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ABSTRACT: We demonstrate how to quantify the amount of
dispersion interaction recovered by supermolecular calculations
with the multiconfigurational self-consistent field (MCSCF) wave
functions. For this purpose, we present a rigorous derivation which
connects the portion of dispersion interaction captured by the
assumed wave function modelthe residual dispersion inter-
actionwith the size of the active space. Based on the obtained
expression for the residual dispersion contribution, we propose a
dispersion correction for the MCSCF that avoids correlation
double counting. Numerical demonstration for model four-
electron dimers in both ground and excited states described with
the complete active space self-consistent field (CASSCF) reference
serves as a proof-of-concept for the method. Accurate results,
largely independent of the size of the active space, are obtained. For many-electron systems, routine CASSCF interaction energy
calculations recover a tiny fraction of the full second-order dispersion energy. We found that the residual dispersion is non-negligible
only for purely dispersion-bound complexes.

1. INTRODUCTION

Calculations of the intermolecular interaction energy typically
involve the supermolecular approach. The perturbation theory
is also a common choice and is often used to expose the nature
of the interaction. In hybrid approaches, the supermolecular
results are supplemented with energy contributions obtained in
a perturbative manner, the most popular example being density
functional theory (DFT) corrected for the dispersion energy.1,2

A given wave function theory (WFT) approximation is
useful in describing interactions either if it accounts for high-
order components in the intermolecular interaction operator
or when it is reasonably accurate in the lowest orders and it is
known which higher-order components are missing. A
representative example from the first group are the coupled
cluster (CC) methods3,4 which predict interaction energies
with high accuracy when effects of single, double, and triple
excitations are accounted for. The Hartree−Fock (HF)
method belongs to the second group. The HF energy contains
electrostatic, exchange, and induction interaction energy
components and has been rigorously shown to miss the
second-order dispersion component.5 In spite of this
deficiency, the supermolecular HF result can be corrected for
the dispersion energy which leads to a low-cost hybrid
approach.6−8 The accuracy of the hybrid approach can be
significantly improved by including intramonomer correlation
effects in a perturbative manner which is known as the
HFDc(1) method.8,9

HF calculations assume a single-determinantal description of
the interacting species. Although high-order single-reference
CC methods may be applied to multireference systems,10 the
cost of going to full triple or quadruple excitations is too high
in practice. The multireference CC extensions11,12 are
expensive, and their applications to intermolecular interactions
remain scarce (e.g., see refs 11, 13, 14). Going beyond single-
determinantal methods in the intermolecular interaction
theory is a challenge. The multiconfigurational (MC) wave
function methods are a good starting point and often the
required one for open-shell systems, systems dominated by
strong correlation, excited states, and transition-metal com-
plexes. Although including multiple configurations guarantees
proper representation of static correlation and partial recovery
of the intramonomer correlation effects,15,16 it is not a viable
way to restore the remaining part of the dynamic correlation
which in the case of intermolecular interactions manifests as
dispersion. Notwithstanding significant progress in this field,
none of the existing MC methods have yet achieved the levels
of both accuracy and efficiency comparable to what is now
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within reach of black-box interaction-energy calculations for
single-reference systems. Therefore, the search for new and
improved MC approaches remains active.
The most popular strategies to capture dispersion forces in

the MC framework are the configuration interaction (CI)
expansion and the perturbation theory. Each of these
approaches involves certain limitations both in terms of
computational cost and in terms of accuracy. A significant
problem of CI is the lack of size consistency. Although it can
be ameliorated with approximate corrections,17,18 the residual
size inconsistency typically still has to be addressed. This is
done by obtaining the asymptotic interaction energy limit in a
dimer calculation with the monomers separated at a large
distance and shifting the results with respect to this value.19

Note that in this scheme, the counterpoise correction (CP)20

cannot be applied and the basis set superposition error (BSSE)
is not removed. Additionally, because of the lack of triple
excitations, multireference CI may underestimate the dis-
persion energy in van der Waals complexes by as much as
30%.21,22

A common choice to account for dynamic correlation via the
multireference perturbation theory are the complete active
space (CAS) perturbation theory (CASPT2)23,24 and n-
electron valence state perturbation theory (NEVPT2)25−27

methods. Truncated at the second order, both require access to
four-electron density matrices, which quickly becomes a
computational bottleneck with respect to the size of the active
space. Moreover, CASPT2 and multireference formulations of
the Møller−Plesset theory28,29 are plagued with intruder
states30 which have to be removed to guarantee a smooth
potential energy surface. Various techniques that eliminate
intruders exist, yet one should be cautious when choosing the
optimal value of the shift parameter.31 The intruder-state
problem is by design avoided in the NEVPT2 method. The
accuracy of single-reference MP2 calculations is often
insufficient for quantitative predictions. A major weakness is
that MP2 restores the dispersion energy at the uncoupled level
of theory32−34 which leads, for example, to the well-known
overestimation of interaction energy in π−π complexes35,36 or
underestimation in the case of alkali-metal dimers.37 This
implies that the accuracy of the multireference second-order
perturbation theory is seriously limited.
Several variants of the multiconfiguration DFT (MC

DFT)38,39 capable of treating dispersion forces have also
been developed. In MC DFT, the connection between the
DFT and wave function descriptions of the system is realized
by partitioning of the Coulomb interaction operator into the
short- and long-range components. The short-range (sr)
electron−electron correlation effects are recovered by a density
functional approximation, whereas the multiconfiguration wave
function model acts in the long range. The usual strategy is to
restrict the wave function to a few determinants, which is
sufficient to recover the static correlation at a relatively low
cost but not enough to capture the long-range dynamic
correlation. This translates into the absence of the dispersion
contribution in the interaction energy. As a remedy, Fromager
and coauthors40 proposed a long-range adaptation of the
NEVPT2 approach. Recently, Hapka et al.41 introduced a less
expensive alternative based on the multireference formulation
of the adiabatic connection formalism42 which relies only on
one- and two-electron reduced density matrices of the system.
The cost-efficient route in which the complete active space
self-consistent field (CASSCF) srPBE functional43,44 is simply

corrected with the semi-classical D3 dispersion correction of
Grimme45 has been advocated by Stein and Reiher.46

The direct addition of the dispersion energy to the
supermolecular CASSCF results, without correcting for the
double counting, was attempted several times in the past. In
the study of the Hg···Hg dimer, Kunz et al.15 used this
approach to partially account for the dynamic correlation
within the monomersan effect that cannot be recovered in
the simple “HF plus dispersion” model. Rajchel et al.47 verified
the performance of the “CAS plus dispersion” method against
the RCCSD(T) results for the potential energy curves of the
Sc···Cr complex in the 8Σ+, 8Π, and 8Δ states. The authors
found that “CAS plus dispersion” consequently underestimated
the magnitude of the interaction and predicted the location of
the minima at ca. 0.2−0.3 bohr longer distances compared to
the CC reference. The CAS-based approach was also applied
to describe the unusually strong binding in the He···BeO(1Σ+)
dimer and showed excellent agreement with the MRCISD + Q
potential.48 In all of the mentioned examples, it was argued
that the compact representation of the active space selected in
CASSCF calculations is too small to recover the dispersion
energy. Nevertheless, to the best of our knowledge, no
systematic study of this claim has been presented to date and
expressions for the residual dispersion energy recovered in the
supermolecular CASSCF have not been derived.
In this work, we present how to rigorously extract the

dispersion term in the interaction energy calculated with MC
wave functions so that the double counting of the
intermonomer correlation is avoided. As will be discussed,
any wave function dissociating to MC wave functions for both
monomers leads to recovering a small portion of the dispersion
energy, denoted as EDISP

MC . Being able to explicitly calculate the
EDISP
MC contribution, we propose the “CAS plus dispersion”

approach which strictly avoids the double counting of the
dispersion contribution and recovers the total interaction
energy as

= + −E E E E( )int int
MC

DISP
(2)

DISP
MC

(1)

where Eint
MC is the supermolecular interaction energy obtained

within the assumed WFT and EDISP
(2) is the full second-order

dispersion energy. We present the results for wave functions of
the CAS type and use the symmetry-adapted perturbation
theory (SAPT)49,50 to obtain the EDISP

(2) energy contributions.
It is worth noticing that Stein and Reiher46 raise the concern

of dispersion double counting in the context of large active
spaces available with the density-matrix renormalization group
wave functions. They propose a procedure that could
approximately remove the residual dispersion inherently
captured by an MC function. This approach requires orbital
localization, followed by the removal of configurations
(determinants) corresponding to excitations of a dispersion-
like character.51−53 In contrast, our protocol for Edisp

MC

evaluation avoids orbital localization and stems directly from
the exact definition of the dispersion energy.
In the next section, we derive an exact expression for the

dispersion energy recovered by supermolecular MC WFT
calculation and discuss a method for its approximation. In
Section 3, we present the details of the implementation and
calculations. Section 4 provides numerical demonstration of
the proposed “CAS plus dispersion” method on the example of
model He···He and He···H2 dimers as well as representative
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noncovalently bound, many-electron complexes. In Section 5,
we summarize our findings.

2. THEORY
2.1. Setting the Stage. For two weakly interacting

electronic subsystems A and B forming a dimer AB, the
interaction energy is defined as a difference of energies of the
dimer EAB and isolated monomers EA and EB

= − −E E E Eint AB A B (2)

By definition, the interaction energy vanishes when
subsystems are infinitely separated

=
→∞

Elim 0
R

int
AB (3)

where RAB measures the distance between A and B. Let ĤAB,
ĤA, and ĤB denote the dimer Hamiltonian and the
Hamiltonians of the isolated monomers, respectively. In the
assumed WFT model, computation of the interaction energy in
the supermolecular way requires finding wave functions for a
dimer ΨAB and isolated monomers ΨA and ΨB, and making use
of the pertinent Hamiltonians as follows

= ⟨Ψ | ̂ |Ψ ⟩ − ⟨Ψ | ̂ |Ψ ⟩ − ⟨Ψ | ̂ |Ψ ⟩E H H Hint AB AB AB A A A B B B (4)

A primary condition which must be satisfied by a physically
relevant WFT is size consistency, that is, vanishing of the
supermolecular interaction energy in the infinite-separation
limit, which can be written as

⟨Ψ | ̂ |Ψ ⟩ = ⟨Ψ | ̂ |Ψ ⟩ + ⟨Ψ | ̂ |Ψ ⟩
→∞

H H Hlim
R

AB AB AB A A A B B B
AB (5)

which in turn imposes the separability condition for the
(antisymmetric) wave function ΨAB reading

Ψ = ̂Ψ Ψ
→∞

Alim
R

AB A B
AB (6)

where the antisymmetrization operator Â is applied on the
product ΨAΨB of monomer functions.
In the Rayleigh−Schrödinger (RS) perturbation theory

applied to molecular interactions, a dimer NAB-electron
Hamiltonian is written as a sum of NA- and NB-electron
Hamiltonians of the monomers (NAB = NA + NB) and a
remainder, which is the interaction operator V̂int

̂ = ̂ + ̂ + + ̂H H N H N N V(1, ..., ) ( 1, ..., )AB A A B A AB int (7)

A sum of ĤA + ĤB is taken as the zero-order Hamiltonian,
V̂int is taken as a perturbation, and the ΨAΨB product of
monomer functions is the zero-order dimer eigenfunction. It is
important to notice that the antisymmetrized wave function
given in eq 6 is an eigenfunction of ĤAB in the limit RAB → ∞,
but it is not an eigenfunction of the zero-order Hamiltonian ĤA
+ ĤB. As is well known, the interaction energy, eq 4, follows
from perturbation theory as a sum of the first-, second-, and
higher-order terms in the perturbation54

= + + +E E E E ...int elst
(1)

ind
(2)

disp
(2)

(8)

where Eelst
(1) denotes the electrostatic energy, while Eind

(2) and Edisp
(2)

denote the second-order induction and dispersion energy
contributions, respectively. Each term is well defined and has a
clear physical interpretation. In particular, the second-order
dispersion energy is given by the expression

∑= − ′
|⟨Ψ Ψ | ̂ |Ψ Ψ ⟩|

− + −
E

V

E E E Ei j

i j

i j
disp
(2)

,

A B int A, B,
2

A, A B, B (9)

where i (j) refers to states ΨA,i (ΨB,j) of the energy EA,i (EB,j)
corresponding to ĤA (ĤB) and a prime indicates that
summation indices run through all states with the exception
of the states of interest ΨA and ΨB for which the dispersion is
computed. The leading term of the multipole expansion of the
dispersion energy of molecular systems vanishes as RAB

−6 and
dominates in the asymptotic regime of the total interaction
energy in van der Waals complexes.
The problem that we address in the next section is whether

one can rigorously show to what extent a given wave function
model accounts for the dispersion interaction in the super-
molecular approach. The positive answer will be provided by
singling out from the interaction energy expression terms of a
dispersion character, which decay asymptotically in the same
(RAB

−6) fashion as the full dispersion energy, cf. eq 9, and which
are equivalent to the latter if WFT corresponds to the full CI
(FCI) description of a dimer.

2.2. Dispersion Interaction in the MC Wave Function
Description of the Interaction Energy. In this section, we
present the expression for the dispersion energy, Edisp

MC, which is
included in the supermolecular interaction energy, obtained
with the MC wave function description of a dimer. We begin
by considering a general N-electron wave function which can
be expressed as the antisymmetrized product of wave functions

∏Ψ = ̂ ΨA
P

P
(10)

where Â is the antisymmetrization operator (including a
normalization constant). ΨP is an NP-electron antisymmetric
wave function, and ∑PNP = N. In addition, it is assumed that
the whole set of spin orbitals is partitioned into disjoint subsets
and a given function ΨP is expanded in a set of Slater
determinants built from spin orbitals belonging to a subset P.
The assumed ansatz for Ψ is therefore a group product
function.55 We refer to ΨP as a group function, where P
denotes a group, indexes a group function, and refers to a
pertinent subset of spin orbitals. ΨP can be a single
determinant or a combination of many determinants, for
example, an MC wave function. MC self-consistent field
(MCSCF) wave functions, which are in the focus of this work,
conform to the ansatz given in eq 10. They can be written as an
antisymmetrized product of the inactive part Ψinact and the
active part Ψactive

Ψ = ̂Ψ ΨAMCSCF
inact active (11)

where Ψinact is a single Slater determinant built of one-electron
groups, that is, spin orbitals φp

∏ φΨ = ̂
=

A
p

N

pinact
1

inact

(12)

while Ψactive is a combination of Slater determinants.
If Ψ of the form as in eq 10 is found variationally by

minimizing the energy ⟨Ψ|Ĥ|Ψ⟩, where Ĥ is the electronic
Hamiltonian, then, for each group wave function ΨP, one can
form a group electronic Hamiltonian ĤP reading

̂ = ̂ + ̂H H HP P P,intra ,SCF (13)
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The intragroup Hamiltonian ĤP,intra includes the kinetic
energy operator, the interaction of NP electrons, assigned to a
group P, with all nuclei in the system (denoted as Mnuc), and
the appropriate electron−electron interaction

∑ ∑ ∑ ∑̂ = − ▽ −
| − |

+
= = = <

H
Z

rr R
1
2

1
P

i

N

i

N

a

M
a

i a i j

N

ij
r,intra

1

2

1 1

P

i

P Pnuc

(14)

The other part of the group Hamiltonian given in eq 13
describes the intergroup mean field interaction of electrons
assigned to a group P with electrons in the other groups. It
arises as a result of self-consistent field (SCF) optimization and
depends on the self-consistently obtained group spin orbitals.
The mean field intergroup interaction operator, ĤP,SCF, is a
sum of one-electron Coulomb and exchange operators
pertaining to all groups except for P, namely

∫

∫

∑ ∑

∑ ∑

ρ

γ

̂ =

− ̂

= ≠

= ≠

H x
x

r

x
x x

r
P

d
( )

d
( , )

P
i

N

Q P

Q

i

i

N

Q P

Q i

i
i

,SCF
1

1
1

1

1
1

1

1
1

P

P

(15)

where r1i = |r1 − ri|, x = (r,σ) stands for a combined spatial-spin
coordinate, and the P̂ij operator interchanges xi with xj; ρQ(x)
= ⟨ΨQ|ρ̂(x)|ΨQ⟩ and γQ(x,x′) = ⟨ΨQ|γ̂(x,x′)|ΨQ⟩ are,
respectively, the density and one-electron reduced density
matrix functions corresponding to ΨQ. A wave function ΨP is
one of the eigenfunctions of ĤP with the corresponding energy
εP, that is, if we write the eigenproblem for the group
Hamiltonian ĤP

ε̂ Ψ = ΨHP P i P i P i, , , (16)

then, ∃iΨP = ΨP,i. Within the assumed wave function
approximate model, ΨP,i is an MC wave function given as a
combination of MP Slater determinants ΦP,K

∑Ψ = Φ
∈

dP i
K P

M

P iK P K, , ,

P

(17)

and the Hamiltonian ĤP is the diagonal in the MP-dimensional
space spanned by ΦP,K functions.
It is straightforward to notice that the total electronic energy

is given as a sum of group energies, εP = ⟨ΨP|ĤP|ΨP⟩, with the
intergroup Coulomb-exchange interaction energy subtracted to
avoid its double counting

∑ ∑ ∑ε= ⟨Ψ| ̂ |Ψ⟩ = −
≠

‐E H E
1
2P

P
P Q P

PQ
Coul Exch

(18)

∬

∬

ρ ρ

γ γ

=

−

‐E
x x

r
x x

x x x x

r
x x

( ) ( )
d d

( , ) ( , )
d d

PQ P Q

P Q

Coul Exch
1 2

12
1 2

1 2 2 1

12
1 2

(19)

Now, consider a perturbed electronic Hamiltonian, linear in
the perturbation parameter λ

λ λ̂ = ̂ + ̂H H H( ) (0) (1)
(20)

A corresponding perturbed group Hamiltonian, cf. eqs 13
and 15, will include a direct perturbing term (linear in λ) and

its SCF part will acquire a λ dependence because of the λ
dependence of both the density and density matrices, namely

λ λ λ̂ = ̂ + ̂ + ̂H H H H( ) ( )P P P P,intra
(1)

,SCF (21)

where

∫

∫

∑ ∑

∑ ∑

λ
ρ

γ

̂ =

− ̂

λ

λ

= ≠

= ≠

H x
x

r

x
x x

r
P

( ) d
( )

d
( , )

P
i

N

Q P

Q

i

i

N

Q P

Q i

i
i

,SCF
1

1
1

1

1
1

1

1
1

P

P

(22)

The total electronic energy, eq 18, expanded in terms of λ, is
a sum of terms in different orders of the perturbation. Because
our interest lies in the dispersion energy, which appears in the
second order of the interaction operator, we only focus on the
second-order term reading

∑ ∑ ∑ε= −
≠

‐E E
1
2

( )
P

P
P Q P

PQ(2) (2)
Coul Exch

(2)

(23)

where using the second Hellmann−Feynman theorem,56 the
second-order group energy is given as

ε
λ

λ

λ
λ

= Ψ ̂ +
̂

Ψ

+ Ψ
̂

Ψ

H
H

H

d ( )

d

d ( )

d

P P P
P

P

P
P

P

(2) (0) (1) ,SCF (1)

(0)
2

,SCF
2

(0)

(24)

Notice that we have assumed hermiticity of the perturbing
operators and that wave functions are real-valued.
Let us now turn to the molecular interaction theory, where

the interaction operator V̂int, introduced in eq 7, is treated as a
perturbation. The zero-order part is given as a sum of
monomer Hamiltonians

̂ = ̂ + ̂H H H(0)
A B (25)

and the explicit form of the perturbation, Ĥ(1) = V̂int, reads

∑ ∑ ∑ ∑

∑ ∑

̂ = −
| − |

−
| − |

+

= = = =

= =

r R r R
V

Z Z

r
1

i

N

b

M
b

i b j

N

a

M
a

j a

i

N

j

N

ij

int
1 1 1 1

1 1

A nuc,B B nuc,A

A B

(26)

where the subscripts a and b label the nuclei and i and j denote
the electrons of monomers A and B, respectively. A monomer
X is composed of NX electrons and Mnuc,X nuclei. Throughout
the text, X will stand for either A or B.
When monomers are infinitely separated, the size-consis-

tency condition given in eq 5 imposes that the total dimer
wave function acquires the form of a product of monomer
functions, as seen in eq 6. This can only be satisfied if each NP-
electron wave function ΨP dissociates into a product of
monomer wave functions ΨPA and ΨPB, which are, respectively,

NPA- and NPB-electron and NP = NPA + NPB. Neglecting the
electron exchange, the zero-order group function reads

Ψ = Ψ Ψ + +x x x x( , ..., ) ( , ..., )P P N P N N N
(0)

1 1P P P PA A B A A B (27)
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In the RAB → ∞ limit, the group density and the density
matrix corresponding to ΨP separate into monomer group
functions, namely

ρ ρ ρ= +x x x( ) ( ) ( )P P P
(0)

A B (28)

γ γ γ′ = ′ + ′x x x x x x( , ) ( , ) ( , )P P P
(0)

A B (29)

which is a consequence of vanishing overlap between ΨPA and

ΨPB in the dissociation limit. Partitioning of the total electronic
Hamiltonian assumed in eqs 25 and 26 results in the following
decomposition of the group Hamiltonian ĤP, cf. eq 21

λ λ λ̂ = ̂ + ̂ + ̂ + ̂H H H V H( ) ( )P P P P P,intra ,intra ,SCFA B AB (30)

where ĤPA,intra collects intragroup operators for a group P in
monomer A

∑ ∑ ∑ ∑̂ = − ▽ −
| − |

+
= = = < ′ ′

H
Z

rr R
1
2

1
P

i

N

i

N

a

M
a

i a i i

N

ii
r,intra

1

2

1 1

P

i

P P

A

A A nuc,A A

(31)

analogously for ĤPB,intra, and the interaction operator for a
group P

∑ ∑ ∑ ∑

∑ ∑

̂ = −
| − |

−
| − |

+

= = = =

= =

V
Z Z

r

r R r R

1

P
i

N

b

M
b

i b j

N

a

M
a

j a

i

N

j

N

ij

1 1 1 1

1 1

P P

P P

AB

A nuc,B B nuc,A

A B

(32)

includes the interaction of electrons in A assigned to a group P
with nuclei in monomer B, the interaction of electrons in
monomer B assigned to a group P with nuclei in monomer A,
and the interaction among electrons in monomers A and B
within a group P. At infinite intermonomer separation (the λ =
0 limit), the SCF part of the group Hamiltonian, eq 22, is
partitioned as

̂ = ̂ + ̂H H HP P P,SCF
(0)

,SCF ,SCFA B (33)

∫

∫

∑ ∑

∑ ∑

ρ

γ

̂ =

− ̂

= ≠

= ≠

H x
x

r

x
x x

r
P

d
( )

d
( , )

P
i

N

Q P

Q

i

i

N

Q P

Q i

i
i

,SCF
1

1
1

1

1
1

1

1
1

P

P

X

X
X

X
X

(34)

where ρQX
and γQX

are the monomer group density and the
density matrix, as seen in eqs 28 and 29, respectively. This
allows one to write the group Hamiltonian, eq 30, as a sum of
monomer group Hamiltonians

̂ = ̂ = ̂ + ̂H H H H(0)P P P P
(0)

A B (35)

where

̂ = ̂ + ̂H H HP P P,intra ,SCFX X X (36)

Our goal is to identify the dispersion terms in the second-
order energy given in eq 23 corresponding to the
intermolecular perturbation operator given in eq 26. First,
one should notice that the last term in eq 23, which includes
second-order perturbations of the Coulomb-exchange inter-

group interactions, (ECoul‑Exch
PQ )(2), cannot contribute to the

dispersion energy. These terms describe the interactions of the
perturbed one-electron density and density matrices. Next, let
us consider the second-order group energy εP

(2), presented in eq
24, where the group interaction operator ĤP

(1) = V̂PAB is given in
eq 32. The derivatives of ĤP,SCF(λ) with respect to λ, involved
in εP

(2), are given by the pertinent derivatives of densities and
density matrices

∫

∫

∑ ∑

∑ ∑

ρ

γ

̂ =

− ̂

= ≠

= ≠

H x
x

r

x
x x

r
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d
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Q P
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i

i
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Q P

Q
n

i

i
i

,SCF
( )

1
1

( )
1

1

1
1

( )
1

1
1

P

P

(37)

Thus, they are one-electron operators and as such cannot
contribute to the dispersion interaction either. Therefore, the
only term in eq 23 which may give rise to the dispersion
interaction is the one involving the operator V̂PAB. Retaining
solely this term in E(2) and denoting the resulting energy as
Ed
(2), we write

∑= ⟨Ψ | ̂ |Ψ ⟩E V
P

P P Pd
(2) (0) (1)

AB
(38)

To see under which condition dispersion terms emerge from
Ed
(2), we need to find the first-order correction for group wave

functions, ΨP
(1). For this purpose, consider zero-order group

functions, ΨP,i
(0), that are eigenfunctions of the ĤP

(0) Hamil-
tonian, eq 35

ε̂ Ψ = ΨHP P i P i P i
(0)

,
(0)

,
(0)

,
(0)

(39)

describing a group P in the noninteracting, RAB →∞, limit. Let
ΨPX,i denote monomer functions corresponding to a group

monomer Hamiltonian ĤPX given in eq 36

ε̂ Ψ = ΨHP P i P i P i, , ,X X X X (40)

Then, any (NP-electron) ith eigenfunction ΨP,i
(0) is a product of

(NPA- and NPB-electron) monomer-group functions

Ψ = Ψ ΨP i P k P l,
(0)

, ,A B (41)

with the corresponding energy

ε ε ε= +P i P k P l,
(0)

, ,A B (42)

The index i, labeling εP
(0) and ΨP

(0), is understood as a
combined index (kl), where k and l label group states of A and
B, respectively.
In the assumed multiconfiguration approximation, a

monomer wave function can be written as

∑Ψ = Φ
∈

dP k
K P

P kK P K, , ,XX

X

X
(43)

where {ΦPX,K} is a set of single determinants built from spin
orbitals belonging to a group PX. In the multireference
approximations considered in this work, orbital and configura-
tional spaces are finite, and the wave functions are obtained
with the optimal orbitals and configuration expansion
coefficients. Having defined a group zero-order Hamiltonian,
eq 35, with the corresponding eigenfunctions shown in eq 41,
applying the standard perturbation theory to eq 16 using the
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first-order Hamiltonian V̂PAB + ĤP,SCF
(1) as the perturbation (see

eqs 30, 32 and 37) leads to obtaining first-order perturbation
to an ith state of the group P, ΨP,i

(1), which can be written in a
general form as

∑ ∑

∑

Ψ = Ψ + Ψ Φ

+ Ψ Φ

≠
C c

c

P i
j i

P ij P j P l
g

P ig P g

P k
g

P ig P g

,
(1)

, ,
(0)

, , ,
(1)

, , ,
(1)

B A A

A B B
(44)

The first term results from admitting state mixing and the
sum runs over all unperturbed states of the Hamiltonian ĤP

(0)

orthogonal to ΨP,i
(0). The second and third terms in eq 44 are

due to orbital optimization, that is, allowing for mixing of
orbitals between groups. If, for example, φp(x) is an
unperturbed spin orbital belonging to a group P and assigned
to monomer A, p ∈ PA, then, its first-order perturbation φp

(1) is
expanded in the space of all spin orbitals except those
belonging to PA. Such first-order perturbations contribute to

ΨP,i
(1) as combinations of singly excited determinants ΦP g,

(1)
A

and

ΦP g,
(1)

B
. In other words, ΦP g,

(1)
A

denotes a determinant built of

NPA − 1 orbitals from a group PA and one spin orbital from
another group Q ≠ PA (the same for monomer B). Assume
from now on that the considered dimer is in its ground state,
thus the indices i, l, and k in eq 44 will be set to 0. Notice,
however, that the presented analysis is general, not limited to
ground states. The explicit expression for CP,0j coefficients in eq
44 reads

ε ε
∀ =

⟨Ψ | ̂ + ̂ |Ψ ⟩

−
≠ C

V H
j P j

P j P P P

P P j
0 ,0

,
(0)

,SCF
(1)

,0
(0)

,0
(0)

,
(0)

AB

(45)

Coefficients {cPX,0g} arising from orbital perturbations cannot
be given explicitly. They follow as solutions of linear equations
which are generalizations of the coupled-perturbed HF
equations.57,58 As in the case of the latter equations, cPX,0g
coefficients are linearly dependent on the elements

⟨Φ Ψ | ̂ + ̂ |Ψ Ψ ⟩V HP f P P P P P,
(1)

,0 ,SCF
(1)

,0 ,0A B AB A B
, which allows us to write

∑= ⟨Φ Ψ | ̂ + ̂ |Ψ Ψ ⟩c V H FP g
f

P f P P P P P P gf,0 ,
(1)

,0 ,SCF
(1)

,0 ,0 ,A A B AB A B A
(46)

similar for cPB,0g, where the functions FPX,gf depend on the

energies εPX,0 and the matrix elements of ĤP
(0)

X

ε= {⟨Φ | ̂ |Φ ⟩}′ ′ ′F F H( , )P gg P gg P P f P P f, , ,0 ,
(1) (0)

,
(1)

X X X X X X (47)

Let us return to the energy expression in eq 38 obtained
after eliminating these terms from the second-order energy of
the dimer, which cannot give rise to the dispersion energy. The
CP,0j coefficients (eq 45) which enter in the first term of eq 44
depend on the interaction operator V̂PAB and a one-electron
operator ĤP,SCF

(1) . Only the former is retained because, as we
discussed, the latter does not contribute to the dispersion
interaction. The second and third terms in eq 44 (expression
for ΨP,i

(1)), which arise from the orbital perturbation in SCF
methods, cannot recover the dispersion interaction either.
Their insertion into eq 38 leads to products of terms of the

form ⟨Ψ Ψ | ̂ |Φ Ψ ⟩VP P P P g P,0 ,0 ,
(1)

,0A B AB A B
, in which the interaction

operator V̂PAB does not connect the ground state with both-
monomer-excited states. Such terms, corresponding to one
monomer remaining in the ground state, contribute to the
induction components of the interaction energy, not to
dispersion.
Thus, out of all terms in Ed

(2), we retain only the ones
involving CP,0j and the operator V̂PAB, cf. eq 45. After expressing
both the zero-order energy and wave function in terms of its
monomer counterparts, eqs 41 and 42, we arrive at the energy
expression which is a part of the dimer energy and gives rise to
the dispersion interaction. It reads

∑ ∑
ω ω

= −
⟨Ψ Ψ | ̂ |Ψ Ψ ⟩

+≠

E
V

P ij

P P P P i P j

P i P j
disp
MC

0

,0 ,0 , ,
2

, ,

A B AB A B

A B (48)

where ωPX,i denotes a transition energy for a group P and a
monomer X

ω ε ε= −P i P i P, , ,0X X X (49)

and only the terms for which i ≠ 0 and j ≠ 0 have been kept
(naturally, the terms for which i = 0 and j ≠ 0 and vice versa
will be of the induction type; therefore, they have been
excluded from eq 48).
A more convenient form of Edisp

MC follows after introducing
transition density matrices. Notice that in the assumed wave
function, eq 10, a set of occupied spin orbitals is divided into
disjoint subsets P corresponding to group functions ΨP. In the
dimer dissociation limit, each subset decomposes into sets PA
and PB of the orbitals assigned to the pertinent monomers. A
transition density matrix for a monomer X in the
representation of the orbitals from PX reads

γ∀ ≡ ⟨Ψ | ̂ ̂ |Ψ ⟩ = ⟨Ψ | ̂ ̂ |Ψ ⟩∈
† †a a a apq P pq

i
q p i P q p P i

X,
X,0 X, ,0 ,X X X (50)

which allows one to turn the expression in eq 48 into

∑ ∑
γ γ

ω ω
= −

∑ ∑ ⟨ | ⟩

+≠

∈ ∈( )
E

pa qb

P ij

pq P ab P pq
i

ab
j

P i P j
disp
MC

0

A, B,
2

, ,

A B

A B (51)

where ⟨pa|qb⟩ are two-electron integrals in the 1212
convention. This is a central equation of this work.
Edisp
MC yields the amount of dispersion interaction energy

recovered by the employed MC wave function model
conforming to the ansatz in eq 10. Let us list the most
relevant conclusions that the obtained result leads to

(a) A given group P has nonzero contributions to the
interaction energy of the dispersion type only if in the
RAB → ∞ limit, the wave function ΨP dissociates into a
product ΨPAΨPB, where both ΨPA and ΨPB are MC
functions. The reason is that only the states excited in
the configurational space of the PA and PB groups enter
Edisp
MC, which obviously implies that configurational

spaces, cf. eq 43, must be at least two-dimensional.
(b) The previous point immediately implies that Edisp

MC = 0
and no dispersion is recovered in supermolecular
calculations in the case of the HF or CAS(2,2)
description of a dimer or if upon dissociation, one
monomer is described with a single determinant.

(c) In a given wave function model, the inactive orbitals
(doubly occupied in each Slater determinant) do not
play a role in recovering the dispersion. A group of
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inactive orbitals forms a single determinant Ψinact, as
seen in eq 11, which does not contribute to Edisp

MC.
(d) Orbital optimization should not play a significant role, so

CAS-CI and CASSCF at the same CAS(n,m) level are
expected to reproduce the same amount of dispersion.

2.3. Dispersion Energy Recovered in the CAS Model.
In this work, we focus our attention on the CAS model. A
dimer wave function takes a product form, as shown in eq 11,
where the active function Ψactive is an n-electron full
configuration function obtained from m orbitals called active.
Such a function is denoted as CAS(n,m). The dispersion
energy recovered by a dimer CAS function dissociating into
CAS functions for monomers can be written as

∑
γ γ

ω ω
= −

∑ ∑ ⟨ | ⟩

+≠

( )
E

pa qb

ij

pq ab pq
i

ab
j

i j
disp
CAS

0

active active A, B,
2

active , active ,

A B

A B (52)

pq (ab) are active orbitals of monomer A (B). Notice that in
fact, eq 52 is more general and applies to any MCSCF model.
By ωactiveX,i, we denote transition energies obtained by
diagonalizing a Hamiltonian for the active group, cf. eqs 31,
34, and 36,

∫ ∫
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1 1
1
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1
1

iX

active,X active,X nuc,X active,X

active,X active,X

(53)

where Nactive,X is the number of active electrons in monomer X,
Mnuc,X denotes the number of nuclei in X, and ρinact,X and γinact,X
are the density and the density matrix corresponding to
inactive orbitals, respectively.
We have shown that the supermolecular CAS interaction

energy recovers a portion of the second-order dispersion
energy, quantified by eq 52, which directly relates to the size of
the active space. In the extreme case, when all orbitals are
active and the CAS turns into the FCI, the Edisp

CAS term becomes
identical to the full second-order dispersion energy shown in
eq 9. In other cases, the CAS supermolecular interaction
energy can be corrected for the missing portion of the
dispersion interaction by subtracting Edisp

CAS and adding the full
dispersion energy recovered by a method of choice, which
leads to the “CAS corrected for the dispersion” interaction
energy method

= − ++E E E Eint
CAS dispCAS

int
CASSCF

disp
CAS

disp
(2)

(54)

When defining monomer CAS wave functions, which are
dissociation products of the assumed CAS(n,m) dimer
function, one should be cautious. It is clear that the number
of active electrons in the monomers, nA and nB, should sum up
to n to satisfy the size-consistency condition. However, if m =
mA + mB active orbitals are considered, mA of which are
localized on A and mB of which are localized on B, then in the
limit RAB → ∞, a product of CAS(nA,m) and CAS(nB,m)
functions yields the same energy as a sum of monomer
energies computed with the pertinent CAS(nX,mX) functions.
Thus, the aforementioned product is a valid CAS zero-order
wave function of a dimer, satisfying the size-consistency
condition. In practical terms, this implies that in the

supermolecular computation of the CAS interaction energy,
the energy of monomers should be obtained with CAS(nX,m)
functions, where m includes mX active orbitals on X and m −
mX orbitals on the other monomer. This problem is similar to,
but not the same as, the counterpoise correction for the BSSE.
We call it a counterpoise CAS-superposition error (CASSE)
correction. It vanishes when the CAS function turns into the
FCI and a complete basis set is used.
It should be noticed that the dispersion correction, Edisp

CAS,
discussed in this section follows from the standard RS
perturbation theory, which misses exchange contributions. If
perturbation theory with symmetry forcing59,60 were applied, it
would reveal that the CAS interaction energy includes only a
fraction of the second-order exchange-dispersion term, whose
magnitude depends on the size of the active space. One would
therefore arrive at the conclusion that the CAS must be
corrected for the exchange-dispersion energy in a way similar
to that for the dispersion energy, that is, in analogy to eq 54. In
the next section, an approximate exchange-dispersion correc-
tion is proposed.

3. COMPUTATIONAL DETAILS
The second-order dispersion energies calculated in this work
include both the polarization and exchange components. We
use the EDISP

(2) notation for the energy terms calculated directly
within the SAPT49,50 framework

= + ‐E E EDISP
(2)

disp
(2)

exch disp
(2)

(55)

Unlike Edisp
CAS, the second-order exchange-dispersion energy

recovered in supermolecular CASSCF calculations, Eexch‑disp
CAS , is

not obtained directly but approximated by scaling of the full
term

= ×‐ ‐E E
E

E
exch disp
CAS

exch disp
(2) disp

CAS

disp
(2)

(56)

In analogy to eq 55, we use the

= + ‐E E EDISP
CAS

disp
CAS

exch disp
CAS

(57)

notation to represent the complete second-order dispersion
energy recovered by the CAS (the Edisp

CAS term is given in eq 52).
In other words, EDISP

CAS denotes the dispersion energy which is
accounted for in the supermolecular interaction energy, eq 2.
The “CAS corrected for dispersion” energy takes the form

= − ++E E E Eint
CAS DispCAS

int
CASSCF

DISP
CAS

DISP
(2)

(58)

For comparison, we also present the results obtained by
taking the sum of the CASSCF interaction energy and the
EDISP
(2) term (the dispersion energy included in the CASSCF

interaction energy is not removed), the approach which we
denote as Eint

CAS+DISP. An analogous notation, Eint
HF+DISP, is used

for the HF method supplemented with full dispersion.
Evaluation of the Edisp

CAS formula, eq 52, requires access to
both transition energies and transition density matrices of the
monomers corresponding to the active group Hamiltonian, eq
53. These may be obtained either by direct diagonalization of
the Hamiltonian or from full linear response equations. In this
work, we followed the latter approach for the model He···He
and He···H2 dimers using time-dependent linear response
equations of ref 61. For these systems, therefore, Edisp

CAS is
computed exactly, within a given basis set. For many-electron
systems, we approximate the required response properties
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using solutions of extended random phase approximation62,63

(ERPA) equations. The ERPA eigenproblem for each
monomer is formulated for the ĤactX Hamiltonian, as seen in,
for example, eqs 6−9 in ref 16, which leads to a Hessian matrix
of a simple form64 (for details, see the Supporting
Information). Both construction and diagonalization of the
Hessian for a CAS wave function require steps which scale as
Mact

6 , where Mact denotes the number of the active orbitals.
Thus, the cost of computing Edisp

CAS in the ERPA approximation
is small considering that regular CAS calculations employ an
active space that is considerably smaller compared to the
virtual space.
The CASSE introduced in the previous section was

accounted for in Edisp
CAS energy calculations according to a

three-step protocol. First, monomer CAS(nA,mA)SCF and
CAS(nB,mB)SCF calculations were converged in the dimer-
centered basis set. Next, a set containing inactive and active
natural orbitals of a given monomer was extended with active
orbitals from its interacting partner and orthonormalized
according to the Schmidt procedure. The new sets containing
m = mA + mB active orbitals for each monomer were completed
by adding CASSCF secondary orbitals from monomer
calculations. Finally, these orbital sets entered CAS-CI
calculations.
The CAS wave function captures dynamic correlation effects

only within the active space. This affects the quality of both the
density and density matrices16,65 and translates into a rather
poor representation of the intramonomer correlation effects in
the supermolecular CAS energy. To correct this deficiency, one
may describe the first-order interaction energy terms, that is,
the electrostatic and exchange energies, at the fully correlated
level of theory instead of the CASSCF one. This may be
realized in an approximate manner by subtracting the first-
order terms calculated with CASSCF density matrices and
replacing them with more accurate ones. When applied
together with the discussed dispersion correction, this leads to

= + [ − ]

+ [ − ]

+ +E E E E

E E

(CAS)

(CAS)
int
CASc DispCAS

int
CAS DispCAS

elst
(1)

elst
(1)

exch
(1)

exch
(1)

(59)

where the first term is given by eq 58. The first and second
terms in square brackets represent corrections of electrostatic
and exchange interaction components, respectively, where the
Eelst
(1) and Eexch

(1) terms account for intramonomer correlation
effects. The Eelst

(1)(CAS) term is computed according to the
known expression for electrostatic electron interaction, as seen
in, for example, ref 49, with the electron density obtained from
the pertinent CAS wave function. It is assumed that first-order
exchange terms are calculated in the S2 approximation (e.g., see
eq 9 in ref 66) which requires access only to one- and two-
electron reduced density matrices of the monomers. The CASc
+ DispCAS approach can be interpreted as a multireference
counterpart of the HFDc(1) method.67

For the sake of convenience, acronyms and notations used in
figures and tables throughout the article have been listed in
Table 1.
Two model systems studied in this work are the He···He

dimer and the He···H2 dimer. The reference total interaction
energy curve for He···He was taken from the work of
Przybytek et al.68 The benchmark interaction energies for
excited states of the He···H2 dimer were obtained at the FCI
level of theory in the aug-cc-pVTZ basis set.69 For many-
electron systems from the A24 data set, the coupled-cluster

single and double excitation and the perturbative triples/
complete basis set [CCSD(T)/CBS] values from ref 70 served
as a benchmark.
The Edisp

CAS energy calculations were performed in the in-
house code. All necessary integrals and CASSCF one- and two-
electron reduced density matrices were obtained from the
Molpro71 program. The same software was used for super-
molecular CASSCF calculations. The convergence threshold
for SCF orbital optimization was set to 10−10 in the gradient
norm. All reported interaction energies were corrected for the
BSSE using the CP scheme20 of Boys and Bernardi. In contrast
to Edisp

CAS, the supermolecular CASSCF results were not
corrected for the CASSE.
CASSCF wave functions for systems from the A24 data set

were obtained with MP2 natural orbitals employed as an initial
guess for the CAS optimization. The supermolecular CAS
interaction energy may suffer from the lack of size consistency
if dimer active orbitals, obtained for the assumed CAS(n,m)
model and yielding the lowest energy of a dimer in the
dissociation limit, do not correspond to the optimal active
orbitals of the monomers [it is assumed that monomers are
described with CAS(nX,mX) functions such that nA + nB = n
and mA + mB = m]. To eliminate the risk of size-consistency
violation, for each dimer, the CASSCF energy was computed at
an intermonomer distance of 200 bohr and it was checked that
the dimer energy agrees with the sum of monomer energies
within at least 10−4 mHa.
For both the He···He and He···H2 dimers, the reference

values of SAPT energy components were calculated at the FCI
level of theory in a house-developed code.65,72 In the case of
He···He, both dispersion and exchange-dispersion components
were extrapolated to the CBS limit according to the aug-cc-
pVQZ → aug-cc-pV5Z two-point scheme of Bak et al.73 For
He···H2, all calculations employed the aug-cc-pVTZ basis and
CBS extrapolation was not performed. For systems from the
A24 data set, the SAPT energy components entering eqs 58
and 59 were obtained at the DFT-SAPT74−76 level of theory
based on the asymptotically corrected77 PBE078,79 functional
using the dimer-centered basis for monomer calculations. The

Table 1. Notations Used for Dispersion Energy and
Interaction Energy Expressions in This Work

dispersion energy

Edisp
(2) second-order dispersion energy, eq 9

Eexch‑disp
(2) second-order exchange-dispersion energy

EDISP
(2) sum of second-order dispersion and exchange-dispersion energies,

eq 55
Edisp
CAS residual CAS dispersion energy, eq 52

Eexch‑disp
CAS residual CAS exchange-dispersion energy, eq 56

EDISP
CAS sum of residual CAS dispersion and exchange-dispersion energies,

eq 57a

interaction energy

Eint
CASSCF CAS: CASSCF supermolecular interaction energy

Eint
CAS+DISP CAS + DISP: CASSCF supermolecular interaction energy

with the EDISP
(2) dispersion added (dispersion double

counting present)
Eint
CAS+DispCAS CAS + DispCAS: CASSCF supermolecular interaction

corrected for the dispersion (dispersion double counting
removed), eq 58

Eint
CASc+DispCAS CASc + DispCAS: CASSCF supermolecular interaction

corrected for both dispersion and first-order (electrostatic
and exchange) energy, eq 59

aEDISP
CAS terms were corrected for CASSE in He···He and He···H2

calculations (see the article).
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exchange energy components were calculated in the S2

approximation. All DFT-SAPT calculations were performed
in the Molpro71 program. The aug-cc-pVTZ basis set
supplemented with (3s3p2d2f) midbond functions was used.
Both midbond exponents and midbond location procedures
were taken from ref 67.

4. RESULTS
4.1. Model Systems: He···He and He···H2. In this

section, we examine the performance of the introduced
“CAS plus dispersion” models for the interaction between
two-electron monomers. As mentioned, in this case, we use
accurate CAS transition density matrices which enter the Edisp

CAS

expression. In calculations of the latter, the CASSE is removed
according to the protocol described in the previous section.
The second-order dispersion energy is obtained from SAPT
calculations at the FCI level of theory.
As we have rigorously shown in Section 2.2, CASSCF

recovers a portion of the dispersion energy, as seen in eq 52.
Therefore, a simple addition of the dispersion component, cf.
eq 55, to the supermolecular CASSCF interaction energy leads
to double counting of intermonomer correlation effects, the
magnitude of which depends on the size of the active space.
This is illustrated in Figure 1 (see “CAS + DISP” curves) on
the example of the He···He dimer in the ground state. While a
small CAS(4,4) wave function of the dimer [dissociating to a
product of CAS(2,2) monomer functions] supplemented with
dispersion deviates from the benchmark only by 6.6% in the
van der Waals minimum (Req = 5.6 bohr), going to the
CAS(4,28) model leads to 72% overestimation of the
interaction energy. Additionally, dispersion double counting
shifts the minimum from the correct distance of 5.6 bohr for
CAS(4,4) to 5.3 bohr for CAS(4,28). In the proposed CAS +
DispCAS approach, we improve the CAS + DISP results by
removing the partial dispersion contained in the super-
molecular CASSCF energy, cf. eq 58. Consequently, the
extension of the active space does not lead to overcorrelation
and the errors in the He···He minimum region do not exceed
2% regardless of the active space size (Figure 1). The only
exception is the CAS(4,4) + DispCAS curve where the error
reaches 7%, which is mainly due to the poor representation of
the first-order energy terms (see Figure S1 in the Supporting
Information).
In the asymptotic regime the He···He interaction is

dominated by the dispersion energy which decays with the

inverse sixth power of the interatomic distance. Therefore, at
large distances, the CASSCF interaction energy and the Edisp

CAS

term calculated directly according to eq 52 should become
identical. Indeed, in Figure 2 we demonstrate a perfect

agreement on the example of CAS(4,10) and CAS(4,18) wave
functions. Even in the larger active space, CASSCF recovers
only approximately 50% of the C6 coefficient, that is, 0.735 a.u.
compared to the reference value of 1.461 a.u.80 A closer
comparison with the long-range behavior of the FCI curve
reveals that neither CAS(4,10) nor CAS(4,18) recovers higher
Cn coefficients. This is not surprising because only p orbitals
are included in the active space.
A more challenging model system is the He···H2 dimer in

which the hydrogen molecule is in one of the two lowest
excited states, that is, either the 1Σu

+ or the 1Πu state. Note that
the dispersion corrections employed in “CAS plus dispersion”
approaches may be applied to excited states provided that the
zero-order wave function is nondegenerate. We present the
results for the T-shaped geometry where we vary the distance
R between the center of mass of H2 and the He atom. The
equilibrium bond lengths in the H2 molecule are 2.443 bohr
for the 1Σu

+ state and 1.951 bohr the 1Πu state. We begin by

Figure 1. He···He ground-state interaction energy curves. Left: Eint
CAS+DISP = Eint

CAS(n,m) + EDISP
(2) ; right: Eint

CAS+DispCAS (see eq 58). “Exact” refers to the
benchmark nonrelativistic potential of ref 68. The basis set is aug-cc-pV5Z.

Figure 2. Comparison of the long-range behavior of the CASSCF
interaction energy (Eint

CAS × R6) and the CASSCF dispersion energy
(Edisp

CAS × R6) for the ground state of the He···He dimer based on the
CAS(4,10) and CAS(4,18) references. “Exact” refers to the bench-
mark C6 value of ref 80. The basis set is aug-cc-pVTZ.
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comparing the performance of the “CAS plus dispersion”
models. In Figure 3, we show the results for the He···H2(

1Πu)

complex obtained by choosing 2 active orbitals on the He atom
and either 4 or 10 active orbitals on the H2 molecule. Clearly,
increasing the number of active orbitals leads to a severe
overestimation of the interaction energy if the EDISP

(2) term (eq
55) is directly added to the CASSCF interaction energy (cf.
“CAS + DISP” curves in Figure 3). Because of the correlation
double counting in the larger CAS space, the minimum is
predicted at 2.8 bohr, while the smaller CAS + DISP model
correctly locates it at 3.2 bohr. When the amount of the added
dispersion is tailored to the employed multireference model, as
proposed in the CAS + DispCAS approach, interaction energy
curves greatly improve. For CAS(4,6), the error in the van der
Waals minimum amounts to 2.3%. In CAS(4,12), it is larger
and reaches 11%. Considering that the dispersion energy is
calculated exactly, this should be attributed to the erroneous
representation of the remaining energy components in the
supermolecular CASSCF approach.
Because applications of multireference methods to interact-

ing excited systems are scarce, it is instructive to compare the
performance of CAS + DispCAS with that of other approaches.

In Figure 4, the results from CASPT2 and SAPT(FCI)
calculations up to the second order in V̂int (the latter denoted
as E(1) + E(2)) are shown next to the CASSCF and “CAS plus
dispersion” models. The He atom and H2(

1Σu
+) molecule were

described with the CAS(2,5) and CAS(2,4) wave functions,
respectively. In the He···H2(

1Πu) complex, we chose the
CAS(2,2) active space for He and CAS(2,10) for H2. The
corresponding active spaces assumed for a dimer CASSCF
calculation were (4,9) and (4,12) for the considered states. By
confronting Figure 4, one observes a strikingly poor perform-
ance of the second-order SAPT energy (see “E(1) + E(2)”
curves). Although the corresponding curves account for the
second-order dispersion energy and in consequence show a
correct asymptotic behavior, at intermediate- and short
intermonomer distances second-order SAPT becomes even
less accurate than CASSCF. This indicates that higher than
second order induction terms, accounted for in CASSCF but
missed in SAPT, are comparable in magnitude to the
considered E(1) + E(2) energy contributions. In the CASPT2
method the perturbation correction is added to the CASSCF
energy, so the aforementioned higher-order terms are included.
In spite of this, CASPT2 significantly underestimates the
interaction energy for the 1Σu

+ state. In particular, the
minimum is predicted at R = 4.1 bohr and 1.0 mEh deep,
which is too shallow compared to the FCI benchmark that is
1.7 mEh deep and located at 3.7 bohr. For the 1Πu state,
CASPT2 performs better and the curve has a correct shape.
The interaction energy at the minimum (R = 3.2 bohr) is
underestimated by 12.3%, which is similar in magnitude to the
−11.0% overestimation from CAS + DispCAS calculations.
As already discussed, direct addition of the dispersion energy

in the CAS + DISP approach leads to severe overcorrelation in
both the He···H2(

1Πu) and He···H2(
1Σu

+) states (Figure 4).
Contrary to this, CAS + DispCAS avoids dispersion double
counting and performs well in both cases. The positions of van
der Waals minima match the FCI benchmark and are predicted
with −9.6 and −11.0% relative percent errors for the Σu

+ and
Πu states, respectively. The improvement of the first-order
interaction energy components according to the procedure
proposed in eq 59, cf. the CASc + DispCAS curves, has a
marginal effect on the CAS + DispCAS energies in the 1Πu
state. For example, the error in the minimum is reduced from
−11% to −8.6%. This points toward the inaccurate treatment
of higher than second order terms. In the 1Σu

+ state, the

Figure 3. He···H2(
1Πu) dimer interaction energy curve. The complex

is kept in a T-shaped configuration. R denotes the distance between
the He atom and the center of the H2 molecule. The basis set is aug-
cc-pVTZ.

Figure 4. He···H2(
1Σu

+) and He···H2(
1Πu) interaction energy curves. The complex is kept in the T-shaped geometry. R denotes the distance

between the He atom and the center of the H2 molecule. The basis set is aug-cc-pVTZ.
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difference is more pronouncedat the minimum geometry (R
= 3.7 bohr) CASc + DispCAS deviates from the FCI by 2.2%,
while CAS + DispCAS is off by − 9.6%.
4.2. Correcting Dispersion and First-Order Interac-

tion Energy Components in the CAS Model for Many-
Electron Systems. For model, few-electron systems discussed
in Section 4.1, it is possible to employ large active spaces and
restore a significant portion of the dispersion energy in size-
consistent supermolecular CASSCF calculations. To verify
what amount of the dispersion energy is captured by CASSCF
for many-electron systems and examine the effect of correcting
first-order interaction energy according to eq 59, in this
section, we focus on a set of small, noncovalently bound
dimers selected from the A24 database.70 The analyzed
complexes may be grouped according to the dominating
interaction energy contributions into hydrogen-bonded dimers
(H2O···H2O, HCN···HCN, and HF···HF), mixed electro-
static/dispersion dimers [HF···CH4, HCOH···HCOH, C2H2···
C2H2(1), and C2H4···C2H4(1)], and dispersion-dominated
(van der Waals) dimers [Ar···CH4, Ar···C2H4, C2H4···C2H2,
C2H4···C2H4(2), and C2H2···C2H2(2)]. In Table 2, we report
the interaction energy values following from “CAS plus
dispersion” and “HF plus dispersion” calculations [CCSD-
(T)/CBS is taken as the reference]. Table 2 also contains error
statistics in terms of the mean error Δ̅, the standard deviation
σ, the mean absolute error Δ̅abs, and the maximum absolute
error Δmax. We found that for the selected many-electron
systems, the effect of the CASSE on the Edisp

CAS energy was
negligible and the results presented in this section do not
account for it (see Table S6 in the Supporting Information).
As expected for single-reference systems, both the CASSCF

and HF methods not corrected for dispersion show similar,
poor performance with mean errors that amount to 128% and
141%, respectively (Table 2). Addition of the EDISP

(2) dispersion
term from SAPT(DFT) calculations drastically improves the
results (Δ̅abs = 19% for CAS + DISP and Δ̅abs = 25% for HF +
DISP). Note that the CAS + DISP model clearly outperforms
its HF counterpart for hydrogen-bonded dimers. In contrast,

HF + DISP performs better for systems dominated by
dispersion. The CAS-based approach may be corrected further
by removing from CAS + DISP the dispersion energy
recovered by CAS, that is, the EDISP

CAS term, as done in the
CAS + DispCAS model (see eq 58). This has a weak effect
the values of |EDISP

CAS | are smaller than 0.05 kcal/mol for the
investigated systems. The only notable error reduction in CAS
+ DispCAS with respect to CAS + DISP occurs for the van der
Waals dimers and does not exceed 5% (see also Table S4 in the
Supporting Information). We conclude that in many-electron
systems described with moderate active spaces, the double
counting of the dispersion energy does not play a significant
role, with the only exception being van der Waals complexes
where it introduces discernible errors.
Both HF and CASSCF clearly benefit when the first-order

electrostatic and exchange interaction energy components are
treated at the SAPT(DFT) level of theory. The resulting HFc
and CASc models provide a nearly 2-fold reduction in terms of
both mean errors and the standard deviation when compared
with their uncorrected HF and CAS equivalents (Table 2). In
particular, the CASc + DispCAS approach, as formulated in eq
59, performs the best in the group (Δ̅ = −5.7% and σ =
12.2%). Still, relatively large errors between 13 and 27% persist
for dispersion-bounded dimers for which the interaction
energy has a repulsive character.

5. CONCLUSIONS

We presented a way to quantify the amount of the dispersion
energy recovered in the supermolecular interaction energy, the
residual dispersion energy, calculated with MC wave functions.
Applying the RS perturbation theory to a group product wave
function, we arrived at a general expression that rigorously
yields a portion of the dispersion energy in the MCSCF
interaction energy (eq 51). It is different from 0 if a dimer
wave function is such that it dissociates into monomer wave
functions both of which are at least two-configurational. The
dispersion-in-MCSCF energy increases upon active space

Table 2. Interaction Energies (kcal/mol) and Error Statistics (in Percent) for Selected Systems of the A24 Data Seta

CAS CASc

HF CAS HF + DISP HFc + DISP +DISP +DispCAS +DISP +DispCAS ref.

H2O−H2O −3.628 −2.710 −6.078 −4.859 −5.045 −5.012 −4.752 −4.719 −5.006
HCN−HCN −4.100 −3.408 −5.866 −4.850 −5.108 −5.084 −4.695 −4.671 −4.745
HF−HF −3.742 −2.741 −5.635 −4.294 −4.526 −4.505 −4.109 −4.088 −4.581
HF−CH4 −0.257 0.168 −1.839 −1.725 −1.347 −1.328 −1.628 −1.609 −1.654
HCOH−HCOH −2.458 −0.656 −6.659 −4.743 −4.749 −4.718 −4.410 −4.379 −4.554
C2H2−C2H2(1) −0.511 −0.254 −1.922 −1.724 −1.637 −1.637 −1.577 −1.577 −1.524
C2H4−C2H4(1) 0.902 0.801 −1.232 −1.280 −1.299 −1.281 −1.204 −1.186 −1.090
Ar−CH4 0.355 0.350 −0.494 −0.456 −0.470 −0.470 −0.425 −0.425 −0.405
Ar−C2H4 0.430 0.356 −0.348 −0.415 −0.409 −0.409 −0.390 −0.390 −0.364
C2H4−C2H2

b 3.400 2.643 1.116 0.540 0.368 0.412 0.557 0.601 0.821
C2H4−C2H4(2)

b 3.877 2.975 1.304 0.598 0.403 0.447 0.624 0.667 0.934
C2H2−C2H2(2)

b 3.476 2.752 1.448 0.924 0.738 0.784 0.928 0.974 1.115
Δ̅ 140 128 −6.4 −12.2 −16.2 −14.6 −7.3 −5.7
Δ̅abs 141 128 24.7 13.7 19.4 18.1 10.8 9.7
σ 112 71.5 27.7 13.1 22.5 20.8 13.9 12.2
Δmax 315 222 46.2 35.9 56.8 52.2 33.2 28.5

aHFc and CASc denote supermolecular HF and CASSCF interaction energies, respectively, corrected for the first-order SAPT(PBE0AC) energy.
“CAS plus dispersion” models include the dispersion energy obtained at the SAPT(PBE0AC) level of theory in the aug-cc-pVTZ + (3322) basis.
For the “CAS + DispCAS” and “CASc + DispCAS” methods, see eqs 58 and 59, respectively. “Ref.” is the CCSD(T)/CBS benchmark of ref 70.
bNonequilibrium geometry.
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expansion and reaches the full second-order dispersion limit
when all orbitals are active.
By deriving the expression for the residual dispersion, we

were able to rigorously address the problem of dispersion
double counting which occurs when the dispersion energy is
added directly to the supermolecular MCSCF interaction
energy. We developed a dispersion correction for wave
functions of the CAS type. The correction is tailored to the
employed active space so that its addition to the CAS
interaction energy, as shown in eq 54, accounts for exactly the
amount of the second-order dispersion energy which is missed
by the CAS. The resulting “CAS plus dispersion” method
requires computing the Edisp

CAS energy, eq 52, either in an exact
manner by diagonalization of the active Hamiltonians for the
monomers or approximately, by solving ERPA equations
formulated with the active Hamiltonian for each monomer.
One should notice that the proposed route of avoiding
dispersion double counting in supermolecular CAS calcula-
tions is rigorous and does not rely on orbital localization,
contrary to the physically motivated scheme outlined in ref 46.
In the latter approach, the degree to which double counting of
dispersion is avoided will depend on how well orbitals are
localized on fragments. The most expensive step of computing
Edisp
CAS scales only with the sixth power of the number of active

orbitals if ERPA equations are used, so it is modest comparing
to the cost of CASSCF calculation. To assure the proper
physical damping of the dispersion energy, we include
exchange-dispersion terms approximated with second-order
SAPT energy expressions, eqs 55−58. Therefore, in the CAS +
DispCAS scheme proposed in this work, the CASSCF
interaction energy is corrected for both dispersion and
exchange-dispersion components.
On the example of the model He···He and He···H2 systems

in the ground and excited states, we demonstrated that the
direct addition of the full second-order dispersion to the CAS
interaction energy leads to overcorrelation which increases
with the number of active orbitals. In contrast, the tailored
dispersion correction applied in the CAS + DispCAS approach
yields an accurate interaction energy regardless of the size of
the active orbital set which validates the method. For the He···
H2(

1Σu
+) and He···H2(

1Πu) complexes, CAS + DispCAS
proved to be superior to CASPT2 and second-order SAPT.
This shows that the method may be successfully applied to
study excited-state interactions provided that an accurate
representation of the dispersion energy is available.
To examine the extent of the dispersion double counting in

CASSCF calculations for many-electron systems, we studied
several representative dimers selected from the A24 data set.
We found out that in small active spaces feasible for size-
consistent calculations [up to CAS(12,12) for the dimer],
CASSCF recovers only 2−3% of the true dispersion. The
overcorrelation becomes relevant in van der Waals (dispersion-
dominated) systems where it translates into interaction energy
errors at the level of 4−5%. This effect may be larger in the
case of systems in excited states, when a few active diffuse
orbitals contribute significantly to the dispersion interaction.
Taking into account the low cost of computing the residual
dispersion (as shown in this work, it depends only on the
number of active orbitals, which is always much lower than the
total number of orbitals), it is advisable to remove it from the
supermolecular energy, even when the employed active space
is relatively small.

Applications of the proposed CAS + DispCAS method for
truly multireference systems require an adequate representa-
tion of the dispersion energy. Currently, it is possible to
calculate both the polarization and exchange components of
the second-order dispersion energy for many-electron CAS
wave functions within the ERPA formalism.16,65 A substantial
improvement of the CAS + DispCAS accuracy is achieved if
both the electrostatic and exchange first-order components
recovered by the CAS are corrected for intramonomer
correlation effects, as shown in eq 59. This approach is
analogous to the HF-based HFDc(1) method of ref 8.
Improving the quality of 1-RDMs from CASSCF calculations
to compensate for the missing intramonomer correlation is less
straightforward compared to the single-reference HFDc(1)

approach. The multiconfiguration DFT theory could be
explored in this context. Works on further verification and
improvement of the accuracy provided by the CAS + DispCAS
method, particularly in complexes involving excited states, are
being carried out in our group.
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