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Optimizing the conservation of migratory species
over their full annual cycle
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Limited knowledge of the distribution, abundance, and habitat associations of migratory
species hinders effective conservation actions. We use Neotropical migratory birds as a
model group to compare approaches to prioritize land conservation needed to support >30%
of the global abundances of 117 species. Specifically, we compare scenarios from spatial
optimization models to achieve conservation targets by: 1) area requirements for conserving
>30% abundance of each species for each week of the year independently vs. combined; 2)
including vs. ignoring spatial clustering of species abundance; and 3) incorporating vs.
avoiding human-dominated landscapes. Solutions integrating information across the year
require 56% less area than those integrating weekly abundances, with additional reductions
when shared-use landscapes are included. Although incorporating spatial population struc-
ture requires more area, geographical representation among priority sites improves sub-
stantially. These findings illustrate that globally-sourced citizen science data can elucidate
key trade-offs among opportunity costs and spatiotemporal representation of conservation
efforts.
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and-use change is a key threat to the conservation of bio-

diversity, ecosystems!, and the services they provide

globally?3, and migratory species are particularly vulnerable
to such change given the vast geographic areas they occupy over
the annual cycle*”. Indeed, a recent global assessment indicated
that protected areas adequately protect the ranges of just 9% of
migratory bird species®. Strategic approaches to identify and
conserve habitats critical to the persistence of migratory species
are therefore sorely needed.

Unfortunately, substantial gaps in knowledge of the abun-
dance, distribution, and demography of most migratory species®
have hampered strategic planning and led to uncertainty about
the optimal allocation of conservation effort>’. Given that
populations of many migratory species continue to decline®$,
there is an urgent need to identify portfolios of lands critical to
the persistence of target species, and amenable to management in
support of species conservation without compromising human
well-being.

Multi-species decision support tools can facilitate the identifi-
cation of areas crucial to the conservation of migratory species,
but have remained intractable due to limits on knowledge and
computing power. We capitalized on advances in models of bird
species abundance and distribution using crowd-sourced data®10
and linear programing techniques!! to develop a robust multi-
species planning tool to estimate the land area needed to conserve
117 Nearctic-Neotropical migratory songbirds throughout the
annual cycle (Supplementary Data 1). Specifically, we combined
fine-scale, predictive models of distribution and abundance esti-
mated weekly throughout the year with spatial optimization
techniques!? to identify the amount and type of land needed to
reach our conservation targets given alternative planning sce-
narios at hemispheric scales.

We first estimated the abundance and distribution of 117
migratory bird species weekly, using spatiotemporal exploratory
models®!3 to calculate the relative abundance of each species
throughout the annual cycle (Supplementary Movie 1). Incor-
porating information for each week of the year is especially
important for migratory species, as this reflects their movements
throughout the annual cycle and allows more precise estimates of
their population distributions in space and time. We next
recorded and compared the geographic area requirements and
land cover types selected when optimizing for each week of the
year independently and summing the total area over all weeks
(hereafter, ‘weekly’), versus optimizing over the entire year at
once (hereafter, ‘yearly’). Weekly optimizations for area effi-
ciencies were developed to identify species-specific priorities for
species at fine enough scales to capture short-term stopover sites.
Our yearly approach optimized efficiency over the full annual
cycle of each species, and emphasized temporal consistency in
abundance hotspots more likely to reflect breeding and non-
breeding regions. Because all existing conservation plans consider
stationary phases of the breeding and non-breeding periods
separately!®15, our analysis is the first example of spatial opti-
mization scenarios which track populations over their full annual
cycle.

We next created area-optimized solutions designed to conserve
lands used by 30% of the global populations of all 117 species in
each of 52 weeks by sampling species (a) over their entire range,
without accounting for spatial clustering of species abundance, or
(b) by sampling within 5 regional population clusters, identified
weekly to accommodate spatial clustering in species abundance.
We wanted to account for the spatial clustering of species
abundance because broadly distributed species often exhibit
strong regional-scale variation in abundance across their range.
Regional-scale variation in species’ abundance may reflect a
number of important processes affecting the ecology and

conservation of species, from variation in resource availability
and land-use patterns to population-structure related to move-
ment and migratory connectivity. By accounting for the spatial
clustering of species abundance, the prioritization is stratified
over multiple regions to ensure adequate protection over the
entire species range. Because spatial clustering in species abun-
dance—Ilet alone its consequences for movement or connectivity
—is poorly understood in most migratory species!®, we developed
an innovative approach to account for structure statistically.
Specifically, we used cluster analysis to delineate abundances into
5 spatial clusters of equal abundance and stratified our weekly
sampling among clusters to capture the full geographic distribu-
tion of each species. Our use of five clusters is an example that
minimized computational effort, but which could be extended to
optimize by species or goal. Our 30% target is also arbitrary, but
intermediate to the 17% of terrestrial ecosystems targeted by the
Convention on Biodiversity!” and 50% targets suggested by
comparative analysis'®, and can be modified to reflect strategic
goals!?,

Last, we compared area-based conservation plans designed to
represent different perspectives about the potential contribution
of human-modified lands to the conservation of migratory birds.
Our ‘intact habitat’ approach emphasized the protection of rela-
tively intact habitat as indicated by a low human footprint index20
(Supplementary Fig. 1), whereas our ‘shared-use’ approach per-
mitted the inclusion of landscapes converted to more intensive
use by humans?!?2. Our scenarios, termed intact habitat and
permissive of shared-use, are analogous, but more general, than
land sparing and land sharing scenarios. Exploring such con-
straints represents a critical step in conservation planning, given
that human cultural history, values, and well-being can all affect
conservation success and represent critical inputs into structured
decisions about the most efficacious actions?3-2°,

Results

Weekly vs. yearly approaches. The land area required to
achieve yearly conservation targets was 56% less on average
than when area targets were summed across weeks (range = 49
to 65%; Table 1). Yearly solutions required relatively less land
area than weekly approaches in shared-use scenarios (62% less)
than in intact habitat scenarios (49% less, Table 1, Figs. 1, 2).
Area reductions under yearly planning generally resulted from
cases such as the inclusion of sites used by more than one
species across two or more weeks of the annual cycle. A likely
explanation for this difference is that the yearly approach will
select sites that are used for longer periods of the annual cycle,
and that there may be greater overlap of those areas between
species than occurs in the short-term stopover sites included in
the weekly approach, hence the larger area needed under the
latter.

Single populations vs. spatial clustering. As expected, the area
required to reach our conservation targets increased when we
accommodated spatial clustering of species abundance,
although relatively less so under a intact habitat (13% increase)
compared to a shared-use (26% increase) scenario (Table 1,
Figs. 1, 2). This reduction occurred in part because the
homogenous cost structure used in our intact habitat scenario
was less influential on site selection than was the heterogenous
cost structure used in the shared-use scenario. Although we
currently lack empirical data with which these spatial clusters
can be validated, our predictions can be tested directly as
tracking and genetic mapping techniques improve to allow
comparisons of observed and predicted migration routes. That
being noted, our current method provides a useful approach to
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Table 1 Area requirements to meet a 30% population target

Area constraint Single population Single population

Spatial clustering of species

Spatial clustering of species

weekly yearly abundance weekly abundance yearly
Shared-use 14.38 5.51 20.03 6.93
Intact habitat 14.54 7.45 16.44 8.45

Prioritization approach results under shared-use and intact habitat scenarios are shown for 117 Neotropical migrant bird species. Table entries show the area needed to meet targets (million km*2).
‘Weekly' prioritizes the most efficient target for each week of the year independently and sums the total area across all weeks. The yearly approach prioritized the most efficient target for all weeks
combined. Single population identifies the 30% area target for each species from anywhere within the species range. Spatial clustering of species abundance identifies population sub-structure using a
clustering approach to ensure representation from across the range of each species in each week of the year

Selection frequency

1 52

Selection frequency
]
1 52

Fig. 1 Single population comparison results. Areas prioritized for weekly and yearly planning under a shared-use approach allowing for the inclusion of
human dominated landscapes vs. an intact habitat approach that excludes areas of high human footprint are shown. The prioritization is based on a target
of 30% of global populations of 117 species of Neotropical migratory birds when each species range is considered as a single population. a = shared-use,
weekly, b = shared-use, yearly, ¢ = intact habitat, weekly, d = intact habitat, yearly. Panels a and ¢ show how often (1, light yellow to 52, dark red) areas
were selected across the weekly solutions. Panels b and d show whether an area was selected in a solution ( =red). Supplementary Fig. 2 presents a more

detailed version of this figure focusing on northern South America

ensure geographic representation of spatial clustering of species
abundance of a broad suite of species using publicly-available
citizen science data in spatial planning tools.

Many conservation interventions, including land protection,
are constrained by limits on fiscal or human resources and the
opportunity costs of development. Our results show that

sampling populations across the species range each week required
almost twice the amount of land compared to yearly plans based
on the relative abundance of species. Our work thus demonstrates
the daunting problem of conserving sufficient land area such that
migratory species’ dynamic populations are protected throughout
the year>7-10,
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Fig. 2 Spatial clustering comparison results. Spatial clustering of species abundance comparison of areas prioritized for weekly and yearly planning under a
shared-use approach allowing for the inclusion of human dominated landscapes vs. an intact habitat approach that excludes areas of high human footprint.
The prioritization is based on a target of 30% of global populations of 117 species of Neotropical migratory birds when each species range is considered
with spatial clustering of species abundance (five regional clusters). a = shared-use, weekly, b = shared-use, yearly, € =intact habitat, weekly, d = intact
habitat, yearly. Panels a and ¢ show how often (1, light yellow to 52, dark red) areas were selected across the weekly solutions. Panels b and d show
whether an area was selected in a solution (=red). Supplementary Fig. 3 presents a more detailed version of this figure focusing on northern South

America

Intact habitat vs. shared-use. Another key result of our work is
that incorporating conservation objectives in human-dominated
habitats may dramatically improve the efficiency of conservation
area designs for migrants if their demographic performance is
similar in ‘working’ and ‘intact’ landscapes. Under the yearly
scenario we found that shared-use approaches required 26 and
18% less land area, respectively, than intact habitat approaches
including or ignoring spatial clustering of species abundance
(Table 1). We also found that intact habitat approaches selected
different geographic areas and ecosystems than shared-use
approaches. Most notably, intact habitat approaches selected
larger areas of needle-leaved forest in boreal and mountainous
zones of western Canada, and more broad-leaved evergreen forest
in the eastern Andes and western Amazon basin (Figs. 1, 2;
Table 2). Our findings thus add to a growing body of literature
indicating the need to broaden the lens through which we view

conservation to both accommodate human livelihoods and
conserve species23-2,

Overarching considerations. Our findings suggest a need to re-
evaluate conservation planning processes that are based on less
precise methods. For example, government and non-governmental
organizations allocate up to $1 billion annually to bird conservation
based on aspatial targets and expert elicitation, with most actions
directed to breeding habitat!41°, Our results suggest an alternative
approach with a potential to meet conservation targets at lower land
management cost and more compatible with human-dominated
lands that can serve the dual purpose of supporting migratory
species and human livelihoods. Overall, our results also illustrate
potential trade-offs that conservation practitioners considering
optimized portfolios must consider as additional targets and
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Table 2 Area selected (1000 km~2) for major land cover types

Land cover Area Single population  Single Spatial clustering of species Spatial clustering of species

available intact habitat population abundance intact habitat abundance shared-use
shared-use

Cropland/mosaic cropland 2269 339 313 445 439

Grassland 5555 1198 1088 1313 1238

Urban areas 205 9 95 25 74

Broadleaf deciduous forest 1994 627 637 619 548

Broadleaf evergreen forest 6921 1595 735 2024 1433

Needleleaf forest 4599 1359 1006 1395 1160

Mixed forest 966 310 246 3N 285

Mosaic forest 934 207 160 229 194

Flooded forest 540 148 97 162 136

Shrubland 4226 912 643 1135 864

Wetland 468 144 74 159 107

Barren 1053 207 79 208 109

Total 31,615 7055 5174 8025 6586

Values are based on yearly planning for shared-use vs. intact habitat scenarios and for single population vs. spatial clustering approaches. Area available is the total amount of each land cover available
based on all cells throughout the year where > 1 species was present. Not all land cover classes are included in the table and therefore individual land cover values do not sum to the total in each column.
Land cover data was extracted from the global land cover map for 2015 (300 m resolution)>. See Supplementary Table 1 for equivalent land area estimates under weekly planning scenario

Agreement among approaches

[ TS

0% 100%

Fig. 3 Range of agreement between the eight scenarios investigated. Darker
blue indicates that most or all scenarios selected specific areas across the
Western Hemisphere, and lighter yellow indicates areas of high scenario
specificity. Scenario types considered: (i) summing scenarios for each species
in each week of the year vs. optimizing over all weeks and species in a yearly
approach, (ii) including vs. ignoring spatial clustering of species abundance,
and (iii) incorporating vs. avoiding human-dominated landscapes in solutions

constraints are identified and incorporated in higher-level man-
agement models2. Even without consensus among conservation
practitioners on focal scenarios, a considerable area of land was
selected in at least six of the eight scenarios explored here,

illustrating that many priority areas meet a wide range of per-
spectives encapsulated in our scenarios (126, 000 km2, Fig. 3). This
indicates that even where approaches differ, conservation practi-
tioners can use tools like the one described here to build consensus
in hemispheric conservation efforts.

Several additional caveats arise from our results, particularly
with respect to the shared-use and intact habitat scenarios.
Implementing conservation action in working landscapes may be
more challenging than in areas with less human activity if the
opportunity costs of management are higher. For example, even if
identified as a high-priority site for conservation in our shared-
use scenarios, land already converted to human use may be more
vulnerable to degradation in the future than more intact areas?®.
Such habitat degradation, especially if combined with other
anthropogenic stressors that may directly or indirectly reduce
survival or performance of wildlife?’, could make it difficult to
reach population goals for species even if area needs are lower
compared to less developed landscapes. In practice, both
approaches are likely to be used given that target species will
differ in their reliance on more or less developed habitat types?s.
Our prioritization scenarios provide planners with guidance on
the approximate locations and requirements for land needed to
meet our stated targets under a range of scenarios. With such
portfolios in hand, planners can then more readily assess the cost-
effectiveness of alternate approaches to land management and
socio-economic policies most favorable to conservation and
human well-being?3-2°.

Additional species or landscape characteristics might also
be considered in prioritization, depending on the mandate
of conservation agencies. For example, the threat status of
species has been incorporated into spatial planning
recommendations?®3°, Our analysis included 19 red or yellow-
listed species by Partners-in-Flight (Supplementary Data 1). In
addition, the specific life-history characteristics and habitat
requirements of species, where available, can be important
considerations. The 117 species in our analysis varied in
spatiotemporal patterns of migration, habitat use, abundance,
and population abundance. Although we did not address how
variation in life history among species might influence results, it is
clear that as high-resolution distribution models become available
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for a larger range of migratory species, such as waterfowl,
shorebirds, and marine, forest or grassland specialists, planners
will have more opportunities to filter species or emphasize
particular guilds to represent particular ecosystems or habitats.
Different representation targets are also possible. We emphasize
that the 30% target used here is illustrative only. In some cases,
higher targets may be needed to avoid range contraction or the
local extinction of sub-populations, to conserve ecological
function such as seed dispersal or pest controll, or to maintain
the evolutionary potential of locally-adapted populations3233,
Nevertheless, our 30% target returned solutions in all cases which
vastly exceed the areal extent of existing conservation plans in
support of Neotropical migrant birds.

Discussion

Ongoing declines in the abundance and distribution of many
migratory species amid severe constraints on financial and
human resources** point to an urgent need for area-based plans
that achieve conservation targets while minimizing the opportu-
nity costs of land conservation and impacts on human liveli-
hood?3-2>35. Qur solutions minimized the total land area
prioritized for conservation to provide an area-efficient portfolio
of lands for further consideration by conservation planners. Four
key lessons can be derived from our results. First, scenarios based
on the distributions of abundance of all 117 species that were
integrated over the entire year required less land area to meet
conservation targets than scenarios based on optimizations that
used the weekly distributions of those species throughout the
year. This suggests difficult trade-offs between finer-scale spa-
tiotemporal representation of habitats throughout the year, versus
solutions that achieve the best compromise on population targets
across the entire year. The latter appears more area-efficient, but
may miss key stopover points along migratory routes. Second,
accounting for spatial clustering of species abundance through
stratified sampling across the entire distribution of species
increased the total land area required to achieve conservation
targets. Despite requiring more land area, ensuring geographic
representation may be necessary to the long-term persistence of
species, particularly in widely-distributed species with population
genetic structure potentially reflecting adaptation to local
conditions3233, Third, area-based plans that accommodated
human activity (shared-use) were generally more efficient than
intact habitat approaches that avoided areas with a high human
footprint. However, because migrants vary spatially and tempo-
rally in their tolerance of human-impacted landscapes©,
achieving conservation goals will likely require a portfolio of sites
located in both intact and disturbed landscapes. Fourth, although
our planning scenarios focused on Neotropical migratory birds,
our approach could be easily adjusted and replicated in other
migratory species and systems with sufficient data. In the case of
birds, citizen science data and advanced prioritization tools
allowed us to reveal marked efficiencies in area-based plans
spanning the full annual cycle and multiple jurisdictions to
conserve 117 individual species simultaneously.

Methods

Species selection. We used the eBird citizen-science database (Sullivan et al.,
2014) for this analysis. A total of 224 species were available and we identified a
subset of these for analysis using the following procedure. We first examined
annual eBird distribution maps for all species to identify Neotropical migratory
species (n = 181 species), defined as those with breeding ranges in North America
and non-breeding ranges that extend south of the Tropic of Cancer®’. We then
selected terrestrial passerines from this initial group (n =117 species, see Sup-
porting Information Data 1). These 117 species fell into two broad groups based on
their breeding and stationary non-breeding ranges: (1) species where individuals
breed in North America north of the US-Mexico border and migrate south of the
Tropic of Cancer during the non-breeding period (n = 101 species, Supplementary

Data 1), and (2) species with both migratory and resident populations or sub-

species, for which individuals from migratory populations north of the US-Mexico
border move south of the Tropic of Cancer during the non-breeding period (n =
16 species). Both migratory and resident populations were included in our analysis.

Approaches to conservation prioritization. We created 8 planning scenarios
using weekly STEM models for each of 117 focal species and incorporating dif-
ferent assumptions about temporal scale and cost metrics employed in prioritiza-
tion. First, we created area-optimized solutions to conserve 30% of the global
populations of all species by optimizing during each week of the year separately
(i.e., conserving 30% of populations in each week and summing these individual
solutions across the year) versus over the entire year (i.e., conserving 30% of total
populations calculated once throughout the year, see below and Supplementary
Fig. 4 for details). We next created area-optimized solutions to conserve 30% of the
global populations of all species in each week by sampling each species a) over their
entire range, without accounting for spatial clustering of species abundance, or b)
as 5 regional population clusters identified weekly to accommodate spatial clus-
tering of species abundance and migratory connectivity. Third, we compared area-
based conservation plans designed to represent different perspectives about the
potential contribution of human-modified landscapes to the conservation of
migratory birds, while including either the unrestricted cost metric (each planning
unit having the same cost of 1) or the human footprint cost metric (the planning
unit cost equals the 2009, 1 km resolution human footprint metric by Venter

et al.?0 to identify areas more and less subject to human use), to create a total of
8 scenarios (Supplementary Fig. 4). We used the prioritzr3® R package for the
analysis, which interfaces with the Gurobi3® optimization software.

Spatial prioritization approach. Here we use the concept of systematic con-
servation planning?’, to inform choices about areas to protect, in order to optimize
outcomes for biodiversity while minimizing societal costs*!. To achieve the goal to
optimize the trade-off between conservation benefit and socioeconomic cost, i.e., to
get the most benefit for limited conservation funds, we strive to minimize an
objective function over a set of decision variables, subject to a series of constraints.
Integer linear programming (ILP) is the subset of optimization algorithms used
here to solve reserve design problems. The general form of an ILP problem can be
expressed in matrix notation as:

Minimize cx subject to Ax > b (1)

where x is a vector of decision variables (in our case, whether to prioritize an
individual planning unit), ¢ and b are vectors of known coefficients, and A is the
constraint matrix. In the minimum set cover problem, c is a vector of costs for each
planning unit, b a vector of targets for each conservation feature, the relational
operator would be >for all features, and A is the representation matrix with Aij = rij,
the representation level of feature i in planning unit j. We set an objective to find
the solution that fulfills all the targets and constraints for the smallest area, which
we use as our measure of cost'!. This objective is similar to that used in Marxan,
the most widely used spatial conservation planning tool*?, but has been shown to
lead to more efficient solutions!!.

Spatiotemporal exploratory models. We used spatiotemporal exploratory models
(STEM)*1343 to generate estimates of relative abundance for each species. STEM is a
type of species distribution model created as an ensemble of local regression models
generated from a spatiotemporal block subsampling design. Repeatedly subsampling
and partitioning the study extent into grids of spatiotemporal blocks, and then fitting
independent regression models (base models) in each block produces an ensemble of
partially overlapping local models. Estimates at a given location and date are made by
averaging across all the local models that contain the location and date. Combining
estimates across the ensemble controls for inter-model variability** and adapts to
non-stationary predictor-response relationships!>.

The ensemble of spatiotemporal blocks was designed as a Monte Carlo sample
of 100 randomly located spatiotemporal partitions of the study extent. This results
in a uniformly distributed set of spatiotemporal blocks, and up to 100 local models
covering each location in the study extent. To account for spatial variation in the
density of the bird observation data%’, smaller spatiotemporal blocks (10°x 10° x
30 continuous days) were used north of 12° latitude and larger blocks (20° x 20° x
30 continuous days) were used in the southern portion of the study extent.

The bird observation data used to implement STEM came from the eBird
citizen-science database*®. The data included species counts from complete
checklists collected under the ‘traveling’, ‘stationary’, and ‘areal’ protocols from
January 1, 2004 to December 31, 2016 within the spatial extent bounded by 180° to
30° W Longitude (as well as Alaska between 150° E and 180° E). This resulted in a
dataset consisting of 14 million checklists collected at 1.7 million unique locations,
of which 10% were withheld for model validation.

Within each spatiotemporal block, species” occupancy and abundance were both
assumed to be stationary. If there were at least 50 checklists with at least 10 detections
of the given species within the spatiotemporal block, we fit a two-step boosted
regression tree model designed to deal with zero-inflation® to predict the observed
counts (abundance). If the minimum sample size requirements were not met for the
spatiotemporal block, that spatiotemporal block was removed from the ensemble. The
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boosted regression trees for both steps of the zero-inflation model were fit with the
gbm package?” with bag fraction = 0.80, learning rate or shrinkage = 0.05, and ntrees
=1000. The tree.depth parameter was set to 5 for the occurrence model and 10 for
the abundance model, giving both models the ability to adapt to nonlinear and
interacting predictor effects. We relied on the variance-reducing properties from
averaging across the STEM ensemble to control for overfitting.

Three general classes of predictors were included in both boosted regression
tree models: (i) spatial predictors to account for spatial (and spatiotemporal)
patterns; (ii) temporal predictors to account for temporal variation at various
scales; and (iii) predictors that describe the observation/detection process, which
account for variation in detection rates, a nuisance when making inference about
species occupancy and abundance.

Spatial information was captured using elevation*® and NASA MODIS land*’
and water cover data. All 19 cover classes in the MODIS data were summarized
within 2.8 x 2.8 km (784 ha) pixels centered at each eBird location. In each
neighborhood, we computed the proportion of each class in the neighborhood
(PLAND). To describe the spatial configuration of each class within each
neighborhood we computed three statistics using FRAGSTATS* and SDMTools>!:
LPI an index of the largest contiguous patch, PD an index of the patch density, and
ED an index of the edge density. Summarizing the land-cover information at the
2.8 x 2.8 km resolution reduced the impact of erroneous cover classifications, and
reduced the impact of inaccurate eBird checklist locations. The time of day was
used to model variation in availability for detection; e.g., diurnal variation in
behavior, such as participation in the ‘dawn chorus’2. Day of the year (1-366) was
used to capture day-to-day changes in occupancy, and year was included to
account for year-to-year differences. Finally, to account for variation in detection
rates variables for the number of hours spent searching for species, the length of the
transect traveled during the search, and the number of people in the search party
were included in each base model.

Relative abundance was estimated as the expected count of birds of a given
species on a standardized, hypothetical search conducted by a typical eBird
participant starting from the center of the pixel from 7:00 to 8:00 a.m. while
traveling 1 km. Estimates of relative abundance were rendered at weekly temporal
resolution and 8.4 x 8.4 km spatial resolution and computed as the product of the
estimated occupancy and, the estimated abundance conditional on occupancy,
from the two steps of the boosted regression tree model.

Finally, to ensure good model performance, we required that the ensemble average
computed for each relative abundance estimate have a sample size of at least 50 local
models. In preliminary investigations based on expert review, we found that at least 50
local models were needed to control variation and limit extrapolation.

Weekly and yearly approaches. The two approaches for full annual cycle con-
servation prioritization used here, were (i) weekly, where one spatial prioritization
problem was solved per week and the 52 results where summed together to create a
final solution where each cell was selected between 0 (i.e., never) to 52 times (i.e.,
selected in each solution); (ii) yearly, where the features from each week were included
in one spatial prioritization problem across all 52 weeks of the year. The solution of
this scenario resulted in a cell either being selected or not. For the yearly approach,
each week of the year is its own feature in the optimization. This means, that for a
weekly scenario we would have 117 features (one for each species) and in the yearly
117*52 features (one for each species in each week of the year). To illustrate how the
two approaches, differ, we have created a theoretical example for one species and four
weeks (Supplementary Fig. 5). The example represents a very small study area (40 cells
in total vs. 4.3 million in our actual analysis) and the species has a total of 100
individuals in each week. The target for the species is to protect 30% (i.e., 30 indivi-
duals) of the population in each week. The example shows that in general the weekly
approach captures areas important for each week of the year, independent of other
weeks of the year. The ‘yearly’ approach on the other hand optimizes across the year,
thereby minimizing area requirements, but as a trade-off it does not necessarily cap-
ture the most important areas in each week of the year.

Sampling for spatial clustering of species abundance. Many of the species used
here are represented by multiple sub-species or populations known or suspected to
follow different migratory pathways and use different breeding or wintering
habitats>19>3, However, in the absence of detailed knowledge on migration
pathways for the vast majority of species, we developed a system of stratified
sampling to account for the weekly distribution and spatial structure of each of 117
focal species to ensure representation across their range throughout the annual
cycle. To do so, we first conducted cluster analyses of predicted weekly distribution
maps for all 117 species to identify 5 clusters of equal abundance that encompassed
the entire species range to ensure representation across it. We sampled populations
as 5 clusters because population structure information was missing for most spe-
cies, to facilitate a data driven spatial delineation of population centers, and for
computational efficiency. However, we note that the appropriate number of clus-
ters among species may vary by species phylogeography or abundance should
sufficient information become available. Our clustering approach re-draws the
clusters in each week of the year, so does not consider whether spatial structure is
maintained across weeks—it simply imposes a plausible structure within each
week. Our cluster analysis was based on a dissimilarity matrix of geographic
locations and abundances (which were weighted by 1/3 to primarily focus on

geographic effects and not bias cluster delineation toward spatially separated
abundance clusters), and used the CLARA algorithm, which is an extension of the
k-medoids technique for large datasets>*. For an example see Supplementary Fig. 6.

Land use constraints. We used two metrics to constrain our systematic con-
servation prioritization. First, we used a constant, area-based cost metric for
shared-use scenarios, whereby each planning unit was assigned a cost value of 1. In
these scenarios, the optimization was driven solely by the species abundance
predictions. Second, we used human footprint (2009; 1 km resolution)2’ to identify
areas more and less subject to human use, access or development pressures; spe-
cifically, we calculated the mean human footprint value for each 8.4 x 8.4 km pixel
in our study area and used it as the ‘cost’ of each pixel during prioritization. We
used the human footprint metric as the cost metric in intact habitat scenarios. The
human footprint layer represents a composite including the following human
pressures: (1) the extent of built environments; (2) crop land; (3) pasture land; (4)
human population density; (5) night-time lights; (6) railways; (7) roads; and (8)
navigable waterways20. The human footprint values range from 0 to 50, with 0
representing no human pressures and 50 representing the highest human pressure
possible. We used the human footprint metric as a continuous constraint in the
prioritization approach.

Land cover representation. After the prioritization analyses, we summarized the
major land cover types for each scenario that we generated. We used the 2015 data
set of the global land cover map®® at a 300 m resolution and clipped the original
data to the study area. For each scenario, we used the geospatial data abstraction
library®® to warp the selected cells from the prioritization onto the raster grid of the
land cover dataset. There were 37 land cover classes identified across scenarios and
the frequency and area amount of each was summarized for all scenarios. As a final
step we combined similar land cover classes into broader classes (Supplementary
Table 2) and we used these to examine differences in area and land cover types
selected under single season vs. full annual cycle planning and for intact habitat vs.
shared-use scenarios (Table 2).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All data, computer code used in analysis, files generated from the analysis and outputs
such as figures and tables have been deposited and are publicly available here: https://osf.
io/58hgs/ (https://doi.org/10.17605/OSF.IO0/58HGS).
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