
 C 20 (9.7) 33 (8.8) 36 (10.9) 213 (7.2) 302 (7.9)
 D 21 (10.1) 48 (12.8) 17 (5.2) 363 (12.2) 449 (11.6)
 G 2 (1.0) 1 (0.3) 3 (0.9) 17 (0.6) 23 (0.6)
 Recombinant and other 42 (20.3) 16 (4.3) 22 (6.7) 328 (11.1) 408 (10.6)
Sex or genderc

 Missing 0 2 58 2253 2313
 Female 207 (100.0) 0 (0.0) 152 (53.7) 491 (68.9) 850 (53.9)
 Male 0 (0.0) 374 (100.0) 131 (46.3) 222 (31.1) 727 (46.1)

a41/58 published sequences were part of a large, previously identified cluster and these were included in cluster analysis but excluded from discrete trait analysis.
b7/8 MSM were also PWID. Sequences from MSM who were also PWID were counted as MSM sequences in discrete trait analysis.
cMost data did not distinguish between sex and gender.
See Supplementary Table S1 for demographic distributions by region and a breakdown of recombinant subtypes.

Regional transmission trends among PWID
Ancestral state reconstruction restricted to newly collected 
PWID sequences (Supplementary Table S9) estimated substantial 
between-region transitions (31.8% of terminal branch transitions; 
null: 50%) and similar rates of transitions in either direction 
[P = .05, similar to the pattern of regional transitions observed in 
the total population (Supplementary Table S10)]. To further inves-
tigate drivers of regional transmission, we conducted a combined 
analysis looking at the relationship between the GP and PWID 
population by region (Fig. 3, Supplementary Tables S11 and S12), 
which estimated the most between-region transitions within the 
GP, rather than the PWID population (after sampling equal num-
bers of sequences from both populations). In the GP, ML methods 
estimated similar transition frequency in both regional direc-
tions (7.5% coast to Nairobi versus 6.8% Nairobi to coast, P = .20; 
null: 6.25% each), while Bayesian methods suggested substantially 
greater jumps from the coast to Nairobi (16.9% versus 1.4% Nairobi 
to coast, BF > 100; Fig. 2, Supplementary Table S11).

Transitions were consistently (although not always signifi-
cantly) more common from the GP populations to PWID popu-
lations (versus from PWID to the GP) within and between both 
regions. Specifically, within the coast, GP to PWID transitions 
were 2- (ML, P < 0.01) to 10-times (Bayesian, BF = 1.6) more com-
mon and for Nairobi they were 1.3- (ML, P = 0.02) to 12-times 
(Bayesian, BF = 0.5) more common. Surprisingly, cross-region tran-
sitions between the GP and PWID populations were estimated at 
similar rates as within-region transitions in both ML and Bayesian 
models.

Discussion
We leveraged APS recruitment to collect sequences from 303 PWID 
living with HIV (and their sexual and injecting partners) from 
coastal and Nairobi, Kenya, the regions with the highest estimated 
levels of injection drug use in the country [National AIDS and STI 
Control Programme (NASCOP) 2019]. Our analysis reveals that the 
PWID HIV-1 sub-epidemic is connected to that in the GP and FSW 
populations.

Mechanisms of transmission among PWID
Our finding of few PWID exclusive clusters provides the first 
molecular epidemiological evidence supporting more limited 
transmission among PWID in recent years, in Kenya and in an 
African setting. Given that we recruited from sexual and inject-
ing partner networks in recent years (2018–21), our study was 
likely better powered than previous studies to resolve recent PWID 
HIV-1 transmission clusters involving Kenyan PWID (Nduva et al. 
2020). Nevertheless, the only cluster we identified containing >4 
PWID sequences was a previously described 41-sequence cluster 
in Mombasa (Osman et al. 2013, Nduva et al. 2020). While trans-
mission within PWID may be more common than between PWID 
and other populations (although this may also be explained by 
population-specific sampling), the results of the cluster analysis 
do not suggest widespread, isolated transmission among PWID 
within the last 10 years. 

Our results suggest that the HIV epidemic among PWID is 
not self-sustained. Strategies to reduce parenteral transmission 
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Figure 2. Molecular phylogenies of HIV-1 sequence clusters for (a) 203 subtype A1, (b) 38 subtype C, and (c) 19 subtype D. Clusters are depicted as 
triangles with nodes at the most-recent common ancestor and the closest and furthest tip. PWID sequences not in clusters are shown in purple and 
all other sequences not in clusters are excluded. Phylogenies were assembled using a ML approach (IQ-Tree) (Nguyen et al. 2015, Minh et al. 2020) 
using the general time-reversable substitution model with gamma-distributed rate variation (GTR + R(9)). Visualization was developed in R. (R: A 
Language and Environment for Statistical Computing 2019) Abbreviations: FSW: female sex workers, MSM: men who have sex with men, PWID: people 
who injects drugs, GP: general population.
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Table 2. Sequences from other populations in clusters with HIV 
sequences from PWID.

Clusters containing sequences from PWID

Patristic distance < 4.5 (N = 120)  Patristic distance < 1.5 (N = 15)

In cluster with Count, n (%)a In cluster with Count, n (%)a

GP 95 (16.9) GP 3 (1.8)
FSW 10 (12.2) FSW 0 (0.0)
MSM 16 (13.9) MSM 2 (4.5)
PWID (i.e. 
clusters with 
≥2 PWID 
sequences)

25 (20.8) PWID (ie. 
clusters with 
≥2 PWID 
sequences)

12 (80.0)

aClusters containing >2 population groups are represented more than once.
Clusters containing at least one sequence from the coast or Nairobi are 
included. Percents are based on the total number of clusters that contain at 
least one sequence from the given population (see Supplementary Tables 
S4–S6 for comprehensive cluster counts). Clusters are based on 0.045 or 0.015 
maximum genetic distance threshold on maximum likelihood trees and 
combined across subtypes A1, C, and D.

between PWID, while effective, are alone not sufficient to address 
high HIV-1 prevalence in this population. Low levels of excess 
clustering among sequences from PWID, the majority of whom 
were diagnosed after the advent of NSPs, may reflect the effec-
tiveness of these programs at preventing parenteral HIV-1 trans-
mission [National AIDS and STI Control Programme (NASCOP) 
2014,Rhodes et al. 2015]. Recent modeling estimated that NSPs 
reduced HIV transmission among PWID in Kenya by 40–46% 
in 2020 (Stone et al. 2022). Modeling studies are supported by 
empirical evidence, with between-study comparison suggesting 
decreasing rates of sharing injection equipment among PWID: 
studies conducted in the coastal and/or Nairobi regions between 
2010 and 2012 estimating that 28–55% of PWID shared needles in 
the prior month [4–48% at last injection; National AIDS and STI 
Control Programme (NASCOP) 2014), Kurth et al. 2015, Brodish 
et al. 2011, Oguya et al. 2021] while studies conducted after 2015 
estimated a much lower prevalence for needles sharing of 2–5% 
per month (2–12% at last injection) within these regions (Akiyama 
et al. 2019, Joint United Nations Programme on HIV/AIDS 2022, 
Sambai et al. 2022). Nevertheless, prior research, pre- and post-
introduction of NSPs, shows that HIV prevalence increases with 
number of years injecting (Kurth et al. 2015, Sambai et al. 2022). 
Discerning the cause of this increasing risk is critical to provide 
appropriate resources to this population.

To this end, PWID may also have greater risk factors for HIV 
acquisition through non-parenteral routes (Asher et al. 2013). A 
2012 retrospective analysis showed, for example, that the preva-
lence of HIV among people who later started injecting drugs (7% in 
Nairobi and 9% in coastal Kenya) was higher than among the gen-
eral population (Kurth et al. 2015). Epidemiological and network 
analyses support that PWID, particularly young PWID, are more 
likely to engage in sexual behaviors associated with HIV acquisi-
tion and transmission and estimate that for female PWID, sexual 
acquisition may now be more common than acquisition through 
contaminated needles (Oguya et al. 2021, Stone et al. 2022). We 
were not able to draw conclusions about differences in acquisi-
tion or transmission patterns for male and female PWID because 
we did not observe substantial differences in the frequency with 
which HIV-1 sequences from male or female PWID clustered 
together or with sequences from other populations. That PWID 
may face elevated risk of HIV acquisition from non-parenteral 
routes also raises the possibility that any elevated acquisition risk 

may be shared by people who use drugs (without injecting), a pop-
ulation that is often overlooked (Stone et al. 2022). It has been 
hypothesized that PWID may have greater HIV exposure through 
sex because their sex partners are more likely to be other PWID liv-
ing with HIV (Kurth et al. 2015, Stone et al. 2022). However, these 
results suggest that transmission involving the GP and FSW are 
important avenues of HIV acquisition for PWID, suggesting that 
strategies that only address transmission between PWID are not 
sufficient. Key populations are groups that face an elevated risk 
of living with HIV and/or barriers to accessing services or care 
(World Health Organization 2022). While tailored approaches are 
often needed to address the unique needs of different key popu-
lations, which should not automatically lead us to assume that 
the epidemics among these populations are isolated (Smith et al. 
2009).

Transmission among PWID and other 
populations
We found mixing between HIV-1 sequences from the GP and PWID 
population and (Nduva et al. 2022a) a general trend of greater 
transmission to (versus from) the PWID population, although 
this trend was largely not significant in a region-stratified anal-
ysis. Similarly to a prior study, we calculated that transmission 
to PWID populations from the larger (not-PWID) population was 
more common than from PWID populations to the larger popu-
lation (although we caution that differences in sampling times 
may bias results). This prior research found that most sequence 
clusters (88.5%) were population-specific (using similar categories 
to ours) and that the majority of between-population transmis-
sions were from the general population to key populations (82.9%) 
(Nduva et al. 2022a). In contrast, and despite a sampling density 
higher than for most other population groups, we found relatively 
few PWID-specific clusters.

Our results suggest the need to better understand and address 
transmission involving FSW and PWID and, particularly, the 
GP and PWID (interestingly, we found one prior epidemiologi-
cal model had entirely excluded this route of transmission from 
its considered parameters) (Strathdee et al. 2010). More research 
is needed to uncover primary modes and mechanisms of trans-
mission between populations and to understand transmission 
patterns for people who fit into multiple key populations. For 
example, many women who inject drugs report exchanging sex 
for money or goods, but they are not classified as sex workers in 
this analysis and may not be reached by most services for female 
sex workers (Monroe-Wise 2023).

Acquisition risk and transmission risk are different, (Patel et al. 
2014) and our findings may suggest that PWID were historically 
more likely to acquire than transmit HIV. Nevertheless, as many 
risk factors of HIV acquisition are also risk factors for transmis-
sion, such findings are somewhat surprising in light of the high 
prevalence of HIV among PWID and may reflect possible bias from 
the sequence sampling timeframe for different population groups. 
Other phylogenetic studies have contradicted the previously com-
mon belief that populations with high burdens of HIV are likely 
to be sources of cases in the larger population (Gogia et al. 2019). 
For example, evidence suggests that, despite an HIV prevalence 
of 40%, fishing villages are a sink, rather than sources, of HIV 
cases in Uganda (Bbosa et al. 2019, Ragonnet-Cronin et al. 2019). 
It’s important to note that estimates we present are relative to 
population size; as PWID are a small minority (0.2–0.3% of the 
population of the coast and Nairobi, respectively), the estimated 
absolute amount of transmission from PWID would be even lower 
than what we report here.
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Table 3. Transitions between population groups using maximum likelihood and Bayesian tree-building and ancestral state
reconstruction methods.

 Sequence counts N (% of total sequences)  Transitions/Jumps: full tree N (% of total branches)*  Significance/Support

Subtype Total Group 0 Group 1 0 -> 1 1 -> 0

ML  Directional P-value (2-tailed)*

All between group transitions
All 296 (100)  293 of 584 total branches (50.2)
 A1 232 (100)  236 of 462 total branches (51.1)
 C 28 (100)  28 of 53 total branches (52.8)
 D 36 (100)  29 of 69 total branches (42.0)

FSW PWID FSW -> PWID PWID -> FSW  FSW -> PWID
All 148 (50) 74 (25) 74 (25) 26 (10–43) (5.4) 19 (12–21) (3.3)
 A1 116 (50) 58 (25) 58 (25) 23 (14–37) (5.0) 15 (10–22) (3.2)  <.01
 C 14 (50) 7 (25) 7 (25) 2 (0–4) (2.8) 2 (1–4) (4.1)  .01
 D 18 (50) 9 (25) 9 (25) 1 (0–2) (0.9) 2 (1–3) (2.6)  <.01

MSM PWID MSM -> PWID PWID -> MSM  PWID -> MSM
All 148 (50) 74 (25) 74 (25) 16 (5–26) (2.7) 18 (9–26) (3.1)
 A1 116 (50) 58 (25) 58 (25) 11 (5–14) (2.3) 10 (6–14) (2.1)  .53
 C 14 (50) 7 (25) 7 (25) 1 (1–4) (2.7) 3 (2–4) (4.8)  <.01
 D 18 (50) 9 (25) 9 (25) 1 (0–5) (2.0) 4 (1–6) (5.2)  <.01

GP PWID GP -> PWID PWID -> GP  GP -> PWID
All (584) 148 (50) 74 (25) 74 (25) 35 (22–54) (6.0) 24 (16–33) (4.1)
 A1 (462) 116 (50) 58 (25) 58 (25) 31 (21–44) (6.8) 17 (12–22) (3.1)  <.01
 C (53) 14 (50) 7 (25) 7 (25) 4 (0–7) (7.3) 4 (2–6) (7.1)  .08
 D (69) 18 (50) 9 (25) 9 (25) 3 (0–6) (4.7) 4 (2–7) (6.1)  .01
Total Not-PWID PWID Not-PWID -> PWID PWID -> Not-PWID
All 295 (100) 222 (75) 74 (25) 77 (37–114) (13.2) 61 (37–80) (10.4)
 A1 232 (100) 174 (75) 58 (25) 65 (40–95) (14.1) 42 (28–48) (8.4)
 C 27 (100) 21 (75) 7 (25) 7 (1–15) (12.8) 9 (5–14) (16.0)
 D 36 (100) 27 (75) 9 (25) 5 (0–13) (7.6) 10 (4–16) (13.9)
Bayesian  Bayes factor
All between-group transitions
 A1  232 (100)  243 of 462 total branches (52.5)

FSW PWID FSW -> PWID PWID -> FSW FSW -> PWID PWID -> FSW
 A1 116 (50) 58 (25) 58 (25) 37 (27-47) (8.1) 9 (5-17) (1.9) 15.3 1.5

MSM PWID MSM -> PWID PWID -> MSM MSM -> PWID PWID -> MSM
 A1 116 (50) 58 (25) 58 (25) 3 (2–6) (0.6) 8 (5–12) (1.6) 2.9 1.3

GP PWID GP -> PWID PWID -> GP GP-> PWID PWID -> GP
 A1 116 (50) 58 (25) 58 (25) 24 (12–35) (5.2) 7 (3–17) (1.5) 10.6 1.2
Total Not-PWID PWID Not-PWID -> PWID PWID -> Not-PWID Not-PWID -> 

PWID
PWID ->
Not-PWID

 A1 232 (100) 174 (75) 58 (25) 65 (58–78) (14.1 23 (17–40) (5.0)

*P-values test for disproportionate transitions in either direction based on the statistic: transitions from state 0 > state 1)/(transitions from state 1 > state 0. The 
null distribution is generated from randomly resampling traits on the tree tips 200 times.
ML trees are down-sampled to have equal numbers of sequences from each group, and counts are averaged across subtrees (10 for subtype A1 and 30 for 
subtypes C and D) and 20 resolutions of ancestor states. For Bayesian analyses, counts are averaged across the 1000 highest posterior probability trees for 7 
subtrees. P-values test for disproportionate transitions in either direction, resampling traits on the tree tips 200 times to derive the null distribution. Support for 
Markov jumps is assessed via BF. Supplementary Table S11 presents a summary of transition counts limited to terminal branches.

Regional transmission trends among PWID
We estimated that transmission between the coast and Nairobi 
regions was primarily driven by transmission among the larger 
(not PWID) population and that regional transmission trends 
among PWID likely reflect trends in the larger population, rather 
than the impacts of behaviors specific to PWID. We were particu-
larly interested in trends in coastal Kenya, where HIV prevalence 
in the general population is lower than in Nairobi, but where rates 
of injection drug use (and the prevalence of HIV among PWID) are 
higher (Beckerleg et al. 2005). However, we estimated low rates 
of transmission from PWID to the GP even in the coastal region. 
Between-region transmission is likely to continue to increase as 
the world becomes increasingly more mobile, and changes in HIV 
prevalence in the coast or in Nairobi will impact the GP and PWID 
populations in the other region.

Patterns of regional transmission in our data contrast find-
ings in a prior study that showed most HIV transmission is from 
West to East (and more from Nairobi to the coast; Nduva et al. 
2022a). These differences in findings may be due to different model 

assumptions or because we restricted sequences to two regions 
compared to eight regions in the previous study—which only had 

sequences from 58 PWID enrolled in Mombasa in 2010. We also 
estimated transmissions between the GP and PWID population 

to occur at similar rates for between versus within-regions. This 

result is likely due to low sampling density of the transmission 
network between the GP and PWID population, rather than truly 
equal frequencies of cross-region and between-region transmis-

sion for these populations. Among PWID, our two methods yielded 
conflicting estimates for the prevailing regional direction of trans-
mission. Although HIV prevalence is estimated to be higher for 
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Figure 3. HIV-1 A1 transitions/Markov jumps between PWID and not-PWID populations from the coast and Nairobi. For the not-PWID population, GP, 
FSW, and MSM sequences are sampled proportionate to the estimated number of HIV cases in each population in the given region, with the majority 
of sequences coming from the GP population. Results are reported under ML (a) and Bayesian (b) models. P-values test for disproportionate transitions 
in either direction, resampling traits on the tree tips 200 times to derive the null distribution. For Bayesian models, BF >3 indicates strong support for 
Markov jumps in the given direction. Grayscale reflects the estimated amount of transmission in each direction. Data are presented in table format in 
Supplementary Table S10.

PWID on the coast, Kurth et al. estimated a higher annual HIV 
incidence in Nairobi (2.5%) compared to the coast (1.6%, in the 
year 2012), which is consistent with the more frequent of within-
group transmissions we observed for PWID in Nairobi versus PWID 
from the coast under ML methods [National AIDS and STI Control 
Programme (NASCOP) 2020, Kurth et al. 2015].

Strengths and limitations
Despite this being the largest phylogenetic study of the PWID 
HIV-1 sub-epidemic in an African setting, the study has some 
limitations. Although the use of APS allowed us to reach PWID 
beyond those already accessing harm reduction services (a com-
mon limitation in studies involving PWID), high viral suppression 
rates limited sequencing success (28%) and, therefore, sampling 
density; this is also a source of selection bias. While those with 
viral suppression are unlikely to transmit HIV, their sequences 
would also have provided valuable information on older HIV-1 
transmission networks. Another limitation is that, while the pol
region is commonly used in HIV alignments and is sufficient for 
phylogenetic inference (Drescher et al. 2014, Hassan et al. 2017, 

Ragonnet-Cronin et al. 2018), sequencing of a larger region and 
the availability of replicates for all sequences would have pro-
vided more robustness to conclusions (Yebra et al. 2016). High 
variation in existing estimates for key population sizes and HIV 
prevalence also limits our ability to interpret our results in terms 
of sampling density or to estimate absolute contributions to trans-
mission. Another limitation is that outside of the SHARP study, 
key population descriptors are primarily based on study enroll-
ment criteria and include limited additional behavioral data. This 
creates potential for misclassification, as does the possibility of 
non-reporting because sex between men, sex work, and drug use 
are all criminalized in Kenya.

The sampling scheme used in this study has both advan-
tages and disadvantages. The use of assisted partner services in 
collaboration with community-embedded peer-educators allowed 
us to recruit participants who might otherwise be difficult to 
reach. This approach may have helped address a common prob-
lem in molecular epidemiology of over-sampling individuals with 
high healthcare engagement. However, sequences from our study 
were almost entirely restricted to PWID and were collected more 
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recently than the sequences from FSW, MSM, and the GP incor-
porated primarily from prior studies. While this could create 
sampling bias, our results trended in the opposite direction that 
we would expect from selective sampling, with substantial mixing 
of PWID sequences with sequences collected from other popu-
lations. It is, nevertheless, possible that differences in sampling 
time-biased estimates of the direction of transmission and could 
specifically explain why we estimated more transmission from 
FSW and the GP (the populations with the oldest sequences) to 
the other populations.

By assessing transmission dynamics with three approaches—
cluster analysis and both maximum likelihood and Bayesian 
ancestral state reconstruction—we were able to assess the robust-
ness of our findings to different models, but not to resolve the 
reason for model-based discrepancies. ML and Bayesian models 
each have their own strengths for ancestral state reconstruction—
Bayesian methods may be better placed to make source inference 
when sampling is incomplete (de Silva et al. 2012, Volz 2012) as 
is usually the case, but can be sensitive to the choice of disper-
sal rate prior and does not resolve all instances of sampling bias 
(Gao et al. 2023). We were also not able to resolve the difference 
in some regional transmission trends we observed compared to 
prior research and were unable to include sequences from other 
regions in our regional trends analysis, as no PWID sequences 
were available from these regions.

Conclusion
In East Africa, the availability of injection drugs has increased 
drastically in the last 30 years, but despite the disproportionately 
high prevalence of HIV among PWID, studies of HIV transmis-
sion rarely include this population. We recruited PWID through 
injecting partner networks; however, we found only low levels of 
linked transmission in this population. This suggests relatively low 
rates of recent parenteral transmission and supports the value 
of needle-syringe programs Because the epidemic among PWID 
and the GP are inter-related, interventions within the larger pop-
ulation, where we also observed the most transmission between 
regions, may have carry-over benefits for reducing HIV prevalence 
among PWID. HIV harm reduction services for this population 
must address risk factors for acquisition and transmission beyond 
injection drug use. There is also a need to better understand the 
environment within which transmission from the GP to the PWID 
population occurs. Lastly, feedback from people belonging to mul-
tiple key populations (particularly FSW who also inject drugs) is 
needed to understand if they experience unique acquisition or 
transmission risk factors.
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