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Abstract

Objective—Obesity is a costly, deadly public health problem for which new treatments are 

needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. 

The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake 

differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and 

ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) 

agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats.

Design—Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-

fat diet. Food and water intake as well as ingestion microstructure were then compared under 
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baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 

µg).

Results—Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum 

effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also 

made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce 

drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly 

and consumed with 2/3rd less water.

Conclusions—Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to 

reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a 

“gorging” meal pattern. These results open new opportunities of investigation towards treating 

some forms of diet-induced obesity.

Keywords

obesity or obese; feeding or food intake; meal pattern or meal size or meal frequency or meal 
microstructure; satiety or satiation; appetite; high-fat diet; urocortin or corticotropin-releasing 
factor or corticotropin-releasing hormone or CRF or CRH receptor

Introduction

Obesity is a major public health problem that increases morbidity, mortality, and economic 

burdens1, 2. Some individuals may be susceptible to becoming obese when exposed to 

palatable, calorically-dense food3–5 due to an inherited resistance to the negative feedback 

influence of neuropeptides and peripheral hormones6 on energy metabolism and 

appetite7–11. Accordingly, Levin and colleagues selectively bred rats for differential weight 

gain responses to a high-fat/high-energy diet. The resulting diet-induced obesity-prone 

(DIO) and diet-resistant (DR) rat lines model the polygenic individual differences in human 

vulnerability to diet-induced obesity12–14. When fed a high-fat diet, DIO rats become fatter 

than DR rats, which do not gain excess weight or body fat12–14; in contrast, young adult 

DIO rats remain lean when fed low-fat food, per a gene-environment interaction14, 15. The 

effects of high-fat diet on body weight and metabolism in genetically-selected DIO rats are 

well-studied4, 12, 13, 16, but it remains unclear whether DIO rats eat differently than do DR 

rats. The microstructure of intake15, 17 can provide key insights into the controls of 

feeding18, 19 and has been linked to body composition; in humans, increased meal size and 

decreased meal frequency are putative risk factors for obesity7–11. Still lean, but obesity-

prone DIO rats show a snacking-like microstructure pattern when fed a regular chow diet, 

consuming more, but smaller, meals than chow-fed DR rats15. It is unknown, however, 

whether these two genetic animal lines eat differently when chronically fed a high-fat diet, a 

key question given that the lines’ weight and adiposity differ as young adults only when 

challenged by high-fat diet. The first aim of the present study was to test the hypothesis that 

the microstructure of food intake differs between high-fat diet-fed DIO and DR rats.

Relative to lean individuals, obese individuals are resistant to the appetite suppressant and 

weight-loss promoting properties of several anorexigens, including leptin and central 

insulin20–26. Resistance states perpetuate obesity; potential weight-reducing 
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pharmacotherapies must engage substrates downstream of or parallel to the signaling 

resistance. The urocortin (Ucn)/corticotropin-releasing factor 2 receptor (CRF2) system is a 

potential therapeutic target for overeating and obesity15, 27–35. Ucns and CRF2 receptors are 

co-distributed in feeding-regulatory hypothalamic nuclei and the nucleus of the solitary 

tract36. Central administration of Ucn 2 and Ucn 3, endogenous CRF2 agonists, suppress 

food intake at doses that do not elicit malaise- or anxiety-like behavior15, 31–33, 37, 38. 

Moreover, CRF2 knock-out (KO) mice eat larger meals,29 with increased nocturnal intake of 

sweet chow29 and high-fat food30 vs. wildtype mice.16, 39, 40. Ucn 2 retains its maximal 

anorectic efficacy, in chow-fed, lean DIO rats15, unlike leptin and insulin16, 38, 39. The 

anorectic effectiveness of CRF2 agonists in high-fat diet-fed, obese DIO rats is unknown. 

The second aim of the present study was therefore to test the hypothesis and microstructure 

mechanism by which central administration of Ucn 2 decreases intake of high-fat food 

similarly in obese genetically-selected DIO as in lean DR rats.

Materials and methods

Please see Supplementary Material for additional details.

Subjects

Male Diet-Induced Obesity (DIO) (n=10) and Diet Resistant (DR) (n=10) rats, descendants 

of the original DIO and DR rat colonies (Levin et al., 1997), were born at The Scripps 

Research Institute. Rats were maintained in a 12:12 hr reverse-lighting cycle in a humidity- 

and temperature-controlled vivarium. Rats had access to LM-485 Diet 7012 chow (65% 

[kcal] carbohydrate, 13% fat, 21% protein; 3.1 kcal/g; Harlan Teklad, Indianapolis, IN) and 

water ad libitum before experiments. Procedures adhered to the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals (NIH Publication number 85–23, revised 

1996) and the “Principles of laboratory animal care” and were approved by the Institutional 

Animal Care and Use Committee of The Scripps Research Institute.

Drugs

Rat Urocortin 2 (Ucn 2) and angiotensin II, generously provided by Dr. Jean Rivier (The 

Salk Institute, La Jolla, CA), were synthesized as previously described41, 42. Ucn 2 and 

angiotensin II were dissolved in 0.5X PBS and 1X PBS (pH=7.4), respectively.

Intra-cranial surgery and injection procedures

Because type 2 urocortins can suppress food intake via hypothalamic sites of action15, 31, 

stainless steel cannulae were stereotaxically implanted in isoflurane-anesthesized rats to 

target the third ventricle (3v; interaural flat-skull; anterior/posterior −0.8 mm from bregma; 

dorsal/ventral: −3.5 mm from skull)1543.

For testing, drug solutions or vehicle (2 µl) were injected over 90 sec with a Hamilton 

microsyringe linked by PE 20 tubing to a 31-gauge injector projecting 3 mm beyond the 

guide cannula. Injectors were left in place for 1 min. Placement was functionally verified 

post-study as a positive dipsogenic response (>5 ml water intake/30 min) to 3v angiotensin 

II (100 ng/2 µl).
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Microstructural analysis of ingestion

Apparatus—To study the microstructure of ingestion, rats were individually housed in 

previously described Plexiglas test cages17, 4444, 45. Rats obtained individual 45-mg pellets 

from an automated, photocell-monitored dispenser (Med Associates, St. Albans VT). Rats 

were first trained using a chow diet (45 mg precision 5TUM: carbohydrate 65.5% (kcal), fat 

10.4%, protein 24.1%, 3.7 kcal/g; Test Diet/Purina Mills, Inc., Richmond, IN, USA), but 

ultimately tested with a high-fat diet. The microstructure high-fat diet (F56381: fat 34.9% 

[kcal], carbohydrate 46.4%, protein 18.7%, 4.2 kcal/g; Bioserv, Frenchtown, NJ) was a 45-

mg precision-pelleted variation of the high-fat diet that rats consumed in their home cages. 

Water delivery (0.1 ml) into a reservoir was governed by a response-contingent solenoid 

activated by nose-poke interruption. Post-reinforcement timeout intervals (3.25 and 1 sec for 

food and water, respectively) prevented duplicate reinforcement15.

Study design

Beginning from 50 days of age, DR and DIO rats were provided only a high-fat diet in their 

home cages (D12266B) unless otherwise specified. Rats resided in and learned how to 

obtain food and water in the microstructure enclosures beginning from 110–120 days of age. 

After establishing stable daily food and water intake (12–13 sessions), rats remained in their 

home cages for chronic diet exposure. At 218 days of age, rats were implanted with the 3v 

guide cannula and allowed to recover for one week. Microstructure housing resumed at 226 

days of age. After re-attainment of stable food intake (12–13 sessions), rats were provided 

high-fat diet in the enclosure. After high-fat diet intake stabilized (<15% food intake 

variation across 3 consecutive days), spontaneous baseline high-fat diet intake and meal 

microstructure of DIO vs. DR high-fat rats were measured at 241 and 242 days of age. To 

determine the effects of acute central Ucn 2 administration on high-fat diet intake, rats then 

received 3v doses of 0, 0.1, 0.3, 1, or 3 µg 10 min before testing. Based on previous 

studies15, 32, 33, these infusions were given using a within-subject Latin square design with 

1–2 intervening treatment-free days beginning from 244 days of age. Food and water intake 

were monitored as nose-poke responses for 23.5 hr.

Meal pattern analysis—Microstructure analysis used a meal definition that recognizes 

the existence of prandial drinking within meals45 and was performed as previously 

described15. Meals were defined to contain at least 0.09 g of food (2 pellets). Parameters 

included meal frequency; the average size, duration and ingestion rate of meals; and the 

average intermeal interval (IMI).

Within-meal microstructure analysis—To identify differences between high-fat diet-

fed DIO vs. DR rats in the rate and regularity of sustained eating within meals, analysis of 

the log-normal(ln)-transformed duration of consecutive (uninterrupted by drinking) within-

meal interfeeding intervals (IFIs) was performed15, 17. The mean, standard deviation, 

kurtosis, skewness and histogram entropy of the ln-transformed duration of each subject’s 

consecutive IFIs was individually determined and averaged across subjects.
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Fat pad and body composition analysis

Two days after completing the Ucn 2 study, animals were euthanized (262 days of age). 

Frozen carcasses were shipped to the University of Alabama at Birmingham for fat pad 

measurement and chemical analysis of eviscerated body composition46.

Statistical analysis

To analyze the time course of ingestion, analyses of variance (ANOVAs) were performed on 

incremental (1-hr bins) food intake, averaged from the two baseline days. Genotype was a 

between-subjects factor and Time a within-subject factor. Student’s t-tests identified 

genotype differences in spontaneous meal microstructure. To compare fat measures, analysis 

of covariance (ANCOVA) was used47, with the fat measure as the dependent measure, 

genotype as the between-subjects factor and non-fat mass as a covariate. To allow 

comparison with other work, fat measures also were compared as a percentage of body 

weight by Student’s t test.

To assess Ucn 2 anorexia, a three-way mixed ANOVA was performed on incremental (1-hr 

bins) food intake. Dose and Time were within-subject factors, and Genotype was a between-

subjects factor. Meal microstructure measures were analyzed by 2-way (Dose and 

Genotype) ANOVAs. Linear contrasts determined whether Ucn 2 exerted a log-linear, dose-

dependent effect. IMI durations were ln-transformed15, 45, 48.

To interpret main effects, post hoc pairwise comparisons were performed within the general 

linear model. The software packages used were Systat 11.0 (SPSS, Chicago, IL, USA), 

Excel 2003 (Microsoft, Redmond, WA, USA), SigmaPlot 11.0 (Systat Software, Inc., Point 

Richmond, CA, USA), and InStat 3.0 (GraphPad, San Diego, CA, USA).

Results

Spontaneous food intake in high-fat diet fed DR and DIO rats

Time course of ingestion—Time course analysis of nocturnal food intake revealed no 

Genotype [F(1,18)=0.04, p=0.84] or Hour*Genotype effects [F(11,198)=1.42, p=0.17] 

(Figure 1A). While no Genotype effect was seen on diurnal intake [F(1,18)=0.39, p=0.56], 

an Hour*Genotype interaction [F(11,198)=3.26, p<0.001], reflected that DIO rats ate less 

than DR rats during the first hour of the light cycle (M±SEM 2.2±0.6 g vs. 0.3±0.2 g, 

t(18)=3.1, p<0.01), but then progressively compensated and attained control levels of total 

intake by the end of the light cycle (Figure 1A). Thus, consistent with previous findings49, 

DIO rats ultimately ate as much high-fat diet as DR rats across each phase of the day 

(Supplementary Table 1).

DR and DIO rats also were similar in their duration of nocturnal feeding (Supplementary 

Table 1). In contrast, DIO rats drank less water than DR rats in both quantity [~1/3; 

t(18)=4.6, p<0.001] and duration [~1/2; t(18)=3.3, p<0.01] during the dark cycle. During the 

light cycle, despite eating the same amount, DIO rats spent less time eating [t(18)=2.3, 

p<0.05] and drank less water [t(18)=3.5, p<0.01] than DR rats (Supplementary Table 1).
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Meal pattern—Although DR and DIO rats consumed the same amount of high-fat diet 

across 24 hr, their microstructures of food intake profoundly differed. DIO rats ate ~1.2–1.4 

g more food per meal [Dark Cycle: t(18)=2.2, p<0.05; Light: t(18)=2.5, p<0.001, Figure 1C] 

and ate faster within meals [Dark: t(18)=2.9, p<0.01; Light: t(18)=2.5, p<0.05, Figure 1D], 

yielding meals of similar duration [Dark: t(18)=0.4, n.s.; Light: t(18)=1.3, n.s., Figure 1E]. 

DIO rats ate fewer meals than DR rats [Dark: t(18)=3.0, p<0.01; Light: t(18)=2.9, p<0.01, 

Figure 1F], with ~40 min longer nocturnal post-meal intervals [Dark: t(18)=2.9, p<0.01; 

Light: t(18)=0.3, n.s., Figure 1G].

Rate and regularity of eating within meals—Within meals, DIO rats had ~1.2–1.5 sec 

faster pellet-to-pellet intake than did DR rats [t(18)=3.1, p<0.01, Table 1]. In Figure 1B, the 

faster mean rate of eating by DIO rats is seen as a disproportionate left-shift towards briefer 

IFIs, resulting in a significantly more positive skew [t(18)=2.3, p<0.05] and decreased 

kurtosis vs. DR rats; [t(18)=2.7, p<0.02]. The genotypes did not differ significantly in their 

regularity of eating, as measured by the standard deviation or histogram entropy of IFIs 

[standard deviation: t(18)=1.8, n.s.; entropy: t(18)=2.0, n.s.].

Body weight, fat pad and body composition analysis

Table 2 shows the body weight progression of DR and DIO rats, their rate of weight gain, 

daily energy intake, and feed efficiency during the first month of high-fat diet feeding, and 

their terminal adiposity. Similar to previous findings14, DIO rats ate more, gained more 

weight and were more feed efficient vs. DR rats during the first 8 days of high-fat access. 

During the subsequent ~3 weeks, daily food intake no longer differed significantly between 

the two genotypes, yet DIO rats still gained weight faster than DR rats, reflecting increased 

feed efficiency. At study end, DIO rats had heavier fat pads and more total carcass fat 

(Supplemental Table 3). ANCOVA analyses controlling for non-fat mass indicated that, 

other than for gonadal fat (p=0.58), the relative fat pad and whole carcass fat masses of 

high-fat diet-fed DIO rats were disproportionately increased vs. DR rats (see Table 2 for 

adjusted means, covarying for non-fat mass). The sometimes problematic47, but popular, 

method of expressing fat mass as a % of body weight (Table 2) also indicated greater 

relative adiposity. Adiposity values of DR and DIO rats were consistent with lean and obese 

states13, 15, respectively.

Ucn 2 anorexia in high-fat diet fed DR and DIO rats

Effects of Ucn 2 on high-fat food and water intake: Time course—Figure 2A 

shows that third ventricle injection of Ucn 2 reduced nocturnal food intake of high-fat diet-

fed DR and DIO rats [Dose: F(4,72)=11.12, p<0.001]. Although visual inspection of Figure 

2A might suggest that Ucn 2 tended to reduce food intake more potently in DR rats 

compared with DIO rats, statistical analyses consistently indicated a main effect of Ucn 2 

across genotypes, with no significant (or even trends for) Dose X Genotype interactions. 

Ucn 2 retained its full central anorectic efficacy in obese DIO rats; the highest dose injected 

(3 µg) induced similar anorexia in both genotypes (% reduction after 12-hr: M±SEM, DR 

38.5%±7.0, DIO 41.3%±10.4). Cumulative anorexia was greatest at the end of the dark 

cycle (Figure 2A, inset), so microstructure analyses were performed across this period. 
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Cumulative anorexia persisted through the light cycle (not shown), with no compensation or 

rebound.

As Table 3 shows, Ucn 2 reduced the quantity [Dose: F(4,72)=10.46, p<0.001] and duration 

[Dose: F(4,72)=7.26, p<0.001] of prandial nocturnal food intake irrespective of genotype 

[Dose*Genotype: F(4,72)<0.64, n.s.]. Effects were dose-dependent per linear contrast 

ANOVAs. The minimum effective dose (MED) that reliably reduced the quantity and 

duration of food intake was 0.3 µg. Irrespective of Ucn 2 treatment, DIO rats ate the same 

amount of food as DR rats [Genotype: F(1,18)=0.40, n.s.], but in less time [Genotype: 

F(1,18)=13.40, p<0.01].

Table 3 shows that Ucn 2 also potently (MED=0.1 µg) decreased the duration [Dose: 

F(4,72)=2.75, p<0.05] and quantity [Linear contrast Dose ANOVA: F(1,18)=5.75, p<0.05] 

of water intake, irrespective of genotype [Dose*Genotype: Fs(4,72)<1.39, n.s.]. Genotype 

effects again showed that DIO rats drank less [F(1,18)=19.15, p<0.001] and spent less time 

drinking than DR rats [F(1,18)=6.64, p<0.02].

Effects of Ucn 2 on high-fat diet intake: meal pattern and within-meal 
microstructure—Figure 2C, D, E and Supplementary Table 2 show the effects of Ucn 2 

on the microstructure of feeding. Irrespective of genotype [Dose*Genotype: Fs(4,72)<0.85, 

n.s.], Ucn 2 dose-dependently made rats eat smaller [Dose: F(4,72)=6.87, p<0.002] and 

briefer meals [Dose: F(4,72)=4.95, p<0.002] during which they ate more slowly [Dose: 

F(4,72)=7.37, p<0.001] (Figure 2). In contrast, Ucn 2 did not affect the post-meal interval 

[Dose: F(4,72)=0.77, n.s.; Dose*Genotype: F(4,72)=0.64, n.s.] or meal frequency [Dose: 

F(4,72)=1.87, n.s.; Dose*Genotype: F(4,72)=0.20, n.s.] (Supplementary Table 2). Genotype 

effects again showed that DIO rats ate fewer [F(1,18)=15.85, p<0.001], but larger 

[F(1,18)=5.26, p<0.05], meals with longer post-meal intervals [F(1,18)=4.34, p=0.05] than 

their diet-resistant counterparts. DIO rats also again ate more rapidly [F(1,18)=15.91, 

p<0.001] within meals, which were of the same duration as those of DR rats [F(1,18)=0.05, 

n.s.]. But, Ucn 2-treated DIO rats ate meals that no longer differed from those normally 

taken by obesity-resistant DR rats under vehicle-treated conditions (DIO 1 ug and 3 ug = 

2.8±0.6 and 3.3±0.5 g vs. DR-vehicle 3.0±0.3 g, ps>0.57).

In contrast, Ucn 2 did not alter the amount or duration of water intake within a meal [Dose: 

Fs(4,72)<1.50, n.s.; Dose*Genotype: Fs(4,72)<0.79, n.s.] and even tended to increase the 

speed of drinking, irrespective of genotype [Dose*Genotype: F(4,72)=1.10, n.s.], at 

intermediate (0.3, 1.0 µg) doses [Dose: F(4,72)=3.36, p<0.02] (Supplementary Table 2). 

Genotype effects indicated that DIO rats again drank less water within each meal 

[F(1,18)=8.89, p<0.01] and drank more slowly than did DR rats [F(1,18)=20.05, p<0.001] 

(Supplementary Table 2).

As shown in Table 4, Ucn 2 treatment (1 µg) increased the mean duration of inter-pellet 

intervals in within-meal microstructure analysis [Dose: F(4,72)=4.09, p<0.006]. Moreover, 

Ucn 2 infusion (1 µg) also reduced the categorical regularity of pellet-to-pellet responding as 

revealed by increased histogram entropy [F(4,72)=3.82, p<0.01]. In contrast, Ucn 2 did not 

reliably alter the standard deviation of inter-pellet intervals or the skewness or kurtosis of 
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their distribution [Fs(4,72)<1.96, n.s.]. No effects of Ucn 2 on within-meal microstructure 

differed reliably by Genotype [Dose*Genotype: Fs(4,72)<1.80, n.s.]. Genotype main effects 

again indicated that DIO rats had disproportionately faster pellet-to-pellet intake, reflected in 

a briefer mean IFI [F(1,18)=4.49, p<0.005] and more positive skewness [F(1,18)=14.19, 

p<0.003], with no reliable difference in the other within-meal parameters [Fs(1,18)<1.18, 

n.s.].

Discussion

The major findings of the present study were as follows: 1) 3v administration of the CRF2 

agonist Ucn 2 retained anorectic activity in obese, high-fat diet fed DIO rats. The peptide 

potently reduced nocturnal food intake in both genotypes at a minimum effective dose 

(MED) of 0.3 µg, with similar maximal efficacy between genotypes; 2) 3v Ucn 2 reduced 

high-fat diet intake by making rats of both genotypes eat smaller meals that they ate more 

slowly; and 3) obese, high-fat diet fed DIO rats, showed a “gorging pattern” of food intake, 

characterized by few, but very large and more quickly eaten, meals and comparatively little 

water intake.

Ucn 2 retains central anorectic activity in obese high-fat diet fed DIO rats

Ucn 2 infused into the third ventricle dose-dependently decreased high-fat diet intake not 

only in lean DIO rats, but also in obese DIO rats. Irrespective of genotype, the peptide 

reduced nocturnal food intake at a minimum effective dose of 0.3 µg (~ 64 pmol). Although 

we cannot rule out that a larger study might have revealed subtle differences in dose 

sensitivity between the genotypes, the maximal efficacy of Ucn 2 was unimpeded in the DIO 

line, with similar maximal suppression of food intake (~40%) seen at the 3 µg dose. 

Consistent with previous observations in chow-fed rodents15, 32, intraventricular Ucn 2 

administration elicited a slightly delayed (~2 hours), but prolonged, anorectic action. Ucn 2 

did not change the timing of when meals were taken, but rather reduced the gorge-like 

nature of high-fat meals, making rats eat smaller meals that were eaten more slowly. 

Because Ucn 2 treatment similarly influenced both genotypes, the overall meal pattern of 

DIO rats still differed from that of DR rats following Ucn 2 treatment. But, Ucn 2 treatment 

normalized the meal size of DIO rats to that normally eaten by obesity-resistant DR rats.

The mechanism by which 3v Ucn 2 reduced food intake was not explored in the present 

study, but accumulated results indicate behaviorally-specific actions. Ucn 2 hypodipsia15, 32 

was dissociable from anorexia because some Ucn 2 doses that reduced high-fat diet intake in 

DIO rats (e.g., 0.3, 1 µg) did not reduce their concurrent water intake. Similarly, as in 

previous studies15, 36, reductions in drinking rate were not seen. Furthermore, the present 

intraventricular Ucn 2 doses do not promote anxiety-like behavior or the formation of 

malaise-like behavior, such as pica or a conditioned taste aversion in outbred rats36. Local 

administration of CRF2 agonist into the CRF2-rich ventromedial hypothalamus (VMH), a 

key brain site that controls food intake and energy metabolism50, 51, also reduces food 

intake31, 34. Thus, the present results may reflect actions of 3v Ucn 2 at VMH CRF2 

receptors, but we cannot exclude roles for other brain sites at which Ucns can reduce food 
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intake and/or slow gastric emptying38, 52, including the paraventricular nucleus of the 

hypothalamus31, the lateral septum53, or the dorsal vagal complex31, 53, 54.

Our results further implicate Ucns as promising pharmacological tools to treat obesity or 

overeating, putatively via CRF2 activation36. For example, Ucn 1 administration reduced 

food intake not only in lean, but also in ob/ob obese mice55, 56, and Ucn 1 potentiated 

molecular responses to leptin, providing a potential means of surmounting leptin resistance 

in obesity57. ICV Ucn 2 administration reduced the overeating of palatable cafeteria diet 

under an intermittent access schedule33. Finally, mice deficient in Ucn 3 or VMH CRF2 

expression are hyperphagic34.

Genotype differences in high-fat meal microstructure of DR and DIO rats

Meal patterns associate with body composition in humans and may play a causal role in 

obesity7–9. Consistent with previous findings, DIO rats only transiently overate high-fat diet, 

with intake levels eventually declining to those of DR rats; yet they continued to gain excess 

weight and become obese49. Microstructure analysis revealed profound differences in how 

the two genotypes ate, however. Relative to their obesity-resistant counterparts, DIO rats ate 

~1.2–1.4 g more food per meal and ate more quickly within meals (~1.2–1.5 sec faster 

pellet-to-pellet intake). These gorging-like meals were ~40 min longer apart. One 

interpretation of these findings is that, relative to DR rats, obese DIO rats may show 

decreased within-meal satiation for high-fat diets, leading to larger meals that sustain an 

increased post-meal interval. Obese DIO rats also drank ~2/3 less water during meals than 

did lean DR rats. Perhaps the decreased prandial water intake of DIO rats contributes to their 

decreased within-meal satiation. Accordingly, in humans, drinking water reduces test meal 

intake and promotes weight loss58, 59.

Unlike results from the present study with high-fat diet, we previously observed that chow 

intake in lean DIO rats was characterized by more, but smaller, meals as compared to chow-

fed DR rats, resembling human “snacking” behavior15, 60. If results from the two studies are 

combined, high-fat diet induced a gorging-like pattern of food intake in both genotypes. 

Specifically, high-fat diet doubled the meal size of DR rats (from ~9 to ~17 kcal) and tripled 

that of DIO rats (from ~7 to ~22 kcal). Conversely, meals were taken less frequently (DIO: 

from ~11 to ~4 meals; DR: from ~8 to ~ 6 meals,) with longer post-meal intervals (DIO: 

from ~59 to ~153 min; DR: from ~90 to ~113 min; Supplementary Table 4). The results 

support reports that high-fat diets increase meal size, but decrease meal frequency, as 

compared to a balanced diet7, 61, 62 and descriptively suggest that this effect may be 

especially pronounced in obesity-prone DIO rats.

The gorge-like meal pattern induced by high-fat diet may be more relevant to the 

development of obesity in the DIO line than the snacking-like pattern previously seen with 

chow access because DIO rats do not become obese when fed chow diet. Accordingly, 

eating infrequent, large meals has been hypothesized to promote obesity, perhaps due to 

effects of this meal pattern on metabolism7–11. In humans, intentionally consuming more 

frequent, but smaller meals, reduced body weight as compared to consuming the same 

calories in larger and infrequent meals63. Conversely, intentionally decreasing the number of 
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meals facilitates fat mass accumulation9. These causal observations are consistent with 

correlational findings in animal models7, 61, 64.

Meal patterns in the present study were measured after chronic high-fat diet exposure, which 

resulted in obesity in DIO rats. The relative contributions of DIO genotype vs. obesity to the 

meal pattern differences are thereby uncertain. Because high-fat diet rapidly increases meal 

size and decreases meal frequency7, we believe that high-fat diet, interacting with genotype, 

underlies the present meal pattern findings. Future studies that compare the high-fat diet 

intake patterns of still lean DIO rats vs. obese DIO rats can address the contribution of the 

obese state.

Obese individuals exhibit resistance to many anorectic agents, including leptin, insulin, 

cholecystokinin and mu-opioid receptor antagonists20–26, 65–70. Analogously, DIO rats are 

resistant to leptin and insulin both in a pre-obesity state and after the development of 

obesity16, 39, 40. Unlike other anorexigens, Ucn 2 retains its full central anorectic efficacy to 

reduce high-fat diet intake even in obese, genetically-prone DIO rats. These results open 

new potential opportunities of investigation towards treating some forms of diet-induced 

obesity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Spontaneous food intake, within-meal microstructure and meal pattern differences between 

genetically-selected diet-induced obesity-resistant (DR) and susceptible (DIO) male rats 

(n=10/genotype), fed a high-fat diet. Data represent the M±SEM. (A) Cumulative nocturnal 

(left panel) and diurnal (right) food intake. (B) Relative frequency histogram of the ln-

transformed duration of consecutive, within-meal interfeeding intervals (IFI’s) in male 

genetically-selected diet-induced obesity-resistant (DR) (left panel) and susceptible (DIO) 

rats (right panel) during the dark cycle. The frequency histogram shows consecutive 

interfeeding intervals that were between e1 and e3 sec in duration (2.7–20.1) with a bin 

width of e0.1. This time scale focuses on the intervals of sustained eating, as represented in 

the peak. The tail that extends to the right of the distribution putatively represents within-

meal pauses. Note ln-scale of x-axis. (C–G) Spontaneous meal microstructure differences 

(C) average meal size for food, (D) eating rate, (E) average meal duration for food, (F) meal 

frequency, and (G) average intermeal interval (note ln scale of y-axis for intermeal interval 

duration, reflecting their time scale). Symbols denote significant genotype differences,* 

p<0.05, ** p<0.01 (Student’s t-test).
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Figure 2. 
Dose-dependent effects of third ventricle Ucn 2 administration on the M±SEM: (A) 

cumulative nocturnal food intake of genetically-selected (left panel) diet-induced obesity-

resistant (DR) and (right panel) susceptible (DIO) rats fed a high-fat diet; (B) average meal 

size for food, (C) average meal duration for food and (D) eating rate. Adult male rats (n=10 

rats/genotype) were pretreated (−10 min) with Ucn 2 in a balanced Latin square design with 

test sessions beginning at the onset of the dark cycle. Inset depicts mean the cumulative 

difference from vehicle condition. In (A) scale in inset differs from that of main panel. 

Symbols denote significant differences of the vehicle condition from (a) 0.1 µg, (b) 0.3 µg, 

(c) 1 µg, (d) 3 µg doses. #Overall Dose effect p<0.05, ##p<0.01, ###p<0.001. $Linear Dose 

effect p<0.05, $$p<0.01, $$$p<0.001; *differs from vehicle condition p<0.05, **p<0.01, 

***p<0.001 (within-subjects ANOVA post hoc contrast for that dose).
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Table 1

Differences in the spontaneous rate and regularity of food pellet consumption within meals in high-fat diet-fed 

genetically-selected DR and DIO rats

Interfeeding Interval
Parameter Dark Phase Light Phase

DR DIO DR DIO

Number of IFIs 475±20 488±28 150±8 143±18

Mean duration, ln sec (sec) 2.04 (7.68) ±0.07 1.81 (6.12) ±0.05 ** 2.07 (7.95) ±0.07 1.91 (6.73) ±0.06

Standard deviation 0.30±0.01 0.33±0.01 0.32±0.01 0.34±0.01

Skewness −0.04±0.23 0.55±0.13 * −0.18±0.30 0.40±0.19

Kurtosis 1.87±0.37 0.71±0.21 * 2.03±0.47 0.75±0.36 *

Entropy 0.39±0.01 0.41±0.01 0.48±0.01 0.53±0.03

Rate and regularity of eating within meals in genetically-selected diet-induced obesity-resistant (DR) and susceptible (DIO) rats (n=10/genotype) 
fed a high-fat diet. Statistical parameters (expressed as M±SEM) describe the log-normal distribution of consecutive, within-meal interfeeding 
intervals (IFI’s) studied on two consecutive days at 241–242 days of age. Parameters were calculated from the ln-transformed duration of 
interfeeding interval durations. Therefore, the mean and SEM are expressed in ln(sec) units; the parenthetical value for the “Mean” parameter 
represents the back-transformed average (sec) to facilitate interpretation. For analysis, histograms were constructed from log-transformed IFI that 

fell from e1 to e3 sec (~2.7–20.1 sec), with a bin width of e0.1.

Symbols denote significant differences: * p<0.05 compared to DR rats, p<0.01, (Student’s t-test).
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Table 3

Effects of 3v Ucn 2 and genotype on nocturnal prandial intake in high-fat diet-fed genetically-selected DR and 

DIO rats

Parameter

DR DIO

Feeding

Intake (g)

0 µg 20.9±0.9 18.8±2.3

0.1 µg 19.7±0.9 18.7±1.3

0.3 µg 16.2±5.1 * 15.1±1.7 *

1 µg 13.6±1.3 *** 14.4±2.3 ***

3 µg 12.4±1.3 *** 11.7±2.2 ***

Duration (min) ##

0 µg 64.0±3.2 44.5±5.3

0.1 µg 58.2±3.5 42.4±3.1

0.3 µg 53.9±17.0 * 36.4±4.1 *

1 µg 45.8±3.5 *** 36.7±5.4 ***

3 µg 44.0±4.9 *** 30.6±4.5 ***

Drinking

Intake (ml) ###

0 µg 17.4±2.9 4.9±1.0

0.1 µg 13.8±1.9 * 3.8±0.8 *

0.3 µg 14.8±4.7 4.8±0.6

1 µg 11.4±1.8 4.9±0.9

3 µg 10.9±1.9 * 4.0±0.7 *

Duration (min) #

0 µg 30.3±3.2 18.2±3.7

0.1 µg 23.8±2.9 * 15.8±3.6 *

0.3 µg 21.1±6.7 * 13.1±2.7 *

1 µg 19.6±3.3 * 15.4±2.9 *

3 µg 22.3±3.5 * 11.9±2.2 *

Effect of third ventricle Ucn 2 treatment and genotype on nocturnal prandial intake of genetically-selected diet-induced obesity-resistant (DR) and 
susceptible (DIO) rats (n=10/genotype) fed a high-fat diet. Data express the M±SEM quantity or duration of food and water intake within meals of 
adult male DR and DIO rats during the first 12 hr of the dark cycle following Ucn 2 pretreatment. Subjects were pretreated (−10 min) with Ucn 2 in 
a balanced Latin square design with test sessions beginning at the onset of the dark cycle.

Symbols signify: # Genotype main effect p<0.05, ## p<0.01, ### p<0.001 *differs from vehicle condition p<0.05, ***p<0.001 (within-subjects 
ANOVA post hoc contrast for that dose).
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Table 4

Effects of 3v Ucn 2 and genotype on the rate and regularity of food pellet consumption in high-fat diet-fed 

genetically-selected DR and DIO rats

Interfeeding Interval Parameter

DR DIO

Mean duration, ln sec (sec) ##

0 µg 2.01 (7.5) ±0.04 1.77 (5.9) ±0.04

0.1 µg 1.96 (7.1) ±0.04 * 1.71 (5.5) ±0.05 *

0.3 µg 2.02 (8.2) ±0.04 1.77 (5.9) ±0.04

1 µg 2.10 (7.5) ±0.03 * 1.93 (6.9) ±0.12 *

3 µg 2.02 (7.5) ±0.05 1.81 (6.1) ±0.05

Standard deviation

0 µg 0.33±0.01 0.29±0.02

0.1 µg 0.31±0.02 0.31±0.01

0.3 µg 0.33±0.02 0.32±0.01

1 µg 0.38±0.02 0.32±0.01

3 µg 0.36±0.02 0.36±0.03

Skewness ##

0 µg −0.04±0.17 0.61±0.16

0.1 µg −0.02±0.19 0.77±0.10

0.3 µg −0.17±0.18 0.66±0.08

1 µg −0.22±0.18 0.50±0.19

3 µg −0.03±0.22 0.53±0.15

Kurtosis

0 µg 0.90±0.18 0.85±0.25

0.1 µg 1.22±0.28 0.56±0.14

0.3 µg 0.96±0.36 0.60±0.21

1 µg 0.37±0.18 0.63±0.20

3 µg 0.61±0.24 0.35±0.29

Entropy

0 µg 0.41±0.01 0.47±0.06

0.1 µg 0.40±0.01 0.42±0.01

0.3 µg 0.42±0.01 0.44±0.01

1 µg 0.49±0.03 ** 0.49±0.06 **

3 µg 0.46±0.01 0.49±0.03

Effect of third ventricle Ucn 2 treatment and genotype on the rate and regularity of eating within meals in genetically selected diet-induced obesity-
resistant (DR) and susceptible (DIO) rats (n=10/genotype) fed a high-fat diet during the first 12 hr of the dark cycle following Ucn 2 pretreatment. 
Subjects were pretreated (−10 min) with Ucn 2 in a balanced Latin square design with test sessions beginning at the onset of the dark cycle. 
Statistical parameters (expressed as M±SEM) describe the log-normal distribution of consecutive, within-meal interfeeding intervals (IFI’s) studied 
on two consecutive days at 241–242 days of age. Parameters were calculated from the ln-transformed duration of interfeeding interval durations. 
Therefore, the mean and SEM are expressed in ln(sec) units; the parenthetical value for the “Mean” parameter represents the back-transformed 
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average (sec) to facilitate interpretation. For analysis, histograms were constructed from log-transformed IFI that fell from e1 to e3 sec (~2.7–20.1 

sec), with a bin width of e0.1.

Symbols signify: ## Genotype main effect p<0.01 *differs from vehicle condition p<0.05, ** p<0.01 (within-subjects ANOVA post hoc contrast 
for that dose).

Int J Obes (Lond). Author manuscript; available in PMC 2014 June 01.


