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Abstract

Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of
viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-
cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human
viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive.
Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the
investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein
phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation
data were extracted from virPTM – a database containing 301 experimentally verified phosphorylation data on 104 human
kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein
phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation
data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected
from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This
investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein
substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for
each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for
Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is
used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site prediction
tools. In the independent testing, the high sensitivity and specificity of the proposed method demonstrate the predictive
effectiveness of the identified substrate motifs and the importance of investigating potential kinases for viral protein
phosphorylation sites.
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Introduction

Viruses are biological agents that interrupt and manipulate

normal cellular functions [1,2]. Viruses infect humans and

progress inside the body leading to various diseases and

complications. An increasing number of human viruses has been

recorded and studied over the years, such as the human

immunodeficiency virus (HIV) and the human herpes virus

(HHV) [3]. Most viruses interact with host-cell proteins in order

to gain control of cellular machinery. By perturbing the cellular

regulatory networks, these viruses interfere with the normal

cellular processes, such as cell growth and gene expression [4]. It

has been reported that viruses have evolved to use the process of

phosphorylation by host-cell kinases as a means of enhancing

replication and inhibition of normal cellular functions [5].

Protein phosphorylation is the most widespread and well-

studied post-translational modification (PTM) in eukaryotic cells

[6,7]. The process involves the transfer of a phosphate group by a

protein kinase to a target protein substrate – commonly on serine

(S), threonine (T), and tyrosine (Y) residues [8]. Protein kinases

recognize short linear motifs for initiating phosphorylation. These

linear motif signatures are shown to be vital in further investigating

kinase-substrate interactions [9,10]. Short linear motif signatures

found in phosphorylated virus proteins can be used to further

elucidate interactions between host-cell kinase and virus protein

substrates. Although not yet clearly elucidated, these interactions

are linked to viral progression in the human body.

Further understanding of viral protein phosphorylation is

essential due to its importance with regard to viral progression.

However, there is a great deal of difficulty in experimentally

identifying viral protein phosphorylation sites using mass spec-

trometry-based techniques; thus, computational methods for

identifying protein phosphorylation sites have been proposed.

Existing phosphorylation site prediction tools can be classified into
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three categories: general or non-specific, organism-specific, and

kinase-specific [11]. Computational tools built to predict non-

specific phosphorylation sites such as NetPhos [12] are usually

trained using all available experimentally-verified phosphorylation

data regardless of organism information. However, phosphoryla-

tion patterns may not be exactly the same for all organisms. With

this, organism-specific phosphorylation site predictors were

developed. Following its initial version, NetPhos was retrained

using phosphorylation sites from yeast proteins and bacterial

proteins, respectively, resulting to NetPhosYeast [13] and

NetPhosBac [14]. These tools are among the first phosphorylation

predictors that identifies phosphorylation sites according to a

specific organism. A plant-specific phosphorylation prediction tool,

PhosPhAt 3.0 [15], was developed using phosphorylation data

from Arabidopsis Thaliana as its training data for identifying

phosphorylation sites specific to the Arabidopsis Thaliana species.

A previous work was done which utilizes scan-X [16] to identify

phosphorylation sites on viral proteins [17]; however, it has not

investigated the various substrate motifs for viral protein

phosphorylation sites.

In phosphorylation, it is known that substrates are targeted by

kinases according to a specific pattern. Specific amino acid

residues at certain positions of a protein greatly affect the

specificity of a particular kinase [18]. Because of this, kinase-

specific phosphorylation site predictors have been developed.

NetPhosK [19], which utilizes a neural network method, is able to

predict phosphorylation sites for 18 kinases including cAMP-

dependent protein kinase, protein kinase C, caseine kinase II, and

calmodulin-dependent protein kinase II. ScanSite [20] utilizes an

entropy approach to match a predicted phosphorylation site

according to a motif. It covers 65 eukaryotic protein kinases

including casein kinase I, casein kinase II, calmodulin-dependent

kinase II, extracellular signal regulated kinase 1, and protein

kinase A. KinasePhos [21,22] incorporates support vector

machine (SVM) with a sequence-based amino acid coupling-

pattern analysis to identify phosphorylation sites for 29 S kinases,

16 T kinases, and 26 Y kinases. PPSP [23] adapts a Bayesian

decision theory approach in order to predict phosphorylation sites

for 68 protein kinase groups. GPS [24] classifies 408 protein

kinases according to a four-level hierarchy and predicts phos-

phorylation sites according to this classification. NetPhorest [25]

utilizes artificial neural networks and position-specific scoring

matrices in order to build a linear motif atlas for phosphorylation

networks. NetPhorest is also able to probabilistically classify

experimentally identified phosphorylation sites according to the

179 kinases that it currently covers. With most of the existing

kinase-specific phosphorylation site prediction tools requiring prior

knowledge of experimentally verified substrates and its kinase, a

method is developed to be able to predict kinase-specific

phosphorylation sites based solely on protein sequence [18].

Predikin [26] is a method that first demonstrated the application of

structure-based information for the prediction of phosphorylation

sites in proteins. The method utilized by Predikin identifies

significant residues from a given query sequence and associates it

with a particular kinase specificity in order to predict phosphor-

ylation sites for a certain kinase [26].

Based on the current state of research, there is still a lack of

understanding as to what kind of host kinases specifically

phosphorylates viral proteins. Therefore, we are motivated to

develop a method to investigate the substrate motifs and identify

potential host kinases for viral protein phosphorylation sites. The

identification of kinases is deemed important as these are heavily

pursued pharmaceutical targets due to their mechanism role in

various diseases [27]. Moreover, identifying kinases responsible for

phosphorylation would be beneficial for selective inhibition

therapies and the development of kinase inhibitors for treatment.

This work presents a method for identifying potential human

kinases for viral phosphorylation sites. Literature is surveyed to

support the identified potential human kinases. To further

evaluate the method, the kinase substrate motifs were utilized to

construct predictive models for identifying phosphorylation sites

on viral proteins.

Results and Discussion

Data Collection and Statistics
Figure 1 presents the analytical flowchart of this study which

comprises of three major steps - data collection, motif detection

and motif matching, and model training and cross-validation. For

this study, viral protein phosphorylation data in humans are

collected from virPTM [17], UniProtKB [28], and Phospho.ELM

[29]. In order to maintain the genuineness of the data set, only

literature-based viral protein phosphorylation data are collected

from virPTM version 1.0 which contains 329 experimentally

verified phosphorylation data on 111 virus proteins (47 virus

types), as the distribution of virus phosphorylation data shown in

Figure S1. As this study aims to analyze human kinases that

phosphorylate virus proteins, virPTM entries annotated as

phosphorylated by virus kinases are disregarded. This resulted in

233, 54, and 14 phosphorylated S, T, and Y sites from 104 virus

proteins as shown in Table S1. A set of viral protein phosphor-

ylation data are also collected from UniProtKB version

2011_01_11 containing 525997 protein records. Experimentally

verified viral protein phosphorylation data in humans are obtained

by filtering out entries annotated as ‘‘by similarity’’, ‘‘potential’’,

and ‘‘probable’’ resulting in 57 phosphorylation data on 23 human

virus proteins. The collected data is further refined by removing

entries annotated as phosphorylated by virally-encoded kinases

resulting in 43, and 12 phosphorylated S, and T sites from 22 virus

proteins as shown in Table S1. Another set of viral protein

phosphorylation data are collected from Phospho.ELM version

0910 containing 42575 phosphorylated protein entries from 47

species. Experimentally verified viral protein phosphorylation data

in humans are obtained by extracting entries annotated as LTP

which represents data that have been identified by using low-

throughput processes. As shown in Table S1, this resulted in 7, and

2 phosphorylated S, and Y sites from 6 proteins with no data

annotated as phosphorylated by a virus kinase.

In order to investigate the residues surrounding the phosphor-

ylation sites, sequence fragments are extracted using a window size

of 11 centered on S, T, and Y. A window size of 11 consists of 11

amino acid residues placed from position 25 to 5. Fragments

having a phosphorylated residue on position 0 are obtained and

regarded as positive data while fragments centered on non-

phosphorylated residues are regarded as negative data. As shown

in Table 1, 233, 54, and 14 positive S, T, and Y fragments as well

as 2588, 1170, and 65 S, T, and Y negative fragments are obtained

from virPTM. From the UniProt dataset, 24, and 10 positive S

and T fragments are obtained as well as 217, and 159 negative S

and T fragments. Furthermore, two positive S and Y fragments as

well as 67, and 16 negative S and Y fragments are obtained from

the Phospho.ELM dataset. With reference to PlantPhos [30], a

smaller number of negative fragments are obtained to match the

number of positive fragments. The K-means clustering method

[31,32] is employed for acquiring a subset that represents the

whole negative data set. The value of K which denotes the number

of samples to be obtained from the negative set is defined by the

number of corresponding positive data. This resulted in an equal
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number of positive and negative S, T, and Y fragments

respectively in the three data sets as shown in Table 1. Finally,

the balanced non-redundant data from virPTM is regarded as the

training set, while the balanced non-redundant data from UniProt

and Phospho.ELM are regarded as the independent testing set.

Investigation of Kinase Substrate Motifs
It is observed that the phosphorylated sequences in each

subgroup clustered using maximal dependence decomposition

(MDD) show a conserved motif representing its substrate site

specificity. The flanking amino acids (25 , +5) of the non-

redundant phosphorylation sites, which are centered on position 0,

are graphically visualized as sequence logos using WebLogo.

Maximal dependence decomposition is executed multiple times

with varying values in order to obtain the most optimal minimum

cluster size. Setting the minimum cluster size to 50 for pSer data

yielded 7 clusters as shown in Table S2. Increasing the minimum

cluster size did not result in any clusters and further lowering of the

minimum cluster size resulted in several similar clusters; therefore,

the minimum cluster size is set to 50. After MDD, further

refinement is done by analyzing these groups through its

corresponding entropy plots. It is observed that some groups

contain very similar motifs, some show no conserved motif, and

some groups have too little data which makes the motif unreliable.

Some of these groups are further combined together and

visualized using WebLogo. For the resulting pSer MDD clusters,

S1 and S2 which show very similar motifs are combined into S1 as

shown in Table S3. Also, cluster S5 which shows a weak conserved

motif is combined with cluster S6 to form a new cluster S4 as

shown in Table S3. For organization, the remaining clusters are

renamed accordingly.

For virus pThr and pTyr data, the minimum cluster size is set to

ten. Similar to the process of selecting the minimum cluster size for

pSer, increasing the minimum cluster size did not result in any

clusters and further lowering of the minimum cluster size resulted

in several similar clusters. This resulted in three clusters in pThr as

shown in Table S4, and five clusters in Y as shown in Table S5.

However, due to the very low number of pTyr data, the resulting

MDD clusters show no conserved motif and contain very few

Figure 1. Analytical flowchart. The proposed method involves three major steps: data collection, motif detection, and model training and cross
validation.
doi:10.1371/journal.pone.0040694.g001

Identification of Virus Phosphorylation Sites

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e40694



fragments to be considered reliable. Therefore, for this study, pTyr

is not further clustered using MDD prior to training a pTyr model.

In order to identify potential host kinases for human virus

substrates, the motif of each MDD-generated viral protein

phosphorylation cluster is compared with the discovered human

kinase substrate specificities. As shown in Figure 2, cluster S1 is

matched to be potentially phosphorylated by caseine kinase 2

(CK2) group and CK2 alpha due to a strong similarity with regard

to the conserved aspartic acid and glutamic acid residues in

positions +1, and +3. Protein kinase B (PKB) group is also matched

to be a potential host kinase that phosphorylates virus proteins in

cluster S3 due to a similarly conserved arginine residue at position

-5. Furthermore, cluster S5 is matched to be potentially

phosphorylated by cyclin-dependent kinase (CDK) group,

CDK1, CDK2, and mitogen-activated protein kinase (MAPK)

group due to a conserved proline in position +1 as shown in its

respective motifs. In terms of pThr, cluster T1 is matched to be

potentially phosphorylated by CK2 group and CK2 alpha due to a

similarly conserved aspartic acid and glutamic acid residues in

position +3. Cluster T3 is then matched to be potentially

phosphorylated by CDK group, CDK1, CDK2, MAPK group

due to a conserved proline in position +1 as shown in Figure 3.

Further analyzing the matched motifs, a literature survey is

done in order to find studies that experimentally identify human

kinases which phosphorylate specific virus protein substrates.

Previous studies [33,34] show that CK2 group phosphorylates

hepatitis C virus (HCV) NS5A proteins and HIV-1 gp120, gp41,

p27, and p17 proteins to name a few, on both S and T residues.

These findings support the matching of MDD groups S1 and T1

with CK2 group. CK2 family phosphorylates various proteins

which are associated with the viral infection of HCV, HIV, HSV,

HBV and HPV [35,36]. With regard to PKB which is matched

with cluster S3, it is reported to be involved in the regulation of the

herpes simplex virus (HSV) 1 [37]. Experimental research also

claims that PKB signaling benefits coxsackie virus B3 replication

[38]. Although it is unclear whether PKB directly phosphorylates a

virus protein, the match between MDD group S3 and the

substrate specificity of PKB group suggests a phosphorylation

interaction between the said kinase and some virus protein

substrates. Reports have also been published that CDK, partic-

ularly CDK2, is involved in the transcription and replication of

HIV-1 by means of phosphorylation [39,40]. Also, it is reported

that CDK mediates phosphorylation of the human influenza A

virus on T-215 of the NS1 protein [41]. Furthermore, a previous

study [42] identifies CDK1 as the human kinase responsible for

phosphorylating varicella-zoster virus (VZV), commonly known as

the chickenpox virus, on S224 of the IE63 protein.

To demonstrate the effectiveness of MDD clustering method,

the MDD-detected motifs are compared with two well-known

motif discover tools, Motif-X [43] and MoDL [44]. Tables S6 and

S7 show that MDD could identify new motifs for viral protein

phosphorylation sites and is comparable to other methods. As

shown in Table S6, MDD is able to detect five motifs from the

available virus S phosphorylation data. From these five motifs,

three are supported by previous literature. It should be noted that

Motif-X failed to detect the virus pSer motif with conserved R

amino acid residue at position -5, matched with PKB group.

Moreover, Motif-X was only able to detect three motifs for virus

pSer sites with two motifs having similar amino acid conservations

(D and E at positions +1 and +3). With regard to virus pThr sites,

MDD was able to detect three motifs with two of these being

supported by literature. On the other hand, Motif-X is also able to

detect the virus T motif with conserved E residue at position +3,

which is matched with CK2 group. As for the MDD and MoDL,

the two methods produce similar phosphorylation motifs as shown

in Table S7.

Cross-validation of Identifying Viral Protein
Phosphorylation Sites with Kinase Substrate Motifs

The cross-validation process includes the selection of the

threshold parameter for each model. The threshold parameter is

a specific bit score that serves as the cutoff value of HMMsearch

for determining matching query sequences for an HMM [45].

With reference to a previous work [22,30], the threshold is selected

by first testing each value from the range of 220 to 0 as the bit

score. The threshold is tuned to a specific value which allows an

HMM to yield a high and balanced specificity and sensitivity for a

specific HMM. Table 2 shows the threshold score selected for each

model of pSer together with its individual predictive performance

and the predictive performance of using all models together.

Furthermore, Table 3 shows the threshold score selected for each

model of pThr together with its individual predictive performance

and the predictive performance of using all models together. It can

be observed that MDD clusters featuring an obvious conserved

motif are able to yield a higher predictive accuracy as compared to

those showing no conserved motif. For instance, cluster S1 which

features an observed aspartic acid and glutamic acid residues in

positions +1, and +3 yields an accuracy of 93.4% when used

individually. On the other hand, MDD clusters that do not seem

to have an obvious conserved motif yield a significantly lower

predictive performance. For instance, cluster T2 which does not

show a strongly conserved motif based on its entropy plot only

yields an accuracy of a 46.6% when used individually.

According to a five-fold cross-validation evaluation, the

predictive performance of MDD-clustered HMM performs

significantly better than non-MDD clustered HMM of pSer, and

pThr. As shown in Figure 4A, S HMMs which utilize prior MDD

clustering yields a higher performance with a precision rate of

82.70%, a sensitivity rate of 90.30%, a specificity rate of 79.50%,

and an accuracy rate of 84.90% as compared to a non-MDD

clustered S HMM which yields a precision rate of 67.80%, a

sensitivity rate of 72.90%, a specificity rate of 65.20%, and an

accuracy rate of 69.00%. On the other hand, T HMMs which

Table 1. Statistics of data used for this study.

Data Set Source Residue Type
Data
Count

Balanced
Data

Training Set virPTM S Positive 233 233

Negative 2588 233

T Positive 54 54

Negative 1170 54

Y Positive 14 14

Negative 65 65

Independent UniProtKB S Positive 24 24

Testing Set Negative 217 24

T Positive 10 10

Negative 159 10

Phospho.ELM S Positive 2 2

Negative 67 2

Y Positive 2 2

Negative 16 2

doi:10.1371/journal.pone.0040694.t001
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utilizes prior MDD clustering yields a higher performance with a

precision rate of 76.8%, a sensitivity rate of 80.0%, a specificity

rate of 76.1%, and an accuracy rate of 78.1% as compared to a

non-MDD clustered T HMMs which yields a precision rate of

64.5%, a sensitivity rate of 70.3%, a specificity rate of 63.6%, and

an accuracy rate of 64.9% as shown in Figure 4B. Due to a lack of

virus pTyr data, MDD clustering could not be performed to form

HMMs for computationally identifying pTyr sites; thus, a single

HMM is used for pTyr until sufficient experimentally-verified

virus pTyr sites are acquired.

Independent Testing
An independent test is done due to the possibility of an over-fit

of the models in the training set which may lead to an

overestimation of its predictive performance [30]. The data set

obtained from both UniProtKB and Phospho.ELM. As shown in

Table 4, each individual MDD-clustered S HMM yields an

average of 70.70% precision, 19.23% sensitivity, 90.31% specific-

ity, and 54.76% accuracy. Furthermore, using all the S MDD-

clustered HMMs altogether yields a precision rate of 66.66%, a

sensitivity rate of 69.23%, a specificity rate of 64.91%, and an

accuracy rate of 66.92% which is significantly higher as compared

to the performance of a non-MDD clustered S HMM as shown in

Figure 5A. On the other hand, Table 5 shows that using the

independent data on each MDD-clustered T HMM yields an

average of 71.44% precision, 36.67% sensitivity, 84.00% specific-

ity, and 60.33% accuracy. Furthermore, using all the T MDD-

clustered HMMs altogether yields a precision rate of 74.96%, a

sensitivity rate of 99.00%, a specificity rate of 62.70%, and an

accuracy rate of 80.85% which is significantly higher and more

balanced as compared to the performance of a non-MDD

clustered T HMM as shown in Figure 5B.

In order to further evaluate our approach, each predicted

phosphorylation site resulting from the independent test is

studied. A survey on existing literature is done by referencing

UniProt [28] in order to find relevant literature that will support

the phosphorylation of a predicted site as well as its identified

potential kinase. Table 6 lists down each predicted phosphory-

lation site together with its predicted kinase and supporting

literature, if any. Three sites predicted to be phosphorylated by

specific host kinases agree with reports from literature. HIV-1

protein P05923 which is predicted to be phosphorylated by CK2

at S56 matched with the findings of a previous study [46] that

experimentally identified CK2 as the catalytic kinase of P05923

Figure 2. pSer virus motif – human motif matches.
doi:10.1371/journal.pone.0040694.g002
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at S56. Moreover, human T-lymphotrophic virus (HTLV) 1

proteins P03345 and P03409 which were both predicted to be

phosphorylated by CDK at S105 and S336, respectively,

matched with a report [47] that, although does not confirm

phosphorylation, points out the relation of CDK to HTLV-1

protein replication. Seven sites predicted to be phosphorylated by

specific host kinases are reported to be phosphorylated by yet to

be known human kinases. HTLV-1 protein P0C205 and human

respiratory syncytial virus (HRSV) protein P12579 were all

predicted to be phosphorylated by model S2 at positions S70,

S116, and S161, respectively. Interestingly, these sites are

reported by previous studies [28,48] to be phosphorylated by

host, but the kinase remains unknown. Moreover, some sites

which have been reported to be phosphorylated by a yet to be

known host kinase are identified with a potential specific kinase

by our method such as CDK for HIV-1 protein P69718 at

position S99. Six sites predicted to be phosphorylated by specific

host kinases are reported to be phosphorylated by another

kinase. Three of these sites belong to HHV-4 protein P03191

which is reported to be phosphorylated by a virally-encoded

kinase [49]. Some sites, however, have been previously identified

to be phosphorylated by a human kinase, such as extracellular

signal-regulated kinase (ERK) for human papillomavirus (HPV)

16 protein P06922 at T57 [50] but is predicted by our method to

Figure 3. pThr virus motif – human motif matches.
doi:10.1371/journal.pone.0040694.g003

Table 2. Five-Fold Cross Validation Results on Serine MDD-Clustered HMMs.

Group Number of positive data HMMER bit score Pre Sn Sp Acc

S1 54 211 93.1% 94.1% 92.7% 93.4%

S2 34 211 80.0% 94.2% 76.6% 85.4%

S3 20 29 84.3% 90.0% 80.0% 85.0%

S4 59 28 66.4% 74.6% 60.6% 67.6%

S5 66 210 89.3% 98.4% 87.6% 93.0%

Combined Performance 82.7% 90.3% 79.5% 84.9%

Abbreviations: Pre, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy.
doi:10.1371/journal.pone.0040694.t002

Identification of Virus Phosphorylation Sites
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be phosphorylated by CDK. This suggests that the potential host

kinases identified in our method could provide new leads with

regard to virus substrate- host kinase investigations. Twenty sites

predicted to be phosphorylated by specific host kinases had no

records of the responsible kinase in literature. This suggests that

further investigation could be focused on the potential kinases

identified by our method in order to experimentally verify host

kinases for specific phosphorylation sites.

Comparison with Other Phosphorylation Site Prediction
Tools

To further demonstrate the effectiveness of the proposed

method, the independent testing data is used to make a

Table 3. Five-Fold Cross Validation Results on Threonine MDD-Clustered HMMs.

Group Number of positive data HMMER bit score Pre Sn Sp Acc

T1 19 210 92.0% 100% 90.0% 95%

T2 16 211 43.3% 50.0% 43.3% 46.6%

T3 19 210 95.0% 90.0% 95.0% 92.5%

Combined Performance 76.8% 80.0% 76.1% 78.0%

Abbreviations: Pre, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy.
doi:10.1371/journal.pone.0040694.t003

Figure 4. Comparison of five-fold cross validation performance. (A) Comparison of 5-fold cross validation results between an S HMM which
does not utilize prior MDD-clustering and S HMMs which utilize prior MDD-clustering. (B) Comparison of 5-fold cross validation results between a T
HMM which does not utilize prior MDD-clustering and T HMMs which utilize prior MDD-clustering.
doi:10.1371/journal.pone.0040694.g004

Identification of Virus Phosphorylation Sites
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comparison between the performances of three popular kinase-

specific phosphorylation site prediction tools, Predikin 2.0 [26],

KinasePhos 2.0 [21], and GPS 2.1 [51]. According to the

collection of experimentally verified protein phosphorylation data

from UniProtKB and Phospho.ELM, a total of 36 viral protein

phosphorylation sites (in 28 viral protein sequences), which are not

included in the training data, are regarded as the positive set of the

independent testing data. In order to evaluate the predictive

specificity, the S and T residues, which are not annotated as the

phosphorylation sites in the 28 viral protein sequences, are

regarded as the negative set of the independent testing data. As a

result, the independent testing data consisting of 36 positive sites

and 392 negative sites are used to compare the predictive

precision, sensitivity, specificity and accuracy between the

MDD-clustered HMMs, Predikin 2.0, KinasePhos 2.0, and GPS

2.1. Without any prior information of catalytic kinases for the

testing data, all of the kinase-specific models in the prediction tools

are chosen for predicting the phosphorylation sites. Table 7

Figure 5. Comparison of independent testing performance. (A) Comparison of independent test results between an S HMM which does not
utilize prior MDD-clustering and S HMMs which utilize prior MDD-clustering. (B) Comparison of independent test results between a T HMM which
does not utilize prior MDD-clustering and T HMMs which utilize prior MDD-clustering.
doi:10.1371/journal.pone.0040694.g005

Table 4. Independent Test Results of Serine MDD-clustered
HMMs.

Residue
MDD
group Threshold Pre Sn Sp Acc

S1 211 89.5% 11.5% 98.1% 54.8%

S2 211 65.3% 34.6% 80.0% 57.3%

S S3 27 58.6% 11.5% 90.8% 51.2%

S4 28 67.5% 11.5% 93.5% 52.5%

S5 210 72.6% 26.9% 89.2% 58.1%

Combined
Performance

66.7% 69.2% 64.6% 66.9%

Abbreviations: Pre, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy.
doi:10.1371/journal.pone.0040694.t004

Identification of Virus Phosphorylation Sites
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indicates that all of the prediction tools containing multiple models

have a high predictive sensitivity. However, it is notable that the

MDD-clustered HMMs are able to yield a higher specificity

compared to the other tools. Since potential kinase family

information for viral protein phosphorylation sites are still

unknown, Predikin yields a higher specificity than KinasePhos

and GPS. Overall, the proposed method outperforms the other

three tools. With reference to the comparison of independent

testing, the high sensitivity and specificity of MDD-clustered

HMMs present the importance of investigating kinase substrate

motifs for viral protein phosphorylation sites.

Conclusions
In this study, viral protein phosphorylation sites found in

humans are further elucidated by means of identifying their

potential catalytic human kinase. The study is done using

experimentally verified viral protein phosphorylation sites ob-

tained from virPTM [17]. This study explores the use of short

linear motifs to further identify viral protein phosphorylation sites.

MDD is employed to detect kinase substrate motifs on viral

protein phosphorylation sites. Based on the detected viral protein

phosphorylation motifs, potential host kinases are identified

according to their motif signatures. Finally, profile hidden Markov

models (HMMs) are trained in order to predict viral protein

phosphorylation sites according to host kinase motifs. Our

approach has identified human kinases such as CK2, PKB,

CDK, and MAPK as potential catalytic kinases for virus protein

substrates. A five-fold cross validation evaluation shows that our

method can identify viral protein phosphorylation sites based on

the identified phosphorylation motifs on human viruses. Further-

more, an independent test done using data not included in the

model training confirms the ability of our MDD-clustered HMMs.

In addition to the consideration of linear sequence motifs,

substrate recruitment is very important in the investigation of

kinase substrate specificity. However, with limited information

regarding kinase-specific phosphorylation sites on viral proteins,

the substrate recruitment of kinases could not be investigated for

the viral protein phosphorylation data. This is the main reason

why this work develops a computational method to investigate

potential kinase substrate motifs for viral protein phosphorylation

sequences. The approach offers the scientific community clues

regarding human kinases that may be responsible for the

phosphorylation of human virus proteins. It is important to note,

however, that the further acquisition of experimentally verified

viral protein phosphorylation sites is required to identify more

meaningful viral protein phosphorylation motifs. Also, a more

abundant set of experimentally verified kinase-annotated human

phosphorylation sites could be used to improve the collection of

substrate motifs. These developments could benefit our method by

allowing the identification of more potential human kinases

catalyzing virus proteins.

Materials and Methods

Data Construction
In this work, the experimentally verified data of viral protein

phosphorylation sites are collected from virPTM [17], UniProtKB

[28], and Phospho.ELM [29]. In order to avoid the acquisition of

overlapping phosphorylation data from the three databases, each

data obtained from one database is compared to the data obtained

from the other two databases based on their position and

UniProtKB accession number. If the same data is found in two

or more datasets, only one record is retained and the redundant

data is removed. As shown in Table S1, this method resulted in 24

phosphorylated S (pSer), and 10 phosphorylated T (pThr) from

UniProtKB, and 2 pSer, and 2 phosphorylated Y (pTyr) from

Phospho.ELM. Since the number of negative fragments is much

greater than the number of corresponding positive fragments, the

data is not balanced. With reference to PlantPhos [30], a smaller

number of negative fragments are obtained by the K-means

clustering method [31,32] which is employed for acquiring a

subset that represents the whole negative data set. A data point

which has a minimal distance from other data points surrounding

it is selected as a representative data. For this study, K-means

clustering is performed based on sequence identity. The value of K

which denotes the number of samples to be obtained from the

negative set is defined by the number of corresponding positive

data.

Motif Detection and Comparison
The phosphorylated fragments from the obtained training set

are used to investigate the motif signatures of phosphorylated virus

proteins. In order to explore the conserved motifs from a large

data set, MDD is applied to cluster all phosphorylated fragments

into subgroups that show statistically significant motifs. MDD is a

methodology that groups a set of aligned signal sequences to

moderate a large group into subgroups that capture the most

significant dependencies between positions. Previous studies

[30,32] have proposed the grouping of protein sequences into

smaller groups prior to creating prediction models. For this study,

MDD is applied using MDDLogo [32]. MDD adopts chi-square

test to evaluate the dependence of amino acid occurrence between

two positions, Ai and Aj, which surround the phosphorylation site.

In order to extract motifs that have conserved biochemical

property of amino acids when doing MDD, we categorize the

twenty types of amino acids into five groups: neutral, acid, basic,

aromatic, and imino groups, as shown in Table S8. A contingency

table of the amino acids occurrence between two positions is then

constructed, as presented in Figure S2. The chi-square test is

defined as:

x2(Ai,Aj)~
X5

m~1

X5

n~1

(Xmn{Emn)2

Emn

ð1Þ

where Xmn represents the number of sequences that have the

amino acids of group m in position Ai and have the amino acids of

group n in position Aj, for each pair (Ai, Aj) with i?j. Emn is

calculated as
XmR

:XCn
X

, where XmR = Xm1+ …+Xm5, XCn = X1n+
…+X5n, and X denotes the total number of sequences. If a strong

dependence is detected (defined as X2 that is larger than 34.3,

corresponding to a cutoff level of P = 0.005 with 16 degrees of

Table 5. Independent Test Results of Threonine MDD-
clustered HMMs.

Residue
MDD
group Threshold Pre Sn Sp Acc

T1 210 42.5% 20.0% 71.0% 45.5%

T T2 26 88.4% 50.0% 92.0% 71.0%

T3 210 80.7% 40.0% 89.0% 64.5%

Combined
Performance

75.0% 99.0% 62.7% 80.9%

Abbreviations: Pre, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy.
doi:10.1371/journal.pone.0040694.t005
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freedom) between two positions, then the process is continued as

described by Burge and Karlin [52]. As illustrated in Figure S2, it

can be observed that position +1 has the maximal dependence

with the occurrence of imino amino acids. Subsequently, all data

can be divided into two subgroups where one has the occurrence

of imino amino acids in position +1 and the other not having an

occurrence of imino amino acids in position +1. MDD clustering is

a recursive process which divides the positive set into tree-like

subgroups. When applying MDD to cluster the sequences in the

positive set, a parameter, i.e., the minimum-cluster-size, should be

set. If the size of a subgroup is less than the minimum-cluster-size,

the subgroup will not be divided any further. The MDD process

terminates until all the subgroup sizes are less than the value of the

minimum-cluster-size. With reference to previous works that

utilize MDD [21,30,32,53], there exists no set values for the

parameters of MDD clustering. In order to obtain an optimal

minimum cluster size, MDD clustering is executed using various

values. Each subgroup is represented using WebLogo [54] to

graphically visualize the corresponding substrate motif. The

resulting clusters are then analyzed as to whether or not they

contain significant conserved motifs. Subgroups with very similar

motifs are further grouped together into a single cluster in order to

Table 6. Summary of predicted phosphorylation sites on human viruses.

Virus Name Protein ID Position Predicted Kinase Literature-annotated Kinase Reference

HHV-5 P18139 S462 CK2; CK2 Alpha; Model S2 Unknown

HIV-1 P05923 S56 CK2; CK2 Alpha; Model S2 CK2 [46]

HTLV-1 P0C205 S70 Model S2 By Host(Unknown) [58]

HIV-1 P05923 S52 Model S2 CK2 [28]

HRSV P12579 S116 Model S2 By Host(Unknown) [28]

HHV-4 P03191 S305 Model S2 Unknown

HRSV P12579 S161 Model S2 By Host (Unknown) [48]

HTLV-1 P03345 S105 Model S2; PKB; CDK; MAPK MAPK1; CDK* [47,59]

HHV-3 P09258 S343 CDK; MAPK; Model S2 Unknown

HIV-1 P69723 S144 PKB Unknown

HTLV-1 P0C205 S165 PKB Unknown

HTLV-1 P03409 S336 PKB; CDK; MAPK CDK* [47]

HRSV P12579 S117 PKB By Host(Unknown); [48]

HIV-1 P05928 S79 Model S4 By Host(Unknown) [60,61]

HHV-5 P69332 S338 Model S4 Unknown

HTLV-1 P0C205 S177 Model S4 Unknown

HTLV-1 P0C205 S147 Model S4 Unknown

HIV-1 P05928 S94 Model S4 By Host (Unknown) [60,61]

HTLV-1 P0C205 S97 CDK; MAPK Unknown

HHV-4 P03191 S337 CDK; MAPK Viral BGLF4 kinase [49]

HIV-1 P69718 S99 CDK; MAPK By Host (Unknown) [2]

HHV-4 P03191 S349 CDK; MAPK Viral BGLF4 kinase [49]

HTLV-1 P0C205 S177 CDK; MAPK Unknown

HHV-4 P03191 S121 CDK; MAPK Unknown

HTLV-1 P0C205 T174 CK2; CK2 Alpha By Host (Unknown) [58]

HHV-4 P03191 T344 CK2; CK2 Alpha; CDK; MAPK Viral BGLF4 kinase [49]

HPV-16 P06922 T71 CK2; CK2 Alpha Unknown

HTLV-1 P03409 T242 CK2; CK2 Alpha Unknown

HTLV-1 P03409 T48 Model T2 Unknown

HIV-1 P69723 T188 Model T2 Unknown

HTLV-1 P03409 T215 Model T2 Unknown

HTLV-1 P0C205 T174 Model T2 Unknown

HTLV-1 P03409 T322 Model T2 Unknown

HHV-1 P06437 T313 Model T2 Unknown

HIV-1 P69723 T155 CDK; MAPK Unknown

HHV-4 P03191 T355 CDK; MAPK Viral BGLF4 kinase [49]

HPV-16 P06922 T57 CDK; MAPK ERK [50]

The summaries of human viruses and kinases are presented in Table S9 and S10, respectively.
*Relation between human kinase and virus protein reported in literature.
doi:10.1371/journal.pone.0040694.t006
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provide more meaningful groups and avoid redundant clusters as

shown in the motif detection step in Figure 1.

Meanwhile, in order to identify the various human kinase

substrate specificities, human phosphorylated proteins annotated

with their catalytic kinases are collected from Phospho.ELM. The

phosphorylation sites are extracted using a window size of 11 and are

grouped together according to its annotated human kinase. Each

human kinase group is then graphically visualized as sequence logos

using WebLogo. The motifs of the MDD-generated viral protein

phosphorylation clusters and the visualized substrate specificity of

human kinases are compared. A substrate-kinase match is selected

by comparing the conservation of amino acids in each position (25

, +5) appearing as obvious motifs in the visualized sequence logos of

each virus MDD clusters and human kinase. Fragments of amino

acids are extracted from MDD clusters and human kinase groups

using a window length of 2n+1 that is centered on phosphorylation

sites. Next, a positional weighted matrix (PWM) [55] is adopted to

represent the relative frequency of amino acids around the

phosphorylation sites. A matrix of (2n+1)6m elements is used to

represent each MDD-cluster or kinase group, where 2n+1 stands for

the window length and m consists of 21 elements for the 20 types of

amino acids and for one terminal signal. Then, the Euclidean

distance [56] is applied to measure the matrix similarity between

MDD clusters and kinase groups. As the scoring calculation by

Euclidean distance, the smaller distance value has a higher similarity

between MDD cluster and kinase group. Finally, for each MDD

cluster, the most similar kinase group is regarded as the matched host

kinase and the sequence logo is visualized for verification.

Model Training and Cross-validation
In this work, profile HMM is built from the site sequences of

each MDD-clustered subgroup. An HMM describes a probability

distribution over a potentially infinite number of sequences [45]. It

can also be used to detect distant relationships between amino

acids sequences. Here, the software package HMMER version

2.3.2 [45] is used to build profile HMMs, to calibrate the HMMs,

and to search the putative phosphorylation sites against the protein

sequences. HMM builds a model based on positive instances of a

class; thus, in this study, only positive data are utilized to build a

predictive model. After the application of MDD clustering on viral

protein phosphorylation data, each of the MDD-clustered

subgroups is taken as a training set to build a profile HMM.

For each model of the MDD-clustered subgroups, a threshold

parameter is selected as a cut-off value in identifying potential positive

data from a query [45]. An optimized threshold is selected as the

value which gives the most optimal cross-validation performance for

each training model. To search the hits of a HMM, HMMER returns

both a bit score and an expectation value (E-value). The bit score is

the base two logarithm of the ratio between the probability that the

query sequence is a significant match and the probability that it is

generated by a random model. The E-value represents the expected

number of sequences with a score greater than or equal to the

returned HMMER bit scores. A search result with an HMMER bit

score greater than the threshold parameter is taken as a positive

prediction. While decreasing the bit score threshold favors finding

true positives, increasing the bit score threshold favors finding true

negatives. Therefore, the threshold must be set to obtain a balanced

number of true positives and true negatives.

Prior to the construction of a final model, the predictive

performance of the models with varying parameters are evaluated

by performing k-fold cross validation. In doing k-fold cross

validation, the training data is divided into k groups by splitting

each dataset into approximately equal sized subgroups. In one

round of cross-validation, a subgroup is regarded as the test set,

and the remaining k-1 subgroups are regarded as the training set.

The cross-validation process is repeated k rounds, with each of the

k subgroups used as the test set in turn. Then, the k results are

combined to produce a single estimation. The advantage of k-fold

cross-validation is that all original data are regarded as both

training set and test set, and each data is used for testing exactly

once [57]. In this study, k is set to five. The models are initially

evaluated using five-fold cross-validation and are gauged by

measuring their predictive performance. The following measures

of predictive performance are defined as:

Precision (Pre)~
TP

TPzFP
, ð1Þ

Sensitivity (Sn)~
TP

TPzFN
, ð2Þ

Specificity (Sp)~
TN

TNzFP
, ð3Þ

Accuracy (Acc)~
TPzTN

TPzFNzTNzFP
ð4Þ

where TP, TN, FP and FN represent the numbers of true positives,

true negatives, false positives and false negatives, respectively.

Table 7. Comparison of independent testing performance with other kinase-specific phosphorylation site prediction tools.

Tools
MDD-clustered
HMMs PREDIKIN 2.0 KinasePhos 2.0 GPS 2.1

Number of true positive predictions 36 33 36 36

Number of false positive predictions 89 145 172 189

Number of true negative predictions 303 247 220 203

Number of false negative predictions 0 3 0 0

Precision 28.9% 18.5% 17.3% 16.0%

Sensitivity 100.0% 91.7% 100.0% 100.0%

Specificity 77.3% 63.1% 56.1% 51.8%

Accuracy 79.2% 65.4% 59.8% 55.8%

doi:10.1371/journal.pone.0040694.t007
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Subsequent to the construction of the predictive model, an

independent test using the data set obtained from both UniProtKB

and Phospho.ELM is carried out to further evaluate the predictive

performance of each HMM.
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