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MOTIVATION Alterations in protein phosphorylation signaling networks associated with the dysregulation
of kinase activity are closely linked to a variety of pathological conditions. However, quantitative and multi-
plexable assays to reveal the phosphorylation network based on kinase-substrate relationships do not exist
for rare cell populations. To address this issue, we have developed an approach in which the signals of
intrinsic kinase substrates are boosted using isobaric labeling that targets phosphopeptides generated
in in vitro kinase reactions. As a result, we succeeded in encompassing specific kinase substrates in a
motif-centric manner without the need for immunoprecipitation.
SUMMARY
Identifying cellular phosphorylation pathways based on kinase-substrate relationships is a critical step to un-
derstanding the regulation of physiological functions in cells. Mass spectrometry-based phosphoproteomics
workflows have made it possible to comprehensively collect information on individual phosphorylation sites
in a variety of samples. However, there is still no generic approach to uncover phosphorylation networks
based on kinase-substrate relationships in rare cell populations. Here, we describe a motif-centric phospho-
proteomics approach combinedwithmultiplexed isobaric labeling, in which in vitro kinase reactions are used
to generate targeted phosphopeptides, which are spiked into one of the isobaric channels to increase detect-
ability. Proof-of-concept experiments demonstrate selective and comprehensive quantification of targeted
phosphopeptides by using multiple kinases for motif-centric channels. More than 7,000 tyrosine phosphor-
ylation sites were quantified from several tens of micrograms of startingmaterials. This approach enables the
quantification ofmultiple phosphorylation pathways under physiological or pathological regulation in amotif-
centric manner.
INTRODUCTION

Protein kinase-mediated phosphorylation on serine, threonine,

and tyrosine residues is one of the most ubiquitous post-transla-

tional modifications (PTMs). Signaling cascades via protein

phosphorylation play key roles in multiple cellular processes in

mammals, including intra- and intercellular signaling, protein

synthesis, gene expression, cell survival, and apoptosis (Cohen,

2002; Hunter, 2000; Needham et al., 2019). The relative abun-

dances of phosphoserine (pS), phosphothreonine (pT), and

phosphotyrosine (pY) sites in the human proteome have been

estimated to be 90:10:0.05 based on the traditional method of
32P labeling (Hunter and Sefton, 1980). There are many possible

reasons for the extreme paucity of pY sites compared with pS
Cell Rep
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and pT sites in mammals, including the fact that tyrosine kinases

are activated only under certain conditions, and that the high ac-

tivity of protein tyrosine phosphatase leads to a short half-life of

pY sites (Hunter, 2009).

Great advances in the analytical workflows of shotgun phos-

phoproteomics, in which metal affinity chromatography is inte-

grated with liquid chromatography-tandem mass spectrometry

(LC-MS/MS), have made it possible to identify more than

30,000 phosphorylation sites (Hogrebe et al., 2018; Humphrey

et al., 2015; Mertins et al., 2018). In general, LC-MS/MS has an

identification bias toward the more abundant phosphopeptides

in a sample, whereas in kinase substrates, sequence features

such as Pro-directed, basophilic, acidophilic, and tyrosine-con-

taining motifs have an important influence (Villen et al., 2007).
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Also, since biological importance does not necessarily correlate

with protein expression levels, it is possible that important sig-

nals are transduced via specific kinases that are expressed at

extremely low levels. Therefore, advanced pre-fractionation or

enrichment methods before LC-MS/MS are needed to identify

a wide range of kinase substrates (Tsai et al., 2014). Especially

for low-abundance pY peptides, MS detectability is affected

by the ionization suppression caused by the presence of more

abundant pS and pT peptides in the complex phosphopro-

teomes. However, the combination of metal affinity chromatog-

raphy with immunoaffinity purification using a pY antibody (Abe

et al., 2017) or a recently developed SH2 domain-derived pY-

superbinder (Bian et al., 2016; Dong et al., 2017) has been re-

ported to increase the identification of pY peptides. In addition,

immunoaffinity-based methods using multiple antibodies have

been developed for the identification and quantitation of phos-

phopeptides derived from proteins in various pathways or pY

peptides derived from tyrosine kinases (Stokes et al., 2012).

Nevertheless, a large amount of starting material (1–10 mg)

is generally necessary for deep tyrosine phosphoproteome

analysis.

One of the major advantages of multiplexed isobaric tandem

mass tag (TMT)-based methods for relative quantitation is that

the differentially labeled peptides appear as a single peak at

the MS1 level (Thompson et al., 2003), enhancing the detect-

ability of low-abundance peptides. TMT strategies using a large

amount of relevant ‘‘boosting’’ (or ‘‘carrier’’) peptides labeled

with one or several TMT channels have been successfully used

for single-cell proteomics analysis (Budnik et al., 2018; Dou

et al., 2019; Tsai et al., 2020). For instance, Yi et al. (2019) devel-

oped a Boosting to Amplify Signal with Isobaric Labeling (BASIL)

strategy to quantify more than 20,000 phosphorylation sites in

human pancreatic islets. However, the identification number of

pY peptides was less than 1%. Recently, Chua et al. developed

a Broad-spectrumOptimization Of Selective Triggering (BOOST)

method, in which pervanadate (a tyrosine phosphatase inhibi-

tor)-treated cells were used as a boosting channel to increase

the detectability of pY peptides (Chua et al., 2020). The BOOST

method coupled with antibody-based pY enrichment could

quantify more than 2,300 unique pY peptides. However, the

required amount of starting material was in the milligram range,

making it difficult to apply to small samples such as clinical spec-

imens, which often contain less than 100 mg of extractable

material.

We previously developed an LC-MS/MS-based in vitro kinase

assay using dephosphorylated lysate proteins as the substrate

source for in vitro kinase reactions to profile human protein ki-

nomes (Imamura et al., 2014). A total of 175,574 direct kinase

substrates were identified from 354 wild-type protein kinases,

21 mutant protein kinases, and 10 lipid kinases (Sugiyama

et al., 2019). In addition, we used the in vitro kinase reactions

with CK2, MAPK, and EGFR to generate phosphopeptides

with targeted motifs to measure the phosphorylation stoichiom-

etry of more than 1,000 phosphorylation sites, including 366 low-

abundance tyrosine phosphorylation sites (Tsai et al., 2015).

In the present study, we aimed to develop a motif-centric TMT

approach in which phosphopeptides having targeted sequence

motifs are generated by in vitro kinase reactions for the boosting
2 Cell Reports Methods 2, 100138, January 24, 2022
TMT channel to increase the detectability of kinase substrates,

including tyrosine kinase substrates, without immunoaffinity

enrichment. To demonstrate the feasibility of this strategy, phos-

phopeptides with targeted motifs of CK2, PKA, CDK1, ERK2,

JNK1, p38a, SRC, and EGFR were used for the boosting TMT

channel tomonitor the perturbation of kinase-mediated signaling

pathways by tyrosine kinase inhibitor treatment.

RESULTS

Workflow for isobaric motif-centric phosphoproteome
analysis
We previously developed a motif-centric approach (Tsai et al.,

2015) in which dephosphorylation and isotope tagging are inte-

grated with in vitro kinase reactions to improve the sensitivity

and reproducibility for determining the absolute phosphorylation

stoichiometry of targeted kinase substrates. However, the num-

ber of phosphosites commonly identified in endogenous and

motif-centric phosphopeptides was not as large as expected,

because some endogenous signals with specific kinase motifs

are below the detection limit. In this study, we developed a

motif-centric approach in which the same peptides from

different samples were labeled with multiplexed TMT reagents

and assembled as a single peak at the MS1 level to increase

the sensitivity. In addition, we set one of the TMT channels for

signal boosting, using phosphopeptides having targeted

sequence motifs generated by in vitro kinase reactions to in-

crease the detectability of targeted kinase substrates. The entire

workflow is shown in Figure 1. The motif-centric peptides are

generated by in vitro kinase reactions using Pro-directed, acido-

philic, basophilic, or tyrosine kinase (Figure 1A). The same bio-

logical resource (same cell type or tissue) can be used to accom-

plish the back-phosphorylation (Li et al., 2016; Mundina-

Weilenmann et al., 1991) without any pre-dephosphorylation

process(Tsai et al., 2015). In vitro kinase reactions both at the

protein and tryptic peptide levels can be used in most cases,

except for basophilic kinase reactions, where tryptic peptides

cannot be used as substrates owing to the lack of K or R at the

N-terminal side of the phospho accepting sites. In such a case,

the kinase reactions at the protein level, followed by tryptic

digestion, is used to generate the basophilic motif-centric phos-

phopeptides. After TMT labeling, phosphopeptides are enriched

by immobilized metal ion affinity chromatography (IMAC) and

analyzed by nanoLC-MS/MS. We recently reported that TMT-

labeled phosphopeptides tend to pass through TiO2 columns

(Ogata et al., 2021), and the same phenomenon was also

observed in IMAC system (Figure S1). Therefore, the IMAC pro-

tocol has been modified to increase the recovery of TMT phos-

phopeptides by decreasing the concentration of acetic acid in

the loading buffer from 6% to 0.5%. We used this modified

TMT-IMAC protocol for all experiments unless otherwise noted.

In tandem MS, the TMT-labeled precursor ions from the

endogenous and back-phosphorylated peptides are fragmented

and the assembled signals in b or y ions are helpful for peptide

identification, especially for endogenous phosphopeptides with

low abundance (Figure 1B). The relative quantitation of endoge-

nous phosphopeptides across different samples is done by the

use of reporter ions at the MS3 level, by the implementation of
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Figure 1. Workflow of isobaric motif-centric

phosphoproteomics with in vitro kinase reac-

tions

(A) The motif-centric peptides were generated by

in vitro kinase reactions. Tryptic peptides from study

samples and motif-centric peptides were labeled

with different isobaric tags (TMT in this study). After

mixing, the TMT-labeled phosphopeptides were

enriched and analyzed by LC-MS/MS.

(B) TMT-labeled ions from endogenous and motif-

centric phosphopeptides are assembled as a single

peak at the MS1 level and then fragmented at the

MS2 level to identify the peptide sequence. Relative

quantification of endogenous phosphopeptides

between different samples is achieved by reporter

ions at the MS3 level.
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synchronous precursor selection (SPS)-based MS3 technology

(McAlister et al., 2014), which can decrease the interference sig-

nals owing to co-isolation of precursor ions.

Acidophilic motif-centric phosphoproteome analysis
We first used the motif-centric TMT approach to quantify the ki-

nase-perturbed phosphorylation changes in HeLa cells using

CK2 kinase inhibitor (CKi, Silmitasertib, CX-4945). The tryptic

peptides from CKi-treated HeLa cells were phosphorylated by

CK2 in vitro and labeled with both TMT128 and TMT131 for CK2

motif-centric boosting channels. The phosphopeptides from

DMSO-treated cells were labeled with both TMT126 and

TMT129, and phosphopeptides from CKi-treated cells were

labeled with both TMT127 and TMT130. An MS2 spectrum and

an MS3 spectrum of a known CK2 substrate, the pS66 site in

LIG1, are shown in Figure 2. After fragmentation by collision-

induced dissociation, the peptide sequence and phosphosite

localization information can be annotated at the MS2 level (Fig-

ure 2A). Then, the MS3 spectrum was obtained, demonstrating

that the TMT signals of endogenous phosphopeptides were

decreased after the CKi treatment (TMT127 and TMT130 in Fig-

ure 2B) and that the TMT signals of CK2-motif targeting phos-

phopeptides were increased after in vitro kinase reactions

(TMT128 and TMT131 in Figure 2B). These results indicate that

this isobaric motif-centric approach can be used to monitor

CK2 phosphorylation signaling in terms of the TMT ratios.

In total, this isobaric motif-centric approach quantified 4,559

unique phosphopeptides (91% specificity in phosphopeptide

enrichment) from 25 mg of peptides per channel. The logarithm

of the median ratio of CKi-treated to untreated peptides was

negative, while the logarithm of the median ratio of motif-centric

(CK2-motif) to CKi-treated peptides was positive and this in-

crease was larger than the decrease caused by CKi treatment

(Figure 2C), indicating that the in vitro kinase reactions effectively
Cell Rep
increased the TMT signals of peptides

directly phosphorylated by CK2. Silmita-

sertib has been used to exclusively inhibit

CK2 activity in previous studies(Chon

et al., 2015; Wang et al., 2017). Therefore,

we can discriminate direct CK2 substrates

from others by comparison of TMT ratios
such as CKi/DMSO and CK2-motif/CKi using the Student t

test. Based on the CKi/DMSO ratios, 66 (1.6%) up-regulated

and 750 (18%) down-regulated phosphorylation sites were iden-

tified (Figure 2D). Among the down-regulated phosphorylation

sites, up to 35% (n = 266) were significantly increased after

in vitro kinase reactions (group B in Figure 2D). After sequence

motif analysis (O’Shea et al., 2013), we found that the sequence

motif of the phosphopeptides in group B agreed with the known

CK2 substrate motif (acidic motif), whereas the motif logo from

group A contained both Pro and Asp at the +1 position (Fig-

ure 2D). Among the phosphorylation sites (n = 266) in group B,

222 sites were registered in a public phosphorylation sites data-

base (Hornbeck et al., 2015), including six known CK2 sub-

strates: PTGES3 (S113), LIG1 (S66), SLC3A2 (S375), CDK1

(S39), TOP2A (S1377), and ABCF1(S110). For group B proteins,

we also examined the overlap with CK2 interactors in STRING

and found 20 known CK2 interactors (Figure 2E). We further per-

formed Gene Ontology and Reactome Pathway enrichment

analysis for group B proteins (Szklarczyk et al., 2019). As a result,

137 proteins in group B were annotated as nuclear proteins, and

a majority of them possessed functions related to ATP binding,

DNA binding, nucleotide binding and so on (Table S1). Among

the annotated pathways, the top hit was the cell cycle pathway,

in which 21 group B proteins were down-regulated, including

CDK1, a known CK2 substrate that affects cell cycle regulation

upon S39 phosphorylation (Bloom and Cross, 2007; Russo

et al., 1992) (Figure 2F). All these results indicate that this

motif-centric approach is an effective tool for monitoring specific

kinase-mediated signaling pathways.

Basophilic motif-centric phosphoproteome analysis
The isobaric motif-centric approach was further examined with

PKA as a basophilic kinase, using forskolin as an activator.

Unlike acidophilic CK2, PKA cannot be used to generate
orts Methods 2, 100138, January 24, 2022 3
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Figure 2. Typical example of the isobaric CK2 motif-centric phosphoproteomic approach

(A) An MS/MS spectrum of TMT-labeled phosphopeptide (V L Gp S E G E E E D E A L S P A K, triply charged). Product ions at the MS2 level identified the peptide

sequence and phosphorylation site localization.

(B) An MS/MS/MS spectrum at the 6-plexed TMT reporter ion region. Three samples (DMSO, CKi-treated, and CK2 motif-centric phosphopeptides) in duplicate

preparations, labeled with 6-plexed TMT reagents, were quantified at the MS3 level.

(C) The ratio distribution on a log2 scale of identified phosphopeptides. Left bar: CKi/DMSO, right bar: motif-centric/CKi.

(D) Quantitation result for CKi treatment. The red and green parts in the pie chart mean up-regulated and down-regulated phosphorylation sites after CKi

treatment, respectively. The blue bar indicates the amount of phosphorylation sites significantly increased after in vitro kinase reactions (CK2-motif centric

peptides). Sequence motif analysis of the down-regulated phosphorylation sites after CKi treatment was performed for CK2-motif centric peptides (group B) and

other peptides (group A).

(E) Protein-protein interaction analysis by STRING. Twenty proteins were identified as overlapped proteins between CK2 direct interactors in STRING and group

B proteins.

(F) Proteins in the cell cycle pathway identified by REACTOME pathway enrichment analysis of group B proteins. Duplicate sample preparation and duplicate

LC-MS/MS analyses were performed for each TMT set as shown in Table S3.
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motif-centric peptides from tryptic peptides because it requires

basic amino acid residues at the N-terminal side of the phospho-

acceptor. Therefore, PKAmotif-centric peptides were generated

by in vitro kinase reactions at the protein level, followed by tryptic

digestion (Figure 1A). After the isobaric labeling, the TMT ratios

of three channels, forskolin-treated, DMSO-treated, and motif-

centric samples, were used to discriminate the peptides phos-

phorylated directly by PKA from others, as in the case of CK2.

The results are illustrated in Figure S2. In total, we quantified

7,855 phosphorylation sites from biological replicate experi-

ments. Among them (Figure S2A), 620 phosphorylation sites

were up-regulated (group 1) and 322 phosphorylation sites

were inhibited by forskolin (group 2). We previously established

a computational model (primary sequence preference [PSP

score]) to characterize the kinase sequence specificity toward

the substrate target site based on known kinase-substrate rela-

tionships, to exclude potential indirect targets of PKA (Imamura

et al., 2017). We applied PSP scoring to the phosphorylation

sites in groups 1 and 2, and found that the PSP scores of group

1 were significantly higher than those of group 2, although the

sequence motifs of phosphorylation sites in groups 1 and 2

both belonged to the basophilic category (Figure S2B). Based
4 Cell Reports Methods 2, 100138, January 24, 2022
on the above results, the motif-centric approach was able to

discriminate peptides phosphorylated directly by PKA from indi-

rectly phosphorylated ones.

Tyrosine motif-centric phosphoproteome analysis
Although the detectability of pY sites has been restricted by their

extremely low phosphorylation stoichiometry compared with pS

and pT sites(Sharma et al., 2014; Tsai et al., 2015), this lower

stoichiometry results in a larger amount of unphosphorylated

counterparts, which can be used for back-phosphorylation. To

increase the identification number of pY sites, we firstly tried to

use pervanadate (PV)-treated HeLa cells as a pY-centric sample

(Figure S3A). PV is well-known as a tyrosine phosphatase inhib-

itor causing an increase in the stoichiometry of endogenous pY

sites (Sharma et al., 2014). As expected, the pY content was

increased from 0.8% to 11.7% (Figure S3B) by PV treatment.

Then we used the PV-treated peptides as pY-centric peptides

with 25 mg of untreated HeLa peptides. Indeed, the number of

quantifiable pY sites increased from 74 to 595 as the spiking

amount of the pY-centric peptides was increased from 0 to

150 mg, without any antibody-based enrichment (Figure S3B).

The amplified signals caused by the spiked pY peptides resulted
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(A) The content (%) of identified pY sites using PV-treated, SRC and EGFR phosphorylated peptides as the pY-centric samples.

(B) The number of pY sites identified in each experiment. A quantifiable site is defined as a pY site having signal intensities in at least 2 TMT reporter channels.

Otherwise, pY sites are considered as missing values.

(C) The content of quantifiable pY sites filtered by boost ratio, defined as the TMT signal at m/z 131 divided by the averaged signal at m/z 127 and 129.

(D) The overlap and the sequence logos of boost ratio-filtered quantified pY sites between different motif-centric approaches

(E) The principal component analysis of commonly quantified pY sites (filtered). Duplicate sample preparation with one LC-MS/MS analysis with a long silica

monolith column were performed for each TMT set as shown in Table S3.
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in a much larger number of identified pY sites than in usual phos-

phoproteome analysis. However, the number of identified pY

sites was still lower than that obtained using the recently pub-

lished antibody-based boosting strategy (Chua et al., 2020),

which also used PV-treated cells as boosting samples to quan-

tify more than 2,300 unique pY peptides from 1 mg of starting

materials.

To extend the tyrosine phosphoproteome coverage, the back-

phosphorylation sites of the untreated HeLa peptides were

phosphorylated via in vitro kinase reactions by using tyrosine ki-

nases such as EGFR and SRC. Note that EGFR and SRC have

different phosphorylation motifs (Sugiyama et al., 2019). Then,

the kinase-treated peptides were labeled with one of the 6-

plexed TMT reagents (each TMT channel contained 25 mg tryptic

peptides), to detect the endogenous pY sites in EGF or EGF/afa-

tinib (EGFR inhibitor)-treated HeLa cells (Figure S3A). After TMT

labeling followed by IMAC enrichment, the TMT-labeled endog-

enous phosphopeptides mixed with PV treated, EGFR-centric or

SRC-centric phosphopeptides were analyzed on a 2-m-long

monolithic silica column system with the SPS-MS3 technique

(McAlister et al., 2014). Compared with the result from PV-

treated HeLa as pY motif-centric peptides, the content of pY
increased from 15% to 87% (Figure 3A), which resulted in an

approximately 10-fold increase in the numbers of identified

and quantified class 1 pY sites (localization probability >0.75),

as shown in Figure 3B. However, Cheung et al. (2021) reported

that the isobaric labeling-based quantitative approaches have

technical limitations that potentially affect data quality and bio-

logical interpretation, owing to the large amounts of spiked car-

rier samples. In addition, it is difficult to control the TMT ratio

within the quantifiable range because the phosphorylation stoi-

chiometry in cells depends on each pY site. Furthermore, we

should reject TMT peptides without reporter ion signals in the

sample channels. Therefore, we examined the distribution of

the TMT reporter ion intensity of each sample channel and found

a notch to discriminate the signal from the noise (Figure S3C);

this was also mentioned in the previous study (Hughes et al.,

2017). Based on this observation, we set the acceptance crite-

rion for the minimum TMT intensity in the sample channels to

be greater than 40 on a log2 scale for the total TMT intensity of

the sample channels. We also set another criterion—that the

maximum TMT ratio of the motif-centric channel to the sample

channel should be less than 100 (Figure 3C)—to minimize the

ion sampling effect (Cheung et al., 2021; Tsai et al., 2020). By
Cell Reports Methods 2, 100138, January 24, 2022 5
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applying these two criteria, we found that 668, 5,425, and 3,688

pY sites could be quantified in the PV-treated, EGFR-centric,

and SRC-centric samples, respectively. Among these pY sites,

the sequence motifs of unique pY sites in each dataset were

different (Figure 3D), which indicated that complementary pY

sites can be identified by using different motif-centric peptides.

For quantitation based on the TMT reporter ion intensities, the

EGF and EGF-afatinib treated cells were separated in the prin-

cipal component analysis (Figure 3E). The above results demon-

strate that this motif-centric approach through spiking isobaric

pY peptides with high purity was able to increase the detect-

ability of pY sites without the need for pY-specific affinity purifi-

cation, such as using pY antibodies.

We further evaluated the spiking effect of the carrier/boost

amount of motif-centric peptides on the number of quantifiable

phosphosites. Different amounts of TMT-labeled peptides (5,

10, 25, and 60 mg) from untreated HeLa cells were mixed with

different amounts (5, 25, and 125 mg) of pY motif (EGFR)-centric

peptides (Figure 4A). In these experiments, we applied a nano-

scale solid phase TMT labeling protocol to phosphopeptides en-

riched by TiO2 chromatography to accommodate smaller

amounts of peptides (Ogata et al., 2021). The distribution of

the quantifiable pY site fraction for different boost ratios is shown

in Figure 4B. When we applied the acceptance criterion that the

boost ratio should be less than 100, a higher fraction of pY sites

was obtained as we increased the amount of endogenous pep-

tides with the constant amount of motif-centric peptides. The

same tendency was observed for the number of quantifiable

pY sites (Figure 4C). As the amount of the endogenous peptides

increased, the number of quantifiable pY sites increased linearly,

regardless of the amount of motif-centric peptides. In contrast,

when the amount of the endogenous peptides was limited,

the number of quantifiable pY sites were saturated or even

decreased with increasing amounts of motif-centric peptides.

Based on these results, in this study, the peptide amount per

TMT channel was set to 25 mg for both endogenous and motif-

centric channels.

Multiple motifs-centric approach to depict perturbed
phosphoproteome
We further used multiple kinases to generate a wide variety of

motif-centric peptides to monitor the phosphorylation signals

generated by different kinases. For proof-of-concept, we

analyzed the phosphoproteome of EGF-treated and EGF/afati-

nib co-treated HeLa cells. We selected four Pro-directed kinases

(ERK1 [MAPK3], JNK1 [MAPK8], p38a [MAPK14] and CDK1),

two tyrosine kinases (SRC and EGFR), and one acidophilic ki-

nase (CK2) to detect the different motif-centric phosphorylation

sites (Figure S4A). After applying the following acceptance

criteria—the boost ratio should be less than 100, the total TMT

intensity of the sample channels must be greater than 40 on a

log2 scale, and two valid TMT values must be obtained in at least

one of duplicate channels—up to 11,895 class 1 phosphorylation

sites were quantified, including 5,045 pS, 1,756 pT, and 5,094 pY

sites (Figure 5A). Of the 11,895 quantifiable class 1 phosphoryla-

tion sites, up to 8,482 were quantified as motif-centric phospho-

peptides, indicating that endogenous peptides that are not

motif-centric do not interfere with the quantification of the target
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phosphopeptides under the current conditions. According to the

Student t test (EGF vs. EGF/afatinib), the ratio of commonly regu-

lated phosphorylation sites was consistent between experi-

ments using different kinases, regardless of the kinase used (Fig-

ure 5B), indicating that the boosting channel did not significantly

affect the quantitative results.

In addition to identifying which phosphorylation sites were

regulated after afatinib treatment, we were also able to estimate

which kinases phosphorylated which sites by using this motif-

centric approach. For example, up to 18 class 1 phosphorylation

sites, including 7 pY sites, on EGFR kinase were quantified

without any immunoprecipitation step from 25 mg of starting ma-

terials per TMT channel (Figure 5C). Among these sites, pY1144

is a known autophosphorylation site which was down-regulated

by afatinib and detected in the EGFR motif-centric experiment.

This result indicates that the activity of this phosphorylation

site is controlled by EGFR and also inhibited by afatinib. In

contrast, pS1051 and pS992 were down-regulated by afatinib,

but there is no information about the corresponding kinase in

the public database. Through this motif-centric approach, we

could determine that pS1051 and pS992 are likely phosphory-

lated by CK2 and ERK2, respectively.

Another advantage of the motif-centric approach is the spec-

ificity of the in vitro kinase reactions. The Student t test (EGF/afa-

tinib vs. motif-centric) revealed a low overlap of motif-centric

peptides among the kinases (Figure 5D). Although ERK2,

JNK1, p38a, and CDK1 are all Pro-directed kinases, comple-

mentary profiles for the quantified motif-centric phosphorylation

sites were observed (Figure 5D). The motif logos of these sites

showed slight differences among the four Pro-directed kinases

(Figure S4B). For example, the proportion of pT motifs was

higher with p38a kinase. In addition, more acidic amino acids

were located at the C-terminal side of the phospho-acceptor

site in the case of ERK2 kinase compared with CDK1 kinase.

In addition to S/T sites, the pY motifs also differed between

EGFR- and SRC-centric phosphopeptides (Figure S4C).

Furthermore, from the two ratios (EGF vs. motif-centric and

EGF/afatinib vs. motif-centric), we can estimate the stoichiom-

etry of motif-centric phosphorylation sites (Figure 5E), assuming

that the efficiency of in vitro kinase reactions is 100%. The phos-

phorylation sites containing acidophilic kinase substrates tar-

geted byCK2 generally exhibited higher phosphorylation stoichi-

ometry than sites targeted by Pro-directed kinase and tyrosine

kinases. The phosphorylation stoichiometry distribution that we

observed here is consistent with our previous findings (Tsai

et al., 2015). To further validate that the endogenous signals

boosted by motif-centric peptides are lower than other peptide

signals, the peak areas in the XICs of MS1 signals of quantified

phosphopeptides were calculated based on the proportion of

TMT intensity (Figures S4D and S4E). The XICs of endogenous

phosphopeptides boosted by the motif-centric peptides were

lower than those of other phosphopeptides, which indicates

the motif-centric approach is effective to identify these low-

abundance kinase substrates.

In this motif-centric approach, a specific kinase can be chosen

to target an endogenous peptide that is phosphorylated by that

kinase. To confirm this, 8,482 motif-centric phosphopeptides

prepared with these seven kinases were subjected to KEGG
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Figure 4. Effects of the boost ratio of spiking motif-centric peptides on quantifiable pY sites

(A) Different amount of TMT labeled peptides from un-treated HeLa cell (5, 10, 25, and 60 mg) were mixed with different amount (5, 25, and 125 mg) of pY motif

(EGFR)-centric peptides. After phosphopeptides enrichment, the TMT-labeled phosphopeptides were analyzed by LC-MS/MS.

(B) The distribution of the quantifiable pY site fraction for different boosting ratios.

(C) The number of detected pY sites under different amount of motif-centric peptides (boost ratio <1003). Triplicate sample preparation of 4 different amount of

HeLa peptides with three different amounts of pY motif-centric peptides was performed and triplicate LC-MS/MS analyses were performed for each TMT set as

shown in Table S3.
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Figure 5. Summary of motif-centric phosphoproteomic approach with multiple kinases
(A) The number of quantified phosphorylation sites (class 1) obtained using different kinases.

(B) The ratio correlation of commonly regulated phosphorylation sites (EGF vs EGF/afatinib, p < 0.05) in experiments with different kinases.

(C) The motif-centric sites (red color) among quantified phosphorylation sites in EGFR.

(D) The overlap of motif-centric phosphorylation sites between the samples with different kinases asmotif-centric samples (left), and the sequence motif analysis

for the ERK2 and CDK1 centric phosphorylation sites (right).

(E) The phosphorylation stoichiometry distribution of motif-centric phosphorylation sites with 10 mM EGF (red) and 10 mM EGF/10 mM afatinib (green) treatment.

The stoichiometric values of the phosphosites were calculated from the ratios of the signal in the endogenous peptide channel to the signal in the motif-centric

back phosphorylation channel. After sorting the stoichiometric values in ascending order, the cumulative fraction percent and the corresponding stoichiometry

were then calculated. Duplicate sample preparation and two or three replicate LC-MS/MS analyses were performed for each kinase as shown in Table S3.
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pathway enrichment analysis using DAVID (Huang da et al.,

2009). As a result, known pathways involving the seven kinases,

such as ErbB and insulin signaling, were enriched as expected

(Figure 6A and Table S2). We then mapped the responsible ki-

nases for the in vitro phosphorylation sites on the 33 phospho-

proteins comprising the ErbB pathway identified in this enrich-

ment analysis (Figure 6B), showing how the kinases used for

motif-centric peptides covered the targeted phosphosites within

the targeted pathway. In other words, we canmanipulate the tar-

geted pathway by choosing the appropriate kinases, using our

large-scale library of in vitro kinase-substrate relationships (Su-

giyama et al., 2019). Overall, our findings indicate that the

motif-centric approach can provide system-wide customizable

maps consisting of targeted pathways under physiological or

pathological regulation.

DISCUSSION

Previously, thekinaseassay-linkedphosphoproteomicsapproach

(Xue etal., 2012, 2013) hasbeendeveloped tofindpotential kinase

substrateswhichwere found in the overlap of the in vitrophospho-

peptides generated by kinase reactions with dephosphorylated

peptides and in vivo kinase-dependent phosphorylation events

in different LC-MS/MS runs. However, the dephosphorylation is

not complete, and thismay result in the false-positive identification
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ofputative kinasesubstrates. Inaddition, theanalytical throughput

is still limited by the need formultiple LC-MS/MSanalysis, and the

background effect owing to incompletely dephosphorylated pep-

tides decreases the detection sensitivity for putative kinase sub-

strates. To tackle these challenges, the isobaric motif-centric

approach developed in this study can link in vitro substrates and

physiological phosphorylation events bymonitoring both endoge-

nous and back (specific kinase motif-targeting) phosphorylated

signals in a single LC-MS/MS run without the need for a further

dephosphorylation step, thereby enabling the high-throughput

analysis of putative kinase substrates.

Unlike metal affinity chromatography for enrichment of phos-

phopeptides, motif-specific immunoaffinity precipitation (IAP)-

based LC-MS/MS makes it possible to recognize a character-

istic sequence motif from a broad range of peptides by using

different motif antibodies. Because each antibody binds phos-

phopeptides followed by a specific peptide motif, the overlap

of identified phosphopeptides among different antibodies is

low. The results of this approach are similar to those obtained

with our motif targeting approach (Figure 4D), in which recogni-

tion between kinase and peptides is based on the specific

sequence motif (Stokes et al., 2015; Sugiyama et al., 2019).

The overlap between a given antibody andmetal affinity chroma-

tography ranged from roughly 16% with the all Ser/Thr antibody

mix, to a low of only 3.6% with pY-1000 (Stokes et al., 2015).
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Figure 6. Pathway enrichment analysis of motif-centric phosphorylated sites with multiple kinases

(A) KEGG pathway enrichment analysis by DAVID.

(B) Phosphorylation sites on proteins enriched in the ErbB signaling pathway and the corresponding kinases.
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Anthony et al. aimed to enlarge the phosphoproteome coverage

by using both TiO2 followed by basic pH reversed-phase frac-

tionation and motif-specific IAP with four different phosphoryla-

tion motif-specific antibodies (Possemato et al., 2017). In total,

8,947 nonredundant peptides were identified in the TiO2 dataset,

of which only 852 (9.5%)were in commonwith the peptides iden-

tified in the IAPs. These results suggest that the range of phos-

phorylation within a given system is so broad that no single

approach is likely to provide comprehensive coverage.

In the case of IAPs, the specificity of the antibodies is not high

enough to distinguish phosphopeptides with similar motifs; for

example, MAPK phosphorylates substrates with the consensus

sequence PX(S/T)P and CDKs phosphorylate substrates con-

taining the consensus sequence (S/T)PXR/K (Songyang et al.,

1996). However, the complementary regulated motif-centric

phosphorylation sites (Figures 5D and S4B) were differentiated

in this study, even though the kinases all belong to the same

Pro-directed kinase group. The motif-centric approach was

also able to distinguish the motif difference (PX(S/T)P and

(S/T)PXR/K) for ERK2 and CDK1 (Figure 5D). In addition, the pu-

rification specificity in IAP (<50%) is much lower than that in the

metal affinity-based approach (Possemato et al., 2017), which

means that milligram amounts of starting materials are neces-

sary for the IAPs method. For our isobaric motif-centric

approach, we obtained a purification specificity of more than

90% (Figure S4F). In addition, the IAPs approach uses selected

antibodies to isolate targeting peptides, and this may cause un-

necessary sample loss during the purification step. In contrast,

the motif-centric approach uses kinase to recognize specific

substrates and transfer the phosphate group to back-phos-

phorylated peptides. Endogenous phosphopeptides, especially

low-abundance tyrosine phosphopeptides, are not removed
before IMAC enrichment. Therefore, only a few tens of micro-

grams of material was required for our isobaric motif-centric

approach.

Recently, a novel antibody-based method, called PTMScan

Direct, was developed for the identification and quantitation of

peptides derived from proteins that are critical signaling nodes

of various pathways (Stokes et al., 2012). However, the coverage

of the IAPs approach is still limited by the availability and quality

of antibodies. In contrast, recombinant active kinases are much

more readily available than antibodies. In our previous study (Su-

giyama et al., 2019), we were able to identify a total of 175,574

potential direct kinase substrates by using 385 active kinases

(354 wild-type protein kinases, 21 mutants, and 10 lipid kinases).

Based on this kinase substrate library, it is easily possible to

select multiple kinases for targeting pathway analysis.

The multiplexing nature of isobaric labeling is particularly use-

ful to achieve greater sensitivity with limited individual sample

amounts, as in the case of tyrosine phosphopeptides. Chua

et al. (2020) and Fang et al. (2020) used samples with andwithout

PV (tyrosine phosphatase inhibitor)-treated cells as a boosting

channel to increase the relative abundance of tyrosine phos-

phorylation sites. Although approximately 2,300 (Chua et al.,

2020) and 835 pY phosphopeptides (Fang et al., 2020) were

detected, the required amount of starting material is at the milli-

gram level. In addition, the use of antibodies for pY phosphopep-

tides enrichment is also necessary for their approach. Here, in

contrast, we generate higher purity tyrosine phosphopeptides

via in vitro kinase reactions (motif-centric). By usingmotif-centric

peptides, we could detect up to 7,129 (SRC targeting) and 7,280

(EGFR targeting) tyrosine phosphopeptides without the need for

immunoprecipitation, using only a few tens of mg of starting

materials.
Cell Reports Methods 2, 100138, January 24, 2022 9
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Conclusions
The isobaric motif-centric strategy presented here can be used

to enhance the sensitivity of specific kinase downstream

signaling analysis, especially for tyrosine phosphopeptides. It

provides a simple yet highly effective quantitative phosphopro-

teomic workflow suitable for multiplexed analysis of relatively

small biological or clinical samples (less than milligram size),

including cells or tissues. This approach enables the quantitation

of both fold-change and stoichiometry among thousands of

phosphopeptides generated by specific kinases in signaling

pathways. The use ofmultiple kinases for motif targeting analysis

effectively increases the phosphoproteome coverage. Overall,

we anticipate this strategy should find broad biomedical applica-

tions for targeting kinase/pathway analysis where limited

amounts of starting cells or tissues are available.

Limitations of the study
Although the performance of isobaric labeling-based quantita-

tive approaches is affected by co-selected precursor ions, the

use of SPS-MS3 can minimize this effect and improve the detec-

tion sensitivity by using co-fragmented multiple (%10) MS2 frag-

ment ions with higher intensity (McAlister et al., 2014). Moreover,

the newly available Real Time Search-MS3 method (RTS-MS3)

(Erickson et al., 2019) or ion mobility technique (Bekker-Jensen

et al., 2020; Hebert et al., 2018; Ogata and Ishihama, 2020) pro-

vides a solution for precise and accurate quantitation without

sacrificing proteome coverage. Recently, the use of spiked

TMT labeling peptides with boosting or carrier samples has

decreased the TMT reporter ions dynamic range and decreased

the quantitation accuracy (Tsai et al., 2020). Cheung et al. (2021)

and Stopfer et al. (2021a) also demonstrated that an increase in

carrier proteome level requires a concomitant increase in the

number of ions sampled to maintain quantitative accuracy.

Therefore, it will be important to optimize the spiking amount

of carrier/boosting and the TMT channel design for the isobaric

motif-centric strategy. As shown in Figure S7, the spiking

amount of carrier/boosting affected the number of quantifiable

pY sites (boost ratio <100). In addition, optimization of the MS

parameters to improve the ion sampling by adjusting the ion in-

jection time and AGCwill also be beneficial to improve the quan-

titation performance (Cheung et al., 2021; Tsai et al., 2020). To

overcome the challenge presented by the large quantitation dy-

namic range, it may be useful to integrate the motif-centric

approach with isotope-based SureQuant (Stopfer et al., 2021b)

or Internal Standard Triggered-Parallel Reaction Monitoring

(Gallien et al., 2015) quantitation.

For the phosphorylation stoichiometry, it was assumed that

the kinase reaction efficiency was 100%. Similar to our previous

motif-targeting approach for measuring phosphorylation stoichi-

ometry (Tsai et al., 2015), we used a high concentration of ATP

(1 mM) and a long incubation time (overnight) to maximize the ef-

ficiency of the reaction. However, it is not always possible to

achieve 100% kinase reaction efficiency for all sites. If the reac-

tion efficiency is not 100%, then the measured stoichiometry will

be overestimated.

Although we used a single kinase to produce the motif-centric

peptides for each TMT set, it is possible to pool multiple kinase

products to increase the throughput of this analysis. However,
10 Cell Reports Methods 2, 100138, January 24, 2022
before applying this method to real samples, it is necessary to

optimize how many and what kinases can be combined to avoid

excessive increase in sample complexity and dynamic range.

Otherwise, the quantification of peptides with low amounts

would be problematic.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

HeLa S3 cells were cultured in DMEM containing 10% fetal bovine serum and 100 mg/mL kanamycin. For isobaric acidophilic motif-

centric phosphoproteomes, cells were not stimulated (mock) or were stimulated with 10 mM CK2 inhibitor (CX-4945) for 30 min. For

isobaric basophilic motif-centric phosphoproteomes, cells were not stimulated (mock) or were stimulated with 10 mM PKA activator

(forskolin) for 30 min. For isobaric tyrosine and multiple motif-centric phosphoproteome, cells were treated with 10 mM EGF, 10 mM

EGF/10 mM afatinib, and 500 mM PV (pH 10 with 0.14% H2O2), respectively, for 30 min before harvesting. Two biological replicates

were performed.

METHOD DETAILS

Tryptic peptides from HeLa cell lysate
Cells were washed three times with ice-cold phosphate-buffered saline (phosphate-buffered saline, 0.01 M sodium phosphate,

0.14 M NaCl, pH 7.4) and then lysed in lysis buffer containing 12 mM sodium deoxycholate, 12 mM sodium lauroyl sarcosinate in

100 mM triethylammonium bicarbonate. Protein concentration was determined by means of BCA protein assay. The lysates were

digested based on the reported phase-transfer surfactants protocol (Masuda et al., 2008). The digested peptides were desalted

on SDB-XC StageTips (Rappsilber et al., 2007).

In vitro kinase reactions
For acidophilic, Pro-directed and tyrosine kinase reactions, the tryptic peptides were dissolved in 40 mM Tris-HCl (pH 7.5) and incu-

bated with each kinase (0.2 mg CK2, ERK2, JNK1, p38a, CDK1 or SRC) at 37�C overnight for in vitro kinase reactions in the presence

of 1 mM ATP and 20 mM MgCl2. For the EGFR kinase reactions, tryptic peptides were firstly passed through SCX StageTips (Rap-

psilber et al., 2007) to remove afatinib. Eluted peptides were further desalted on SDB-XC StageTips. Then, the desalted peptides

were dissolved in 40 mM Tris-HCl (pH 7.5) and incubated with EGFR (0.2 mg) for in vitro kinase reactions in the presence of 1 mM

ATP and 4 mM MnCl2 at 37
�C overnight. For basophilic kinases such as PKA, the lysates were loaded onto a 10-kDa ultrafiltration

device (Amicon Ultra, Millipore). The device was centrifuged at 14,000 g to remove the detergents. Subsequently, the original lysis

buffer was replaced with 40 mM Tris-HCl (pH 7.5) followed by centrifugation. Then, the proteins were incubated with 0.2 mg PKA for

in vitro kinase reactions in the presence of 1 mM ATP and 20 mM MgCl2 at 37
�C overnight. After the kinase reactions, the proteins

were reduced with 10 mM DTT for 30 min at 37�C and alkylated with 50 mM iodoacetamide in the dark for 30 min at 37�C. The re-

sulting samples were digested by Lys-C (1:100, w/w) at 37�C for 3 h followed by trypsin (1:50, w/w) overnight at 37�C. All the peptides
were desalted on SDB-XC StageTips.

TMT labeling for digested peptides
The desalted peptides were dissolved in 200 mM HEPES (pH 8.5). Then, the resuspended digested peptides were mixed with TMT

reagent dissolved in 100%ACN for 1 h. The labeling reaction was stopped by adding 5%hydroxylamine for 15min, followed by acid-

ification with TFA. All the peptides labeled with each multiplexed TMT reagent were mixed into the same tube and the mixture was

diluted to decrease the concentration of ACN to less than 5%. The TMT-labeled peptides were desalted on SDB-XC StageTips. The

information on the peptide amount in each TMT channel for all experiments is shown in Table S3. Note that the peptide amount for

each TMT channel was quantified by means of nanoLC-UV at 210 nm using a Thermo Ultimate 3000 RSLCnano system (Germering),

an MU701 UV detector (GL Sciences), and a C18 analytical column (150 mm length3 100 mm ID) packed with Reprosil-Pur 120 C18-

AQ material (3 mm, Dr. Maisch).

IMAC
The procedure for phosphopeptides purification with an Fe3+-IMAC tip was as described previously (Tsai et al., 2014, 2015) with mi-

nor modifications. In brief, a buffer consisting of 50 mM EDTA in 1 MNaCl was used for removing Ni2+ ions. Then, the metal-free NTA

was activated by loading 100 mM FeCl3 into the IMAC tip. The Fe3+-IMAC tip was equilibrated with 0.5% (v/v) acetic acid at pH 3.0

before sample loading. Tryptic peptides fromHeLa lysates were reconstituted in 0.5% (v/v) acetic acid and loaded onto the IMAC tip.

After successive washing steps with 1% (v/v) TFA in 80% ACN and 0.5% (v/v) acetic acid, the IMAC tip was coupled to an activated

SDB-XCStageTip and the bound phosphopeptides were eluted onto the SDB-XCStageTip with 200mMNH4H2PO4 buffer. Then, the

eluted phosphopeptides were desalted with SDB-XC StageTip.

LC-MS/MS analysis
NanoLC-MS/MS analyses were performed on an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Scientific), which was

connected to the Thermo Ultimate 3000 RSLCnano system and an HTC-PAL autosampler (CTC Analytics). Peptide mixtures were

loaded onto and separated on self-pulled needle columns (150 mm length 3 100 mm inner diameter) packed with Reprosil-Pur

120 C18-AQ material (3 mm) or a 2-m-long C18 monolithic silica capillary column (Iwasaki et al., 2010). The mobile phases consisted

of (A) 0.5% acetic acid and (B) 0.5% acetic acid and 80% acetonitrile. Peptides were separated through a gradient from 17.5 % to

45%buffer B at a flow rate of 500 nL/min. Full-scan spectra were acquired at a target value of 43105 with a resolution of 60,000. Data
e2 Cell Reports Methods 2, 100138, January 24, 2022
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were acquired in a data-dependent acquisition mode using the top-speed method (3 s). The peptides were isolated using a quad-

rupole system (the isolation window was 0.7). The MS2 analysis was performed in the ion trap using collision-induced dissociation

fragmentation with a collision energy of 35 at a target value of 1 3 104 with 100 ms maximum injection time. The MS3 analysis was

performed for eachMS2 scan acquired by usingmultiple MS2 fragment ions isolated by an ion trap as precursors for theMS3 analysis

with amultinotch isolation waveform (McAlister et al., 2014). HCD fragmentation was used for MS3 scan with an NCE of 65%, and the

fragment ions were detected by the Orbitrap (resolution 15,000). The AGC target was 53104 with a maximum ion injection time of

22 ms. The raw data sets have been deposited at the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.

org) via the jPOST partner repository (https://jpostdb.org) (Moriya et al., 2019) with the dataset identifier JPST001027 (PXD026996).

Data analyses

Database search. The raw MS/MS data were processed with MaxQuant (Cox and Mann, 2008; Tyanova et al., 2016a). Peptide

search with full tryptic digestion and a maximum of two missed cleavages was performed against the SwissProt human database

(20,102 entries). The mass tolerance for precursor and MS3 ions was 4.5 ppm, whereas the tolerance for MS2 ions was 0.5 Th.

Acetylation (protein N-terminal), oxidation (M) and phospho (STY) were set as variable modifications and carbamidomethyl (C) was

set as a fixed modification. The quantitation function of reporter ion MS3 (6-plexed TMT) was turned on. The false discovery rate was

set to 1% at the level of PSMs and proteins. A score cut-off of 40 was used for identified modified peptides.

QUANTIFICATION AND STATISTICAL ANALYSIS

The abundances of TMTwere log2-transformed and further analyzed by Perseus (Tyanova et al., 2016b) for statistical evaluation such

as principal component analyses and t tests. The PSP logo generator (Hornbeck et al., 2015) was used for sequence motif analysis.

DAVID (Huang da et al., 2009) was used for gene ontology and pathway enrichment analysis. STRING v11 (Szklarczyk et al., 2019)

was used for protein-protein interaction analysis. SigmaPlot (Systat Software), was used for preparing box plots.
Cell Reports Methods 2, 100138, January 24, 2022 e3
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