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Abstract: Aedes aegypti is the most important arboviral disease vector worldwide. In Africa, it exists
as two morphologically distinct forms, often referred to as subspecies, Aaa and Aaf. There is a dearth
of information on the distribution and genetic diversity of these two forms in Sudan and other
African Sahelian region countries. This study aimed to explore the distribution and genetic diversity
of Aedes aegypti subspecies using morphology and Cytochrome oxidase-1 mitochondrial marker in
a large Sahelian zone in Sudan. An extensive cross-sectional survey of Aedes aegypti in Sudan was
performed. Samples collected from eight locations were morphologically identified, subjected to
DNA extraction, amplification, sequencing, and analyses. We classified four populations as Aaa and
the other four as Aaf. Out of 140 sequence samples, forty-six distinct haplotypes were characterized.
The haplotype and nucleotide diversity of the collected samples were 0.377–0.947 and 0.002–0.01,
respectively. Isolation by distance was significantly evident (r = 0.586, p = 0.005). The SAMOVA
test indicated that all Aaf populations are structured in one group, while the Aaa clustered into two
groups. AMOVA showed 53.53% genetic differences within populations and 39.22% among groups.
Phylogenetic relationships indicated two clusters in which the two subspecies were structured. Thus,
the haplotype network consisted of three clusters.

Keywords: mitochondrial DNA; cytochrome oxidase-1 (CO1); Aedes aegypti aegypti; Aedes aegypti
formosus; haplotype; Sudan

1. Introduction

Aedes aegypti (Ae. aegypti), which is commonly known as the yellow fever mosquito,
is recognized for the transmission of the most significant arboviral diseases, including
dengue, chikungunya, and zika viruses [1,2] It is estimated that 70% (831 million) of the
African population is vulnerable to arboviral disease infections [3].

This species is a tropical and subtropical mosquito with distribution throughout
the globe but native to Sub-Saharan and African Sahelian regions, including Senegal,
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Cameroon, Kenya, Nigeria, Morocco, Western Sahara, Algeria, Tunisia, Egypt, and Su-
dan [4,5]. Known as the domestic mosquito, Ae. aegypti feeds on humans (anthropophilic)
during the daytime hours. It also rests at indoor sites and breeds within and around the
human environment, particularly in man-made containers (e.g., water jars, barrels, and
tires) [6,7].

Unlike other continents, two forms or subspecies are known in Africa; Ae. aegypti
aegypti (Aaa) and Ae. aegypti formosus (Aaf ). Ae. aegypti aegypti is a light pale brown color
form with white abdominal scales. It is known as the domestic subspecies, with strict
breeding in human-made artificial containers and marked anthropophagy. On the other
hand, Ae. aegypti formosus is darker in color and lacks the white abdominal scales. This
form/subspecies is more sylvatic, breeding in natural habitats, such as tree holes, and more
zoophilic [8,9]. The dark form (Aaf ) is confined entirely to Africa, the south of the Sahara,
its northern borders in Sudan, as shown by Lewis [10]. It has been reported from many
parts of Africa, including Liberia, Kenya, Senegal, Ghana, Uganda, and Sudan. It has been
also suggested that the dark form is perhaps abundant all over Africa [11–15].

The Ae. aegypti subspecies are known to vary in their disease transmission capacity, Aaa
populations have a considerably higher vector competence for both dengue virus (DENV-2)
and YF virus than Aaf [16,17]. Since the two subspecies show different susceptibilities
to dengue viruses, it is important to understand their distribution and role in disease
transmission. Therefore, a number of genetic markers have been developed to understand
genetic variations in Aedes aegypti vectors and the genetic structure of its populations, and
the phylogenetic and genetic diversity of Aedes aegypti have been characterized in different
parts of the world since 1971 [18]. These markers include both biochemical and molecular
tools, such as allozymes, nuclear DNA, microsatellites, and mitochondrial DNA [14,19–23].
Due to their maternal inheritance and rapid divergence, the mitochondrial DNA markers
have been used extensively in phylogenetic, evolutionary, and population genetics studies
of Aedes aegypti worldwide [24]. However, little has been done on the genetic structuring of
the two subspecies in the African Sahelian region.

In Sudan, Ae. aegypti was described for the first time in Khartoum by Balfour
(1903) [25]. In a subsequent study, the vector was reported widely in various geographical
localities in Sudan including the eastern regions (Port Sudan and Kassala), central Sudan
(Wad Medani and Khartoum), western regions (Al Fasher, and Al Junaynah), and the Nuba
mountains in the south [8,25,26]. More recently, several studies documented the presence
of Aedes aegypti in endemic foci of dengue, chikungunya, and yellow fever. The absence
of other possible vectors in these locations suggests the definitive role of Ae. aegypti in
the transmission of the viruses causing these diseases [27–29]. However, no data were
published on infections of the viruses in the vector in the area.

Since the 18th century and for decades, Sudan has suffered from many arboviral dis-
eases [30]. In 1955, Lewis emphasized the role of Aedes aegypti in yellow fever and dengue
outbreaks in the country [10]. This notion was supported by several subsequent reports
since the species was found in all areas where arbovirus outbreaks have occurred [27,30–33].
Dengue fever viruses have existed for decades, particularly in the eastern parts of the coun-
try [30,31,34]; however, recently, in 2015, the first dengue outbreak in the western part
(Darfur) of the country occurred, with considerable other outbreaks having been mentioned
in the country since 1908, and epidemics have continued to occur many times, causing
extensive mortality [27]. Chikungunya viruses have also been reported in Sudan many
times from different geographical areas [35–38] and a recent fatal chikungunya outbreak
was reported in 2018–2019 in various regions in Sudan [30,39]. Yellow fever (YF) outbreaks
have been reported in Sudan since 1940 and continue to occur, with severe outbreaks in
recent decades [30,33].

Despite the crucial involvement of Ae. aegypti as a vector of yellow fever, dengue fever,
chikungunya, and other arboviral diseases in Sudan, little is known about its distribution,
population dynamics, genetic structure, and genetic variations across different endemic ge-
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ographical areas of the country. Proper knowledge of these aspects should help to provide
a better understanding of the epidemiology of arboviral diseases and their control [40].

This study was designed to investigate the distribution and genetic diversity of the
two subspecies of Aedes aegypti across the Sahelian belt in Sudan. Using the cytochrome
oxidase marker, we compared the genetic diversity within and between the two subspecies
in different areas of Sudan.

2. Results
2.1. Morphological and Molecular Identification of Ae. aegypti at Eight Sites of Sudan

We found Ae. aegypti in all eight study sites in Sudan. All samples were identified
by morphological features, without ambiguities. Additionally, the species identification
was positively confirmed by amplification and Rsal restriction enzyme analysis of the ITS1
region (700 bp) from ten Aedes mosquito samples.

The morphological identification of mosquitoes collected in this study showed that
both subspecies of Ae. aegypti are present in Sudan. The 100 adult females that emerged
from samples taken from each site of four towns located in the eastern and central part
of the county, namely Port Sudan (P), Tokar (T), Kassala (K), and Barakat/Gezira (G),
were morphologically identified as the domestic form/subspecies Aaa, while the Aedes
mosquitoes from the western and southern parts (Darfur and Kordofan) were identified as
the wild form/subspecies Aaf: Nyala (N), Al Fasher (F), Al Junaynah (J) and Kadugli (D)
(Table 1). The distribution of the two subspecies was differentiated between the western
and the eastern parts of Sudan, with the White Nile and the main Nile separating the
locations of their respective samples (Figure 1).

Table 1. Samples collection sites, their numbers, and the subspecies distribution, site coordinates, and larval habitats.

Code Site Region Subspecies Coordinates Collection Year Larval Habitats NO

P Port Sudan Coastal/Eastern Aaa 19.617◦37′0′′ N,
37.217◦13′0′′ E 2014

Clay pots, cement
water reservoir,

plastic barrels and
jerrycans

26

T Tokar Eastern Aaa 18.425◦25′ 31′′ N,
37.729◦43′ 45′′ E 2016 Clay pots and

jerrycans. 22

K Kassala Eastern Aaa 15.45◦27′0′′ N,
36.4◦24′0′′ E 2014

Flowerpots,
cement reservoir,

and clay pots.
13

G Barakat/Gezira Central Aaa
14.314◦18′ 50.84′′

N, 33.534◦32′

3.74′′ E
2014 Plastic barrels,

tyres, and bathtubs 20

D Kadugli South Aaf 11.017◦1′0′′ N,
29.717◦43′0′′ E 2015 Tyres, clay pots,

and plastic barrels 30

N Nyala West Aaf 12.036◦2′ 11′′ N,
24.878◦52′ 37′′ E 2016–2017 Clay pots and

jerrycans 16

F Al Fasher Northern West Aaf 13.631◦37′ 50′′ N,
25.35◦21′0′′ E 2017 Clay pots and

jerrycans 22

J Al Junaynah West Aaf 13.45◦27′0′′ N,
22.45◦27′0′′ E 2014

Clay pots, cement
barrels, and plastic

containers
8

NO: number of mosquitoes used in population diversity study, Aaa: Aedes aegypti aegypti, Aaf: Aedes aegypti formosus.

The aquatic stages of Aedes aegypti were collected from different larval habitats inside
homes or around human dwellings. The most dominant larval habitats that yielded most
of the larvae for both Ae. aegypti subspecies were clay-pots, “Zeirr”, used for drinking
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water, followed by barrels and jerry cans, cement water reservoirs, tires, flower vases, old
unused bathtubs, and other water containers (Table 1).
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Figure 1. Map of Sudan showing the location of two subspecies/forms of Aedes aegypti collected in
8 sites. Note all Ae. aegypti aegypti were found in the east, whereas Ae. aegypti formosus was found in
the west, with the main Nile and the White Nile separating their collection sites.

2.2. Mitochondrial Haplotype Analysis

Following the amplification of an 860 bp fragment of the CO1 gene, the successfully
sequenced samples were cleaned and trimmed to generate a final 603 bp fragment of CO1
sequences which was subjected to analyses. Forty-six distinct haplotypes were identified
out of 140 female Aedes aegypti mosquitoes collected from all eight sites in Sudan. The
numbers and diversity of these haplotypes are described in Table 2, and their relationships
are illustrated in the median-joining haplotype network tree shown in Figure 2. Of these
samples, nine haplotypes were shared by more than one individual mosquito, while
37 haplotypes were singletons, detected in a single mosquito (Table 2).

Table 2. Molecular diversity indices and neutrality tests of CO1 mitochondrial sequences of Aedes aegypti subspecies/forms
from eight study sites in Sudan.

Site Subspecies/Form N S H Hd π Tajima’s D Fu’s FS

Port Sudan Aaa/domestic 24 6 5 0.377 0.002 −1.319 −1.142
Tokar Aaa/domestic 25 14 16 0.947 0.007 0.592 −6.792

Kassala Aaa/domestic 13 17 5 0.539 0.008 −0.606 2.254
Barakat/Gezira Aaa/domestic 14 14 5 0.791 0.010 1.500 3.419

Kadugli Aaf /wild 27 26 14 0.920 0.009 −0.892 −2.899
Nyala Aaf /wild 10 10 8 0.933 0.004 −1.507 −4.469

Al Fasher Aaf /wild 21 5 4 0.610 0.003 1.076 1.690
Al Junaynah Aaf /wild 5 11 3 0.700 0.007 −1.200 2.054

N, sample size; S number of polymorphic sites; H, number of haplotypes; Hd, haplotype diversity; π, nucleotide diversity; S, number of
segregating sites; D, Tajima’s statistics; Fu’s FS statistics.
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There was a clear variation in the number of haplotypes in each study site (Table 2).
In descending order, the numbers of haplotypes in different sites were 16 in Tokar, 14 in
Kadugli, 8 in Nyala, 5 in Barakat, Kassala, and Port Sudan, 4 in Al Fasher, and 3 in Al
Junaynah (Table 2). Each site had a number of unique haplotypes not found in other sites.
In total, there were 33 site-specific haplotypes. On the other hand, two haplotypes (Hap 43
and 37) appeared to have a higher prevalence in all Aaa and Aaf populations, respectively
(Figure 2). Hap 43 was found in 49.35% of all Aaa subspecies samples and occurred in
all eastern Sudan study sites. In comparison, Hap 37 occurred in 27.14 % of Aaf samples
(Figure 2) and was found in all western Sudan sites, except Al Junaynah.

Three haplotypes were shared by some Aaa and Aaf populations. Hap 24 was found in
two Aaf in Kadugli and two Aaa in Tokar. Hap 36 occurred in four Aaa samples in Barakat
and four Aaf samples from Nyala, Al Fashir, and Kadugli. Hap 37 occurred in one Aaa
sample in Tokar and 16 Aaf samples from Nyala, Al Fashir, and Kadugli (Figure 2).
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Although the number of polymorphic sites and the nucleotide diversity were similar
for the two Ae. aegypti subspecies (Number of polymorphic sites = 51 in Aaa and 52 in Aaf ;
Table 2), the level of haplotype diversity appeared to be consistently higher in Aaf (0.61 in
Al Fashir, 0.7 in Al Junaynah, 0.92 in Kadugli and 0.933 in Nyala) than in Aaa (0.377 in Port
Sudan, 0.539 in Kassala, 0.791 in Barakat and 0.947 in Tokar). Overall, Port Sudan appeared
to have the lowest genetic diversity of Aedes aegypti compared to all other sites (Table 2).

2.3. Genetic Variance (Pairwise FST) and Mantel Test Results

The overall subpopulation genetic variance (Pairwise FST values) showed values
ranging from 0.015 (between Fasher and Kadugli Aaf populations) and 0.848 (between
Fasher Aaf and Port Sudan Aaa populations) (Table 3). All between-population FST values
were significant (p < 0.05), except between Kadugli and Barakat, Kadugli and Nyala,
Kassala and Junaynah, Barakat and Junaynah, and Kadugli and Junaynah (Table 4).

Table 3. Population divergence between samples (FST value) was performed in ARLEQUIN version
3.5 among eight populations of Aedes aegypti subspecies from Sudan.

Site (form) P (Aaa) T (Aaa) K (Aaa) G (Aaa) D (Aaf ) N (Aaf ) F (Aaf )

P (Aaa)
T (Aaa) 0.425
K (Aaa) 0.125 0.158
G (Aaa) 0.389 0.097 0.045
D (Aaf ) 0.652 0.248 0.396 0.186
F (Aaf ) 0.848 0.355 0.545 0.309 0.015
N (Aaf ) 0.837 0.421 0.603 0.384 0.160 0.191
J (Aaf ) 0.782 0.252 0.352 0.124 0.037 0.205 0.366

Table 4. Probabilities (P values) of the Pairwise divergence (FST) between eight populations sub-
species of Aedes aegypti in Sudan.

Site
(form) P (Aaa) T (Aaa) K (Aaa) G

(Aaa) D (Aaf ) N (Aaf ) F (Aaf ) J
(Aaf )

P (Aaa)

T (Aaa) 0.000
K (Aaa) 0.021 0.014
G (Aaa) 0.000 0.030 0.172
D (Aaf ) 0.000 0.000 0.000 0.001
N (Aaf ) 0.000 0.000 0.000 0.002 0.267
F (Aaf ) 0.000 0.000 0.000 0.000 0.000 0.014
J (Aaf ) 0.000 0.008 0.007 0.087 0.156 0.004 0.000

Bold numbers indicate the nonsignificant at p > 0.05.

The Mantel test revealed a medium to strong significant relationship between ge-
ographic distance and genetic differentiation correlation coefficient value (r) = 0.586,
p = 0.005 (Figure 3). However, there were some deviations from this relationship, since
some sites showed higher FST values with a nearer site than another site lying farther
away. A case in point is the FST for the Aaf populations of Al Fashir and Kadugli
(Distance = 553 km, and FST = 0.015) and Al Fashir and Junaynah towns (distance = 303 km,
and FST = 0.366). Another example is the FST for Port Sudan and Tokar Aaa populations
(Distance = 141 km; FST = 0.425) and in Port Sudan and Barakat populations (Distance = 700 km;
FST = 0.389).

2.4. Genetic Structure of Aedes aegypti in Different Study Sites

The polar unrooted maximum-likelihood phylogenetic tree for 140 individuals Aedes
aegypti from the eight study sites revealed two big clusters (Figure 4); most of the Aaa
haplotypes clustered and appeared to be genetically structured, while the haplotypes
of Aaf were represented by one group. It must be pointed out that there were some
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exceptions to this rule, as some samples from Tokar and Barakat/Gezira Aaa shared the
same haplotypes with the Aaf populations haplotypes and clustered with them under the
same cluster/branch (Figure 3).
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Spatial analysis of molecular variance (SAMOVA) for population grouping also
showed that the eight populations were grouped in three phylogeographically distinct
groups/units. Group 1 includes Kadugli, Nyala, Al Fasher, and Al Junaynah Aaf popula-
tions. Group 2 consists of Port Sudan and Kassala Aaa populations. Group 3 consists of
Barakat/Gezira and Tokar Aaa populations. Analysis of molecular variance (AMOVA) of
the Aedes aegypti populations revealed 39.22% genetic variance among the three groups,
and 53.53% within populations. (Table 5).

2.5. Test of Neutrality and Natural Selection in Different Populations of Ae. aegypti

We used Tajima’s D and Fu’s F tests to decipher deviations from neutrality owing to
natural selection or population expansion in different populations of Ae. aegypti sampled
in the study. The results of Tajima were found to be positive in the three sites of Tokar,
Barakat/Gezira, and Al Fasher, indicating balancing natural selection or population sub-
structuring; however, it was negative in Port Sudan, Kassala, Kadugli, Nyala, and Al
Junaynah, indicating a recent directional selection or recent population growth. The results
of the Fu’s FS test were positive in Kassala, Barakat, Al Fasher, and Al Junaynah, which
provides evidence indicating a recent population bottleneck or over-dominant selection,
and negative in Port Sudan, Tokar, Kadugli, and Nyala, indicating a recent population
expansion or genetic hitchhiking (Table 2).
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Table 5. Analysis of molecular variance (AMOVA) of three groups of Aedes aegypti collected from 8
sites in Sudan.

Source of Variation df Sum of Squares Variance
Components

Percentage
of Variation

Among Groups 2 131.012 1.310 39.22
Among Individuals within Groups 5 27.672 0.243 7.26

Within Populations 131 234.244 1.788 53.53
Total 138 392.928 3.341

df = degree of freedom.

3. Discussion

The risk of emerging and re-emerging arthropod-borne viral (arboviral) infections
is growing rapidly around the globe, particularly in the African continent [3]. Arboviral
diseases have become a major health issue in Sudan. Over the last two decades, outbreaks
of yellow fever, dengue, and chikungunya caused high mortality and morbidity in different
parts of the country, particularly Port Sudan and Kassala in the east and Darfur in the
west [30,31,34,41]. Ae. aegypti has been claimed as the principal vector of arboviruses
responsible for these diseases. In Sudan, Aedes aegypti is reported to be the principal
vector of yellow fever and dengue fever in different parts of the country, including Darfur,
Kordofan, Port Sudan, and Kassala [26,28,30,33], However, there is a serious deficiency in
recently published reports on the distribution and transmission of arboviruses by Aedes
aegypti in different parts of Sudan. To our knowledge, this is the first published report
on the distribution and genetic variations of Aedes aegypti subspecies/forms in different
localities in the Sahelian belt of Sudan.

Despite the discovery that Aedes aegypti may exist as two morphologically distinct
subspecies/forms, little is known about their relative contributions to the transmission
of arboviral diseases in Africa [8]. Although reports showed that Aaf has less vector
competence than Aaa, the vectorial capacity is a product of several attributes, including
vector distribution, abundance, longevity, human-biting index, and tolerance of harsh
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environmental factors [15–17]. The current observations on the exclusive presence of Aaf
and its apparent domestication and attachment to human dwellings in western Sudan
indicate that Aaf might be the sole vector of arboviral diseases in this region. This notion
supports the previous report by Lewis who stated that under conditions of urbanization,
ssp. formosus can become very largely domesticated and can have an increased contribution
to the transmission of human arboviruses [8,25]. Similarly, Futami observed that the two
subspecies were sympatric in both artificial and natural containers, suggesting adaptation
of Aaf to various habitats [42]. Interestingly, in west Africa, a group of researchers found
that populations of Aaf can be competent transmitters of Flaviviruses [15]. Although
knowledge of the vector competence in the two subspecies is a crucial component in
arbovirus epidemiology and control, research on this aspect has been extremely limited.
Further work is, therefore, needed to compare the survival, fecundity, and human-biting
index and vector competence of the two subspecies.

Our results show that both subspecies of Ae. aegypti are found in the Sahelian belt of
Sudan. No previous publications showed similar results clearly, as the reported literature
did not address the distinction between the two subspecies/forms of Aedes aegypti in the
country. However, in the older literature, Mattingly reported that Lewis found a dark
form in Erkawiet in eastern Sudan and stated that, in personal communication, Lewis
informed him that this specimen was likely an Ae. aegypti formosus subspecies [8]. The
lack of distinction between the two forms is also an apparent feature of the literature from
neighboring Sahelian countries, as no recent records on the differentiation of Ae. aegypti
aegypti and Ae. aegypti formosus were reported from Eritrea, Ethiopia, Chad, and Central
Africa Republic [12,13,15,42].

We found an interesting difference in the distribution of the two subspecies of Aedes
aegypti in Sudan; Aedes aegypti aegypti, found in four study sites east of the Nile river, i.e.,
eastern and central Sudan, and Aedes aegypti formosus in the other four sites in the west.
Although the Nile and the White Nile appeared to show a clear demarcation of the location
of the Ae. aegypti aegypti and Ae. aegypti formosus, it is unlikely that these river systems
provide true geographical barriers for the two subspecies. A possible explanation for this
distribution may be offered by the contrasting soil and different ecological parameters.
Despite sharing similar latitudes and rainfall patterns, eastern and western Sudan have
marked differences in soil that affect water retention, moisture, and maximum temperature
and humidity [43,44]. In eastern Sudan, the soil is mainly chromic vertisols deposited by
previous volcanic activities in the Ethiopian Plateau. This soil is highly hydrophobic, losing
moisture quickly after the end of the rainy season and thus resulting in higher maximum
temperature, lower humidity, and lower annual NDVI (Normalized Vegetation Index) val-
ues. In contrast, the sandy soil of western Sudan has higher retention of moisture, resulting
in higher lower max temperature, higher humidity, and higher NDVI value [43,44].

In this study, we did not encounter the sympatric presence of the two subspecies/forms
of Aedes aegypti. However, the possibility of the sympatric presence of the two subspecies
cannot be ruled out, since our study was not exhaustive enough and was limited by sev-
eral logistical barriers. In other locations in Africa, different authors reported contrasting
findings on the distribution of the two forms. Mattingly stated that the Ae. a. formosus was
recorded in natural breeding sites in the forests or bush away from human dwellings in
Kenya and Uganda [8]. On the other hand, Gloria-Soria mentioned two different distribu-
tion cases in Kenya. In one of these cases, populations of the two subspecies/forms were
sympatric and freely mixed in Mombasa/Kenya. In the other case, in a geographically
closely related site, they found that Aaf was restricted to the African forest, while Aaa was
present in domestic habitats [14].

We found a relatively high genetic variation and structuring between different popula-
tions of Aaa and Aaf in Sudan. In the polar phylogenetic tree, two subspecies are clustered
in two distinct groups with only three haplotypes shared between them. These results
were further confirmed by SAMOVA analysis which separated the Aaf populations in
one group while splitting the Aaa populations into two similar groups. Furthermore, the
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divergence between Aaf and Aaa populations was revealed in high FST values between the
two subspecies, for example in the Port Sudan and Al Fasher sites (FST = 0.848).

Although all genetic variation indices of the mitochondrial gene cytochrome-oxidase
1 (CO1) revealed low gene flow between the two subspecies in Sudan and high genetic
diversity between their populations, it is difficult to conclude whether this variation reflects
a true difference between the two subspecies or the geographical distances that limited
the gene flow. Other researchers, using microsatellite markers on sympatric and allopatric
populations of Aedes aegypti, concluded that the two subspecies/forms are genetically
distinct [14]. It may be hypothesized that possible gene flow between the two subspecies
originated recently after the encroachment of the Aaf into the human habitat where the Aaa
was already found. Using genetic data, Powell concluded that there was total isolation and
lack of gene flow between the two subspecies about 400–550 years ago [45].

Our results contrast with the findings of Powell and Tabachnick [18], who reported
that Aaf subspecies have less genetic variation than the Aaa subspecies. In our studies, we
found that both subspecies have similarly high genetic variations. The difference between
our results and the findings of [13] and [18] may be due to the ecological conditions. Our
collection sites of Aaf populations were generally more arid than the sites of these authors.
Coupled with the large geographic distances between our study sites, the high aridity
limits the movement and gene flow between the populations.

It was evident that the level of genetic variation of Aedes aegypti populations was
different in different sites. The lowest variation was observed in the Aaa population in
the coastal city, Port Sudan. Similar results were reported by Elnour [29], who reported
the presence of four haplotypes of mitochondrial CO1 gene in Aedes aegypti populations
in Port Sudan. This lower genetic variation in Port Sudan may be due to the fact that the
Red Sea provides consistent high humidity throughout the year, thus reducing the impact
of dryness on the vector population. In contrast, other sites in the country had a higher
impact of natural selection, as predicted by Tajima D and Fu’s Fs statistics.

In conclusion, our results show that both subspecies of Aedes aegypti are found in
Sudan, with clear variation in their distribution. Whereas the Aaa subspecies appears to be
more abundant in the eastern part of the country, the Aaf subspecies is the main form of the
vector found in western Sudan. There was a clear distinction in the genetic structure of the
two subspecies. Further work is urgently required to elucidate the role of each subspecies
in the transmission of dengue fever, chikungunya, yellow fever, and other arboviruses in
Sudan and other countries of the African Sahelian region. Furthermore, work is needed
to understand the ecological determinants of the distribution of the two subspecies and
develop suitable control programs for the viruses they transmit.

4. Methods
4.1. Study Sites

Mosquitoes were collected from eight study sites in Sudan, where dengue and other
arboviral disease outbreaks were reported. As shown in Figure 1, the sites consisted of Port
Sudan (Red Sea state), Kassala (Kassala state), Tokar (Red sea state), Barakat (Gezira state),
Kadugli (South Kordofan state), Al Fashir (North Darfur state), Nyala (South Darfur state)
and Al Junaynah (West Darfur state).

Seven of the study sites (Kassala, Tokar, Barakat, Kadugli, Nyala, Al Fashir, and Al
Junaynah) have a tropical continental climate, characterized by a long (9 month) dry season
between October and June and a short rainy season between July and September. The
eighth site (Port Sudan), located on the coast of the Red Sea, has a hot desert climate with
high levels of humidity and a short rainy season during the cooler months of November to
February [43].

Apart from Barakat, all study sites have a consistent history of dengue fever, which
results in more frequent outbreaks in Port Sudan, Tokar, and Kassala. Other major arboviral
diseases in the study sites are yellow fever in Kadugli, Al Fashir, Nyala and Al Junaynah,
and chikungunya, which was recently reported in all areas of the country.
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4.2. Mosquito Collection, Rearing, and Morphological Identification

Immature stages of Aedes mosquitoes (eggs, larvae, and pupae) were collected from
their natural habitats indoors and outdoors in all the study sites throughout (January
2014–April 2017). Different breeding sites were surveyed. The samples were transferred
to the insectary at the Sudan national public health laboratory for rearing at the optimum
temperature (25 ± 2 ◦C) and relative humidity (80–90%) with a photoperiod of 12:12 (L:D)
until the adults emerged. Samples from each collection were morphologically identified to
their species using appropriate taxonomic keys [46]. After the adult’s emergence, Aedes
aegypti females and males were classified into their subspecies/forms, either Aaa or Aaf,
according to the appropriate morphological key, depending on the scale pattern system [47].
The mosquitoes with white scales on the first abdominal tergite were classified as Aaa form,
while adults that possessed white scales in the first abdominal tergite were classified as Aaf
form. Female mosquitoes of Aaa and Aaf from different sites were preserved individually
in labelled microfuge tubes with 70% isopropanol and then kept in a −20 ◦C freezer.
Preserved samples were transferred to the Universiti Sains Malaysia (USM) where the
DNA extraction was performed.

4.3. DNA Extraction and Molecular Identification

Genomic DNA was extracted from single female mosquitoes using Qiagen DNeasy
Blood and Tissue Extraction Kit (Qiagen, Hilden, Germany) following the manufacturer’s
instructions with slight modifications in extending the incubation period to overnight
at 65 ◦C. Extracted DNA was eluted in nuclease-free water and preserved in a −20 ◦C
freezer until use. The DNA quantity and quality for all extracted samples were checked
using Nanodrop Quawell UV spectrophotometer Q3000. Further confirmation of species
identification was executed using internal transcribed spacer region 1 (ITS1) using forward
primer ITS1A, 5 -CCT TTG TAC ACA CCG CCC GTC G-3, and reverse primer ITS1B,
5-ATG TGT CCT GCA GTT CAC A-3 described by [48] with modification in the cycling
condition of 95 ◦C for 2 min followed by 40 cycles of 95 ◦C for 45 s, 53 ◦C for 40 s, 72 ◦C
for 10 min and final extension of 72 ◦C for 5 min. Gel electrophoresis was performed
on 1.2% agarose gel in Tris-acetate-EDTA buffer (TAE). PCR products containing DNA
fragments were further digested by restriction analysis by taking 10 µL of the PCR product
in a microfuge tube, 5 µL of 10× Rsal buffer, and 1 U/1 µL of Rsal enzyme per reaction
(NEB II, New England Biolabs). After mixing, the tubes were incubated at 37 ◦C for 2 h
and then separated on a 3.0% agarose gel stained with Red Safe TM Nucleic Acid Staining
Solution (INTRON Biotechnology, Seongnam, Korea), and ran at 100 V for 30 min. The gel
was viewed under UV light, and the photo was captured to determine the pattern of the
fragment DNA segments following [48].

4.4. PCR Amplification for Mitochondrial Marker

Cytochrome oxidase 1 mitochondrial marker was used to detect polymorphisms
among the different populations; a minimum of 10 mosquito samples from each site
were tested (Table 1). Partial CO1 gene was amplified using primer pair (COI-F) 5’-
TGTAATTGTAACAGCTCATGCA-3’ and (COI-R) 5’-AATGATCATAGAAGGGCT GGAC-
3’, mixed in 50 µL reaction volume containing 10 µL of 10× Green Buffer Go Taq (Promega,
Madison, WI, USA), 3 µL of 25 mM MgCl2, 1 µL of 25 mM dNTP, 0.3 µM from each primer,
0.5 µL of Taq polymerase and 2 µL (>50 ng) from the sample DNA [49]. The thermal cycling
conditions were configured as the first denaturation step at 94 ◦C for 2 min, followed by
35 cycles at 94 ◦C for 1 min, 54 ◦C for 30 s, and 72 ◦C for 1 min, and a final extension of
72 ◦C for 10 min. PCR products were separated on a 1.5% agarose gel electrophoresis in
Tris–borate-EDTA buffer (TBE) for one hour, a 100 bp DNA ladder was used as a marker,
and the agarose gel was stained with Red Safe dye. Then, the gel was viewed under UV
light using the gel documentation system. PCR-amplified samples were purified from the
agarose gel using a Qiagen purification kit following the manufacturer protocol [49].
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The cleaned PCR products were chosen, isolated, and sent to Apical sequencing
services (Kuala Lumpur, Malaysia) for the Sanger DNA sequencing process. The sequenc-
ing services were done with the ABI 3130XL automatic sequencer (Applied Biosystem,
Foster City, CA, USA).

4.5. Mitochondrial Sequences Analyses

Sequences were generated and checked manually by using Molecular Evolutionary
Genetics Analysis software MEGA v7.0 [50] and compared to the previously published
sequences in the Genbank database using the Basic Local Alignment Search Tool (BLAST,
https://blast.ncbi.nlm.nih.gov/Blast.cgi). The nucleotides obtained were aligned by using
the sequence alignment tool ClustalW in the MEGA. Sequences were translated to amino
acids (invertebrate mitochondrial code) to check for unexpected stop codons or frameshift
mutations implemented in the same software.

Unique haplotypes in the aligned matrix for both forms of Aedes aegypti were de-
termined using DNAsp 5.10.1 [51] and were deposited in GenBank with the accession
numbers MT193027 to MT193072.

4.6. Phylogenetic Analyses/Trees

The relationship between individuals of all population studies was illustrated using
polar unrooted maximum-likelihood phylogenetic trees built using IQ-TREE 1.6.9 [52] and
shaped using Figtree v1.4.0 [53]. The best model was found to be HKY+F+I using Model
Finder [54]. Relationships between the different haplotypes in the eight sites from the two
forms located in the different study sites were displayed using median-joining haplotype
networks. Haplotype networks were drawn using NETWORK 10.00 [55].

4.7. Genetic Diversity and Genetic Structure of Aedes aegypti Subspecies

Standard molecular diversity indices—the number of haplotypes per locality (h), the
number of variable sites (S), haplotype diversity (Hd), and nucleotide diversity (π)—were
estimated within Aaa and Aaf populations using Arlequin v3.5 [56].

Genetic diversity and molecular variance of the populations assessed using Analyses
of Molecular Variance (AMOVA) in Arlequin v3.5 [56]. The pairwise genetic distances (FST)
were estimated between the different populations and their significance.

Geographical distances between the different study sites were approximated using a
ruler tool in Google Earth TM (Google Inc., Mountain View, CA, USA). Genetic isolation
by distance (IBD) was assessed using pairwise geographical distance and was matched
to pairwise FST in the different haplotypes independently to obtain a linear regression
relationship. The Mantel test was carried out to prove the significance of the association
between genetic variations and geographical distance between study sites using Arlequin
v3.5 [56].

The genetic structure was estimated using Spatial Analyses of Molecular Variance
(SAMOVA), SAMOVA v2.0 [57], to interpret the genetic barriers on population groups
after the best-fit grouping pattern was estimated. The method classified the populations
that were geographically similar and excellently separated the groups with the highest
FCT (diversity between groups) while the lowest FSC (diversity among populations within
a group) were considered the most possible populations grouping. Since the FCT values
in the study were found to have no significant difference, other methods were used fol-
lowing [58]. The FCT (genetic differentiation among groups) was found to be relatively
stable with very low differences; nevertheless, FSC (genetic differentiation between indi-
viduals within such groups) revealed a noticeable decrease from two to three clusters of
groups); from this, we conclude that the best grouping (best homogeneity among groups)
is three-group clustering.

After that, SAMOVA structuring results were used to estimate the genetic molecular
variance using Analyses of Molecular Variance (AMOVA) in Arlequin v3.5 [56].

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Tajima’s D and Fu’s F statistics were used to detect deviation from neutrality and
population expansion using Arlequin v3.5 [56].
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