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A B S T R A C T   

Purpose: To develop a multimodal deep transfer learning (DTL) fusion model using optical 
coherence tomography angiography (OCTA) images to predict the recurrence of retinal vein 
occlusion (RVO) and macular edema (ME) after three consecutive anti-VEGF therapies. 
Methods: This retrospective cross-sectional study consisted of 2800 B-scan OCTA macular images 
collected from 140 patients with RVO-ME. The central macular thickness (CMT) > 250 μm was 
used as a criterion for recurrence in the three-month follow-up after three injections of anti-VEGF 
therapy. The qualified OCTA image preprocessing and the lesion area segmentation were per-
formed by senior ophthalmologists. We developed and validated the clinical, DTL, and multi-
modal fusion models based on clinical and extracted OCTA imaging features. The performance of 
the models and experts predictions were evaluated using several performance metrics, including 
the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and 
specificity. 
Results: The DTL models exhibited higher prediction efficacy than the clinical models and experts’ 
predictions. Among the DTL models, the Vgg19 performed better than that of the other models, 
with an AUC of 0.968 (95 % CI, 0.943–0.994), accuracy of 0.913, sensitivity of 0.922, and 
specificity of 0.902 in the validation cohort. Moreover, the fusion Vgg19 model showed the 
highest prediction efficacy among all the models, with an AUC of 0.972 (95 % CI, 0.946–0.997), 
accuracy of 0.935, sensitivity of 0.935, and specificity of 0.934 in the validation cohort. 
Conclusions: Multimodal fusion DTL models showed robust performance in predicting RVO-ME 
recurrence and may be applied to assist clinicians in determining patients’ follow-up time after 
anti-VEGF therapy.   

1. Introduction 

Retinal vein occlusion (RVO) complicated by macular edema (ME) is an ophthalmological disease that poses a grim threat to human 
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vision [1]. The disruption of the vascular barrier and impaired return of tissue fluid return secondary to vascular occlusion are the main 
primary mechanisms involved in its pathogenesis; however, these mechanisms are still not fully understood [2]. Effective control of 
ME or prevention of post-treatment recurrence is important for preserving vision. 

Anti-VEGF therapy can facilitate the absorption of retinal fluid and suppress neovascular leakage. It is currently the first-line 
therapy for managing ME in RVO cases [3]. The efficacy of the mainstream treatment strategies, such as pro re nata (PRN) or 
treat-and-extend (T&E), depends on the subjective judgment of macular central fovea edema [4]. It is often challenging for clinicians to 
predict the efficacy of treatment and determine the follow-up date before treatment because some patients respond poorly to 
anti-VEGF therapy or experience recurrence after improvement. 

Optical coherence tomography angiography (OCTA), which quantifies macular foveal thickness, has been broadly used to evaluate 
the efficacy of treatment and recurrence of ME [5]. However, frequent follow-ups and examinations increase the burden on patients 
and strain healthcare resources [6]. It is difficult for ophthalmologists to predict the recurrence of RVO-ME after treatment using OCTA 
images. Therefore, there is an urgent need to develop a reliable prediction approach. 

Deep learning is rapidly advancing in artificial intelligence. Convolutional neural networks (CNNs) are representative algorithms 
for extracting medical image features and are widely used to analyze conditions, such as glaucoma, high myopia, and retinal vascular 
diseases [7,8]. CNNs directly process images, automatically extracting features and conducting classification [9]. Their ability to 
extract features from OCTA images provides a promising solution for predicting disease progression and determining treatment effects 
[10]. Feng et al. used a CNN-based transfer learning to automatically predict the effectiveness of anti-VEGF therapy using OCT images 
before treatment, with a prediction area under the receiver operating characteristic (ROC) curve (AUC) exceeding 0.8 [11]. To the best 
of our knowledge, few studies have used artificial intelligence to predict the response to anti-VEGF therapy from baseline OCT in 
patients with RVO. Xu et al. used a generative adversarial network to predict the short-term response of patients with RVO to 
anti-VEGF therapy [12]. We enrolled patients who underwent treatment with three consecutive anti-VEGF injections over a 3 months 
follow-up period to confirm the relative long-term efficacy of anti-VEGF for RVO-ME. Methodologically, we constructed fusion models 
by combining deep transfer learning (DTL) and clinical features to predict the recurrence of RVO-ME using OCTA images. We aimed to 
develop a multimodal DTL fusion model based on OCTA images to predict whether RVO or ME will recur after three consecutive 
anti-VEGF therapies. 

The main contributions of our study are as follows: (1) We explored the optimal method to use segmentation results provided by 
retinal physicians for CNNs training. (2) We developed CNN-based methods that can automate ME recurrence in OCTA images, 
achieving compelling performance in comparison to assessments by three physicians. (3) We combined DTL and clinical features to 
construct fusion models that achieved better performance. (4) These models guide subsequent treatment and follow-up, potentially 
serving as imaging markers to determine the recurrence of ME in RVO. 

2. Materials and methods 

2.1. Study population 

The patient flowchart for this study is shown in Fig. 1. This retrospective cross-sectional study included 140 patients. Patients aged 

Fig. 1. Patient flowchart for this study. 
OCTA, optical coherence tomography angiography; FFA, fluorescein fundus angiography; PPV, pars plana vitrectomy. 
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≥18 years with central macular thickness (CMT) ≤ 250 μm of the first review of examination within 1 week after three consecutive 
anti-VEGF injections at Nanjing Medical University Affiliated Eye Hospital between February 2018 and June 2022 were included in the 
study. We excluded patients with the following criteria: (1) patients with other fundus diseases, including age-related macular 
degeneration, diabetic retinopathy, glaucoma, uveitis, and ocular ischemic syndrome; (2) patients with previous intraocular surgery or 
intraocular dexamethasone injection; (3) severe cataract and vitreous hemorrhage combination, resulting in refractive media 
turbidity, for which the recurrence of patient was unclear; and (4) poor-quality OCTA images. The CMT> 250 μm within 3 months after 
three injections of anti-VEGF therapy was used as the criterion for ME recurrence. The Medical Ethics Committee approved this study, 
which adhered to the principles of the Declaration of Helsinki. 

2.2. OCTA image acquisition 

The AngioVue software (Optovue RTVue XR Avanti, version: A2017,1,0,151; Optovue Inc. Fremont, CA) was used to perform 
macular central foveal scans measuring 3 mm × 3 mm or 6 mm × 6 mm [13]. Twenty B-scan images of the ME lesions were manually 
selected for each patient’s baseline session, resulting in a total of 2800 images. CMT, foveal avascular zone, foveal avascular zone 
perimeter (PERIM), foveal density, and vascular density of the deep capillary plexus (whole, fovea, and parafovea) and superficial 
capillary plexus (whole, fovea, and parafovea) were obtained as clinical variables at the end of the scan using the system software 
measurement function. For subsequent feature extraction and model construction, all scanned images were saved in TIFF format to 
establish a standardized image format [14]. 

2.3. Clinical model construction 

The clinical characteristics of the 140 patients were selected using univariate analyses. Features with high collinearity (correlation 
coefficient >0.9) were excluded from the analysis. The remaining clinical features were used to build the clinical models using logistic 
regression (LR), support vector machine (SVM), Random Forest (RF), Decision Tree (DT), and an ensemble method. 

2.4. Image preprocessing and segmentation 

The original OCTA images were preprocessed to eliminate background noise, including the normalization of input images. Each 
OCTA image was normalized to a range of 0–255 pixels and cropped according to the smoothed pixel intensity [15]. Manual seg-
mentation of the preprocessed images, including all the B-scans within each OCT volume, was performed by two senior ophthal-
mologists. The segmentation results were evaluated by a single retinal specialist. 

2.5. DTL model construction 

Fig. 2 shows the artificial intelligence workflow and study flowchart. After pre-training on ImageNet for the Vgg19, resnet50, 
GoogLeNet, and Inception-v3 DTL models, DTL features were extracted using the penultimate layer. In total, 4096, 2048,1024, and 
2048 features were extracted from the Vgg19, resnet50, GoogLeNet, and Inception-v3 DTL models, respectively [16,17]. These fea-
tures were normalized and selected using Z-score and least absolute shrinkage and selection operator (LASSO) regression. The selected 
DTL features were evaluated based on accuracy and receiver operating characteristic (ROC) curves using four different classifiers: 

Fig. 2. Artificial intelligence workflow and study flowchart. 
OCTA, optical coherence tomography angiography; DTL, deep transfer learning; SVM, support vector machine; LR, logistic regression; RF, Random 
Forest; DT, Decision Tree; CMT, central macular thickness, FAZ, foveal avascular zone, PERIM, FAZ perimeter, FD, foveal density, SCP, superficial 
capillary plexus, DCP, deep capillary plexus. 
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SVM; LR; RF; and DT [18]. To overcome the instability of a small sample size, we integrated the four benchmark models using an 
average ensemble of four classifiers. In addition, DTL and clinical features were combined to construct four fusion models and 
outputted using different machine learning classifiers (SVM, LR, RF, DT, and Ensemble) [15]. Deep learning features were selected, and 
the models were constructed using the “PyTorch” Python package (version 1.8.1). All the DTL features extraction and models’ con-
struction were performed on a single NVIDIA Quadro RTX 3070Ti 16 GB GPU in Windows 10. 

2.6. Evaluation of predictive efficacy 

The evaluation metrics of different models’ prediction efficacy were calculated, including the accuracy, area under the ROC curve 
(AUC), 95 % Confidence interval (CI), sensitivity, specificity, recall, and F1-score [19]. We also evaluated the accuracy of the clinicians 
(ZLH, 5 years of experience; XXZ, 11 years of work experience; and YJ, 21 years of experience) in predicting recurrence after anti-VEGF 
injections. 

Accuracy serves as an essential indicator for evaluating classification models. It is defined as the ratio of the correct predictions to 
the total. Precision measures the number of true positives among all predicted positive data. Recall quantifies the percentage of 
correctly identified positive samples out of all positive samples. The F-Measure, also known as F-Score, is a statistic representing the 
weighted harmonic mean of precision and recall. It is frequently used to assess the quality of classification models. F = (a2 + 1) * 
precision * recall/(a2 * precision + recall). When a = 1, it becomes the commonly used F1 score: F1 = 2 * precision * recall/(precision 
+ recall). 

The AUC was defined as the area enclosed by the coordinate axis under the ROC curve. The abscissa of the ROC curve represents the 
false positive rate, while the ordinate represents the true positive rate. As the ROC curve alone may not clearly indicate which classifier 
is superior, the AUC value is often employed as the evaluation criterion. The larger AUC value signifies a better classifier. 

2.7. Statistical analysis 

Chi-square tests or Fisher’s tests were used for categorical variables, and t-test or Mann–Whitney test were used for quantitative 
variables. The Shapiro–Wilk test was used to assess the normality of the data. The mean ± standard deviation or median with an 
interquartile range (IQR) were used for continuous variables. The Spearman rank correlation test was used to evaluate the correlation 
and was performed using Python (version 3.11.2, https://www.python.org/). Statistical significance was set at p < 0.05. significant. 
Statistical analyses were performed using SPSS (version 28.0) and R software (version 4.1.3, https://www.r-project.org/). 

3. Results 

3.1. Base characteristics 

Patients diagnosed with RVO-ME were selected between February 2018 and June 2022 at the Affiliated Eye Hospital of Nanjing 
Medical University. The training cohort included a total of 112 participants (2240 macular B-scan images), including 49 patients 
without recurrence (25 [22.3 %] women; mean age, 58.71 years) and 63 patients with recurrence (31 [27.7 %] women; mean age, 
54.65 years). A total of 28 cases (560 macular B-scan images) were included in the validation cohort: 12 cases without recurrence (six 
[21.4 %] women; mean age, 55.58 years) and 16 cases with recurrence (seven [25.0 %] women; mean age, 58.25 years). There were 

Table 1 
Basic characteristics and clinical data of the study subjects.  

Variable Training cohort (n = 112)  Validation cohort (n = 28)  

Recurrence (n = 63) Non-recurrence (n = 49) P value Recurrence (n = 16) Non-recurrence (n = 12) P value 

Age, years 54.65 ± 12.01 58.71 ± 12.08 0.079 58.25 ± 10.53 55.58 ± 15.75 0.325 
Gender   0.849   1 

male 32 (28.6 %) 24 (21.4 %)  9 (32.1 %) 6 (21.4 %)  
female 31 (27.7 %) 25 (22.3 %)  7 (25.0 %) 6 (21.4 %)  

CMT(μm) 524 (371, 650.5) 526 (427, 593) 0.869 531.91 ± 181.77 587.75 ± 161.05 0.406 
FAZ(mm2) 0.33 (0.25, 0.39) 0.32 (0.21, 0.37) 0.546 0.32 (0.28, 0.38) 0.30 (0.23, 0.32) 0.201 
PERIM(mm) 2.57 (2.12, 2.81) 2.45 (1.95, 2.74) 0.428 2.57 (2.25, 2.97) 2.37 (2.07, 2.49) 0.171 
FD(%) 45.4 (43.7, 48.2) 45.7 (43.2, 48.5) 0.801 46.14 ± 4.13 45.03 ± 2.62 0.422 
SCP(%) 

whole 40.7 (38.2, 43.4) 39.7 (37.4, 41.9) 0.219 41.22 ± 4.10 38.80 ± 3.41 0.353 
fovea 23.5 (20.2, 27.6) 24.2 (19.2, 26.3) 0.935 27.46 ± 7.18 25.40 ± 6.03 0.599 
parafovea 42.4 ± 3.99 41.24 ± 4.99 0.176 42.69 ± 4.33 40.23 ± 4.33 0.235 

DCP(%) 
whole 43.4 (40.9, 46.2) 41.1 (37.3, 43.4) 0.006 42.4 (38.8, 46.3) 42.7 (41.1, 44.1) 1 
fovea 33.53 ± 10.24 32.03 ± 9.37 0.427 34.4 (26.0, 38.4) 34.4 (31.8, 41.7) 0.745 
parafovea 44.5 (43.0, 47.2) 42.1 (39.1, 44.4) 0.007 42.7 (39.9, 47.6) 43.3 (42.1, 46.1) 0.727 

CMT, central macular thickness; FAZ, foveal avascular zone; PERIM, FAZ perimeter; FD, foveal density; SCP, superficial capillary plexus; DCP, deep 
capillary plexus. 
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significant differences in the deep capillary plexus (whole and parafovea) in the training cohort. Baseline patient data are shown in 
Table 1. 

3.2. Clinical model construction 

The results of the prediction of whether recurrence occurred within 3 months after anti-VEGF treatment in RVO patients using 
different classifiers (SVM, LR, DT, RF, and Ensemble) are shown in Table 2. The AUCs of the validation cohort for all the four classifiers 
were low. The four classifiers were further integrated to optimize their characteristics and overcome the instability caused by an 
inadequate sample size. The predictive results obtained using the different classifiers are shown in Fig. S1. The accuracy, AUC, 
sensitivity, specificity, precision, recall, and F1-score of ensemble were 0.964, 0.995 (95 % CI, 0.989–1.000), 0.936, 1.000, 1.000, 
0.937, and 0.967 in the training cohort. And the accuracy, AUC, sensitivity, specificity, precision, recall, and F1-score were 0.714, 
0.635 (95 % CI, 0.406–0.865), 0.750, 0.727, 0.750, 0.750, and 0.750 in the validation cohort (Fig. 3A, Table 2). In addition, we 
evaluated the accuracy of the three clinicians in predicting recurrence or non-recurrence after anti-VEGF treatment using 140 patient 
images from the dataset. The comprehensive results of the expert predictions are presented in Table S1. 

3.3. DTL model construction 

Owing to the poor prediction results of the clinical models and expert predictions, we extracted deep visual features from the OCTA 
images for deep learning. We selected four deep learning models (Vgg19, resnet50, GoogLeNet, and Inception-v3) to extract the 
features and input them into different classifiers (SVM, LR, DT, RF, and Ensemble). In a comparison of all classifiers, the ensemble 
performed better than the four classifiers. Therefore, the ensemble prediction results were selected as the final outputs. Among the four 
DTL models, Vgg19 showed the best predictive performance, with a training cohort accuracy of 0.984, AUC of 0.999 (95 % CI, 
0.998–1.000), sensitivity of 0.990, and specificity of 0.975, precision of 0.981, recall of 0.990, and F1-score of 0.985. The accuracy, 
AUC, sensitivity, specificity, precision, recall, and F1-score were 0.913, 0.968 (95 % CI, 0.943–0.994), 0.922, 0.902, 0.922, 0.922, and 
0.922 in the validation cohort (Fig. 3B). The prediction results for the patients with and without recurrence are presented in Table 3. 
Therefore, Vgg19 is more suitable for predicting ME recurrence within 3 months after anti-VEGF treatment in patients with RVO. 
Furthermore, all DTL models were more accurate than clinical models in predicting recurrence or non-recurrence, with AUCs >0.80. 
The details of the prediction results of the four DTL models are listed in Table 3. 

3.4. Fusion model performance 

To improve the predictive efficacy of the DTL models, we combined the extracted deep visual features with clinical variables to 
construct a fusion model to predict RVO-ME recurrence 3 months after anti-VEGF treatment. As shown in Table 4, the Vgg19 fusion 
model exhibited appealing prediction performance. The accuracy, AUC, sensitivity, specificity, precision, recall, and F1-score were 
0.985, 0.999 (95 % CI, 0.999–1.000), 0.993, 0.975, 0.981, 0.993, and 0.987 in the training cohort. And the accuracy, AUC, sensitivity, 
specificity, precision, recall, and F1-score were 0.935, 0.972 (95 % CI, 0.946–0.997), 0.935, 0.934, 0.947, 0.935 and 0.941 in the 
validation cohort (Fig. 3C). The performance results for predicting the recurrence and non-recurrence of RVO-ME are presented in 
Table 4. In comparison with the Vgg19 DTL model, the accuracy of the fusion Vgg19 model was elevated, indicating that the fusion 
model had a higher prediction accuracy. In addition, all fusion models had higher prediction accuracies for both recurrence and non- 
recurrence, with AUCs >0.85, as shown in Table 4. 

Table 2 
Clinical models performance.  

Clinical Models AUC (95%CI) Accuracy Sensitivity Specificity Precision Recall F1-score 

SVM 
Training 0.851 (0.777–0.924) 0.821 0.794 0.857 0.877 0.794 0.833 
Validation 0.578 (0.590–0.798) 0.643 0.563 0.750 0.750 0.563 0.643 

LR 
Training 0.639 (0.535–0.744) 0.661 0.587 0.771 0.755 0.587 0.661 
Validation 0.693 (0.494–0.892) 0.679 0.500 0.917 0.889 0.500 0.640 

DT 
Training 0.997 (0.993–1.000) 0.973 0.984 0.959 0.969 0.984 0.976 
Validation 0.480 (0.244–0.710) 0.642 1.000 0.167 0.615 1.000 0.762 

RF 
Training 0.954 (0.918–0.988) 0.928 0.167 0.959 0.966 0.905 0.934 
Validation 0.453 (0.204–0.702) 0.643 0.938 0.273 0.625 0.938 0.750 

Ensemble 
Training 0.995 (0.989–1.000) 0.964 0.936 1.000 1.000 0.937 0.967 
Validation 0.635 (0.406–0.865) 0.714 0.750 0.727 0.750 0.750 0.750 

AUC, area under the curve; 95%CI, 95 % confidential interval. SVM, support vector machines; LR, Logistic Regression; DT, Decision Tree; RF, Random 
Forest. 
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Fig. 3. Comparison of prediction efficacy in different models. 
(A) ROC curve and histogram for prediction of clinical model. (B) ROC curve and histogram for prediction of DTL-Vgg19 model. (C) ROC curve and 
histogram for prediction of fusion-Vgg19 model. DTL, deep transfer learning; ROC, receiver operating characteristic; AUC, area under the curve. 

Table 3 
DTL models performance.  

DTL Models AUC (95%CI) Accuracy Sensitivity Specificity Precision Recall F1-score 

Vgg19 
Training 0.999 (0.998–1.000) 0.984 0.990 0.975 0.981 0.990 0.985 
Validation 0.968 (0.943–0.994) 0.913 0.922 0.902 0.922 0.922 0.922 

resnet50 
Training 0.988 (0.982–0.994) 0.944 0.971 0.910 0.931 0.971 0.951 
Validation 0.888 (0.830–0.946) 0.833 0.923 0.717 0.809 0.923 0.862 

GoogLeNet 
Training 0.993 (0.985–1.000) 0.975 0.980 0.967 0.974 0.980 0.977 
Validation 0.912 (0.866–0.958) 0.819 0.883 0.738 0.810 0.883 0.845 

Inception-v3 
Training 0.976 (0.964–0.989) 0.935 0.951 0.914 0.933 0.951 0.942 
Validation 0.835 (0.769–0.901) 0.761 0.792 0.721 0.782 0.792 0.787 

DTL, Deep transfer learning; AUC, area under the curve; 95%CI, 95 % confidential interval. 

Table 4 
Fusion models performance.  

Fusion Models AUC (95%CI) Accuracy Sensitivity Specificity Precision Recall F1-score 

Vgg19 
Training 0.999 (0.999–1.000) 0.985 0.993 0.975 0.981 0.993 0.987 
Validation 0.972 (0.946–0.997) 0.935 0.935 0.934 0.947 0.935 0.941 

resnet50 
Training 0.995 (0.988–1.000) 0.978 0.987 0.967 0.974 0.987 0.981 
Validation 0.923 (0.875–0.971) 0.891 0.922 0.852 0.888 0.922 0.904 

GoogLeNet 
Training 0.997 (0.995–1.000) 0.987 0.987 0.988 0.990 0.987 0.989 
Validation 0.947 (0.914–0.980) 0.861 0.908 0.803 0.852 0.908 0.879 

Inception-v3 
Training 0.988 (0.982–0.994) 0.942 0.961 0.918 0.936 0.961 0.948 
Validation 0.883 (0.826–0.940) 0.790 0.883 0.672 0.773 0.883 0.824 

AUC, area under the curve; 95%CI, 95 % confidential interval. 
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3.5. Model visualization 

To visualize the pivotal elements within OCTA images strongly associated with the prognosis of treatment outcomes 3 months after 
anti-VEGF treatment in patients with RVO, an admired occlusion test was performed to illustrate the results and augment model 
transparency. Employing a blank 100 × 100-pixel box, we systematically traversed every feasible spot in the image, and the credibility 
of the prediction was itemized. The highest point on the probability scale epitomizes the part of the OCTA image that is the most 
critical for convincing classification (shown in blue in Fig. 4). Furthermore, retinal specialists (ZLH, HY, and CJQ) confirmed if the 
regions recognized by the occlusion test indeed represented the most clinically distinctive predictive zones in RVO-ME affected eyes. 

4. Discussion 

RVO-ME is generally responsive to anti-VEGF therapy in most patients [20,21]; however, recurrent RVO-ME has been a very 
challenging issue for clinicians because it can lead to irreversible vision loss if not followed up and managed promptly [21–23]. 
Therefore, it is necessary to predict the recurrence of RVO-ME. For this purpose, four different DTL neural networks, Vgg19, resnet50, 
GoogLeNet, and Inception-v3, were applied to extract OCT image features and further fuse them with clinical features to optimize the 
results, which were inputted into different deep learning classifiers (SVM, LR, RF, DT, and Ensemble) in our research. The optimal 
performance of the fusion classifier resulted in an AUC of 0.972 (0.946–0.998), and an accuracy rate of 93.5 %. These results 
significantly outperformed the predictions made by ophthalmologists in the validation cohort. This reliable prediction system is 
valuable in guiding the clinical anti-VEGF treatment interval and setting the follow-up date. The image features extracted by DTL may 
be markers for predicting recurrence [24,25]. 

The pro re nata and treat-and-extend anti-VEGF protocol for the control of RVO complicated by ME is promising, according to the 
results of recent multicenter clinical trials, but requires multiple injections of anti-VEGF and monthly follow-up to assess treatment 
efficacy [26]. The number of injections and follow-up dates are flexible depending on the actual situation, which relies on the sub-
jective judgment of the physician [27]. Arrigo et al. found that patients with BRVO-ME require 9.80 ± 5.39 doses of anti-VEGF, 
whereas patients who skip visits frequently lose the ideal opportunity for therapy [28]. Therefore, predicting whether RVO-ME will 
recur in the short term has significance in determining the timing of anti-VEGF injection and the follow-up interval. The use of artificial 
intelligence technology for the diagnosis and prognostic prediction of retinal diseases has become widespread, and the diagnostic 
ability of CNNs based on ophthalmic image features has reached the expert levels in some aspects [15,29,30]. Using OCT images, 
pixel-level features extracted using deep learning algorithms can assist in the diagnosis and treatment in the area of fundus diseases 
[31]. Rasti R et al. used pre-treatment OCT scans to predict the efficacy of anti-VEGF therapy in diabetic ME [32]; however, few studies 
have utilized CNN models to predict RVO-ME recurrence following anti-VEGF treatment. In this study, the characteristics from 
high-resolution OCTA images were extracted using pre-trained CNNs, and their analysis using algorithmic models demonstrated the 
potential to predict whether the edema will return within 3 months after anti-VEGF therapy. We used fusion models to further optimize 
the results and improve the prediction accuracy. Similarly, Liu B et al. automated the segmentation and characterization of macular 
disease’s photoreceptor alterations by integrating four distinct CNN algorithms; and the fusion models outperformed each other with 
higher Dice coefficients, sensitivity, and specificity [15]. Our study presented an automated, objective, and effective image-based 
diagnostic technique that offers new perspectives for the clinical management of RVO-ME, including cost savings and improved ef-
ficiency. In addition, telemedicine has great potential for application in areas where resources are insufficient and trained human 
diagnosticians are scarce [33]. 

Predicting whether ME will recur after anti-VEGF treatment, personalized injection regimens, and follow-up dates is a step toward 
precision medicine. Such prediction may help clinicians better select first-line treatments for their patients [34,35]. Our approach may 
be applied to personalized medicine in two main ways: (1) to provide clinicians with useful prognostic information; and (2) as a 

Fig. 4. Models visualization. 
The heatmap illuminates the zones of pathology in the RVO-ME. The blue and red parts represent high and low affiliations, respectively. RVO, 
retinal vein occlusion; ME, macular edema. 
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decision-aid system to assist clinicians and patients in making decisions regarding anti-VEGF injections, including recommending or 
refusing injections, decisions regarding injection intervals, and the possible need for drug replacement. The algorithm will also help 
identify patients who do not respond well to anti-VEGF therapy, suggesting the need for close follow-up and timely adjustment of 
treatment strategies. More importantly, our prediction system is based on commonly used OCT images and a well-established algo-
rithm. This does not require additional investment in new ophthalmic examination equipment, and artificial intelligence algorithms 
make the system available to a larger number of physicians. 

Numerous studies have supported the potential broad applicability of our model. For instance, Sudeshna et al. extracted features 
from OCT images to distinguish between rebounders and non-rebounders after anti-VEGF treatment in DME/RVO-ME patients, 
achieving an AUC of 0.78 ± 0.08 [36]. Similarly, Mathias et al. used machine learning to predict the anti-VEGF treatment needs of 
patients with ME within 1 year, categorizing divided eyes into low, medium, and high-demand groups based on average treatment 
intervals, with the average AUC of the RVO/DME model being 0.76 for low demand and 0.78 for high demand [37]. These studies did 
not distinguish between RVO-ME and DME patients, and their results indicated the reliability of deep learning. This suggests that 
image features in various ME diseases may share similarities, making deep learning algorithms potentially applicable to different ME 
conditions, including diseases like DME. Our algorithm may thus find utility in a wider range of ME-related applications. 

Our study had some limitations and improvements. First, although our results have some advantages, they are limited by their 
retrospective nature and small sample size, and only 140 patients were used for training and testing. A larger OCT dataset for training 
and testing is expected to yield better prediction results. Secondly, the response to treatment with the injectable anti-VEGF drugs in this 
trial, including aflibercept, ranibizumab, and bevacizumab, may vary. Third, the predictive ability is demonstrated by whether 
recurrence is present, no prediction of visual outcome is made, and the recovery of anatomical structures does not certainly indicate 
functional restoration. Fourth, our study did not identify the anatomical and pathological features that had a significant impact on the 
prediction results. A larger prospective observational trial using a standardized imaging protocol is required to confirm these findings. 

5. Conclusions 

Our deep learning model fused clinical features and successfully predicted recurrence within 3 months based on preprocessed OCT 
images in patients with RVO-ME. Predicting whether a relapse will occur after treatment based on our deep learning system may help 
better manage the treatment and follow-up of patients with RVO. Further development of the prediction system could be achieved by 
including larger cohorts and conducting long-term prospective cohort studies in the future. In summary, the artificial intelligence 
system established the feasibility of helping ophthalmologists identify patients most likely to experience recurrent RVO-ME. 
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