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Abstract

Newly recognized as natural nanocarriers that deliver biological information between cells,

extracellular vesicles (EVs), including exosomes and microvesicles, provide unprecedented

therapeutic opportunities. Large‐scale and cost‐effective manufacturing is imperative for

EV products to meet commercial and clinical demands; successful translation requires

careful decisions that minimize financial and technological risks. Here, we develop a

decision support tool (DST) that computes the most cost‐effective technologies for

manufacturing EVs at different scales, by examining the costs of goods associated with

using published protocols. The DST identifies costs of labor and consumables during EV

harvest as key cost drivers, substantiating a need for larger‐scale, higher‐throughput, and
automated technologies for harvesting EVs. Importantly, we highlight a lack of appropriate

technologies for meeting clinical demands, and propose a potentially cost‐effective
solution. This DST can facilitate decision‐making very early on in development and be used

to predict, and better manage, the risk of process changes when commercializing EV

products.
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1 | INTRODUCTION

Extracellular vesicles (EVs) are physiological nanocarriers increas-

ingly recognized as a ubiquitous mode of intercellular signaling by

which distant cells can exchange membrane and cytosolic contents,

including proteins and RNA (El Andaloussi, Mäger, Breakefield, &

Wood, 2013). Whether as exosomes that originate from the

endolysosomal compartment, or as microvesicles that bud from the

plasma membrane, EVs inherit molecules and even biological

functions from their parent cells: dendritic cell EVs can act as

vaccines (Robbins & Morelli, 2014), tumor‐derived EVs may promote

metastasis (Becker et al., 2016), and stem cell EVs are regenerative

(Lamichhane et al., 2015). Additionally, EVs may be engineered to

deliver exogenous small molecules and genetic material (Kanada

et al., 2015; Pegtel et al., 2010). Although the notion of using EVs for

therapy only started to gain traction in the mid‐2000s, EV therapy

has already been tested in more than seven human studies (Fais et al.,

2016; György, Hung, Breakefield, & Leonard, 2015) and at least four

companies are currently developing EV therapeutics (Smith et al.,

2015), indicating a rapidly emerging industry.

Successful commercialization of EVs as therapeutic or research

products requires scalable and cost‐effective manufacturing. To scale

up, manufacturers embark on a complex and iterative process of

identifying and testing new technologies. This is especially costly for

producing cell‐derived therapeutics (Kirouac & Zandstra, 2008; Rekhi

et al., 2015). Furthermore, since dosage, market size, and hence

product demand can vary considerably between disease applications,

the most cost‐effective solution will likely vary.

The use of decision‐support tools (DSTs) that optimize process,

quality, and costs in silico has been remarkably powerful at mitigating

scale‐up challenges in a wide range of industries (Kodiyalam, Yang,

Gu, & Tho, 2004; Schmidt, 2005), recently including the production of

cell‐derived therapeutics (Rekhi et al., 2015; Tan et al., 2014), but not

EVs. Systematic and modular modeling of manufacturing processes

offers great insight into cost structure and allows consideration of

case‐specific needs and constraints (Hassan et al., 2015; Simaria

et al., 2014). By accelerating the iterative scale‐up process, DSTs can

shorten time to market and facilitate earlier patient access to new

therapies in a cost‐effective manner. In this study, we describe our

novel framework and its application for identifying and evaluating

combinations of upstream (cell expansion) and downstream (EV

harvest) technologies that minimize costs of goods (COG).

2 | RESULTS

EV manufacturing consists of two distinct processes: the initial cell

expansion in which EVs are released into the surrounding medium, and

the subsequent EV harvest from the cell culture supernatant (Figure 1).

The model handles these two processes as separate modules and follows

the protocol outlined in the Materials and Methods (Figure 7) to identify

the most cost‐effective technology combinations for a given demand and

lot size. Assumptions and limitations are presented in Box 1.

BOX 1 Assumptions and limitations imposed

1. Cells are not harvested at the end of each lot.

Users intending to harvest cells in addition to

EVs can refer to studies where various cell

harvest technologies are considered (Hassan

et al., 2015).

2. EV harvest occurs only once per lot. In each lot,

culture media introduced during seeding needs

not be changed, and no new media will be added.

EV harvest is the only instance when media is

removed.

3. There are no EVs in the culture media when cells are

initially seeded.

4. Equations and parameters governing cell prolifera-

tion and EV accumulation apply to all technologies

equally.

5. To exactly match EV demand, the cell culture is

terminated when just enough EVs have accumu-

lated. This is equivalent to allowing the cells to

reach the maximum allowable density and discard-

ing extra EVs. Hence, a non‐integral uE value can be

rounded up to the nearest integer.

6. Likewise, to exactly match volumes between cell

expansion and EV harvest technologies, EV‐free
buffer will be added such that a non‐integral
number of EV harvest units can be rounded up to

the nearest integer. Cost of this EV‐free buffer is

assumed to be negligible.

7. This study also does not consider costs of pipettes,

tips, common buffers, and other consumables or

equipment not mentioned herein, as well as COG

associated with storage, packaging, and shipping.

We perform sensitivity analysis to account for

uncertainty in our estimations.

8. All EV harvest technologies generate EVs of sufficient

purity and usable concentration for the end

application.

9. Wherever possible, disposable or single‐use technolo-

gies are considered to reflect the shift in industry

preference away from hardpiped, steel‐based equip-

ment (Gottschalk & Shukla, 2013; Langer &

Rader, 2014).

10. Costs due to quality control were disregarded since

release criteria for EV products are still under

debate (Lener et al., 2015; Witwer et al., 2013), but

this would not affect ranking between candidate

technologies because the same cost of quality

control would apply to all (Supporting Information

Figure 4b).
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2.1 | Cell expansion

In the absence of any DSTs for modeling EV manufacturing,

validation of our model was accomplished using the cell expansion

module alone to reproduce cost estimates calculated previously

with an allogeneic cell therapy cost modeling tool (Hassan et al.,

2015; Simaria et al., 2014). Using the same parameters, our model

yielded highly comparable estimates to the Simaria model

(Supporting Information Section 1 and Supporting Information

Figure 1).

For further validation, the cell expansion component of our

model was applied to a real‐world scenario for industrial cell

expansion. 10‐layer planar vessels (L‐10) are typically used

FIGURE 1 Continued.
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(Rowley, Abraham, Campbell, Brandwein, & Oh, 2012) to produce

about 2,500 doses (108 cells/dose) each year, with a COG of

$3.11–3.74 million (Malik, 2012). Assuming that commercial lot

sizes would be at least 100 doses/lot (Brandenberger et al.,

2011), our model estimated the COG using L‐10. Our estimates

(Supporting Information Table 1) were shown to capture actual

COG in industrial settings with reasonable accuracy. Moreover,

our model shows that the industrial standard, L‐10, may not be

the most economical option, and recommends larger‐scale planar

vessels such as 40‐ (L‐40) and 120‐layer planar vessels (cL‐120),
or even microcarrier‐based single‐use bioreactors (SUBs; Sup-

porting Information Figure 2), as industry experts have proposed

(Rowley et al., 2012).

2.2 | Lot size, the main factor that governs the
economy of scale

Application of the model to the cell expansion process permits

evaluation and identification of optimal culture technologies

across a range of annual demands with varied lot sizes for EV

manufacturing (Figure 1b). For a given lot size, the cost structure

remains largely unchanged with increasing annual demand

(Supporting Information Figure 3a). Costs of consumables, labor,

and quality control scale up almost linearly as the lots per year

increase, whereas equipment costs are fixed. Hence, the

contribution to total costs remains largely unchanged for

consumables, labor, and quality control, but decreases for

equipment. The number of cell expansion units remains the same

as long as lot size is fixed; a comparison is made within the same

set of candidate technologies since no new technologies would

violate space constraints (Figure 7). With increasing annual

demand, the same lot is simply repeated more times with no

additional constraints unless consecutive lots begin to overlap

(e.g. more than 200 lots/year; Figure 1b). Consequently, the

optimal technology generally remains unchanged when lot size is

fixed (Supporting Information Figure 3c).

When annual demand is fixed, increasing lot size shifts the set

of valid candidate technologies from smaller‐scale to larger‐scale
technologies (Supporting Information Figure 3b), and the optimal

technology changes (Supporting Information Figure 3c). Smaller‐
scale technologies are excluded when lot size is large enough for

them to violate space constraints, while larger‐scale technologies

are excluded when lot size is small enough such that the number

of cells required for seeding already exceeds the lot size

(Figure 1b). Using larger lot sizes to meet a given annual demand

requires less labor and quality control, maximizes the capacity of

culture vessels, operators, and equipment, and thereby incurs

less cost.

2.3 | Selection of EV harvest technologies

We selected EV harvest technologies (Supporting Information

Table 2) from published protocols for isolating EVs from cell culture

supernatants. Ultracentrifugation (UC) is the current standard for EV

isolation (Gudbergsson, Johnsen, Skov, & Duroux, 2015; Smith et al.,

2015; Théry, Amigorena, Raposo, & Clayton, 2006; Witwer et al.,

2013). Recently marketed commercial kits include polymer‐induced
precipitation (ExoQuick, System Biosciences; PPT) and size‐exclusion
chromatography (qEV, IZON; SEC1; Lobb et al., 2015; Smith et al.,

2015). Since the SEC1 is relatively small‐scale, taking only 0.5 ml of

sample per column, we added SEC2, a size‐exclusion chromatography

protocol published by an academic group that allows up to 240ml of

sample per unit (Nordin et al., 2015). Yet another emerging method is

ultrafiltration. While commercial kits dedicated to EV filtration are

not yet available, several academic groups have adopted commer-

cially available filtration devices, traditionally used for isolating other

forms of biological particles. UF1 represents a published protocol

employing a series of dead‐end and tangential‐flow filters (Heine-

mann et al., 2014). Recognizing that the tangential‐flow filters can

take 20 times more volume than what was published, we added UF2,

a slightly modified version of UF1 to match the same tangential‐flow
filter with larger‐volume dead‐end filters of the same brand, without

changing any other parameters in the protocol. In general, larger‐
scale versions of each method may be possible with continuous‐flow
ultracentrifuges (e.g. 8 L; Hahn et al., 2013), continuous chromato-

graphy (e.g. 16 L; Bisschops, Frick, & Levison, 2016), and other

industrial equipment, but feasibility of their use for EVs has not been

reported.

F IGURE 1 Scale, lot size, and annual demand are considered when building EV manufacturing processes for cost minimization. (a) A typical

bioprocess begins with cell culture. EVs released by cultured cells accumulate in the conditioned media, which is collected for EV harvest. Some
EVs are lost during harvest. One lot refers to each time a manufacturer commences cell culture and harvests EVs from the corresponding batch
of cultured cells. The overall output of harvested EVs is the lot size. (b) We emphasize the difference between lot size and scale. While lot size

can be arbitrarily set by the manufacturer, the scale is determined by the physical technologies used in the bioprocess. The same lot size can be
met by more units of a smaller‐scale technology or fewer units of a larger‐scale technology. To account for space constraints in a facility, we set
a limit to the number of units for each technology considered. (c) A given annual demand for EVs can be met by bioprocesses with different lot
sizes. Bioprocesses with smaller lot sizes require more lots per year; hence the manufacturer would commence cell culture more often. In our

model, we set an upper limit of 200 lots/year, so that lot sizes can be too small to meet the annual demand. Likewise, lot sizes that exceed
annual demand are invalid. The same concept applies to scale: smaller‐scale bioprocesses require more units to meet the annual demand. We
omit larger‐scale bioprocesses when they meet the lot size too quickly (i.e. within 24 hr upon commencement of cell culture) because they may

render daily operations unfeasible. For each lot size and annual demand, we compute and compare annual costs of goods for all bioprocesses
considered, and correspondingly identify the most economical technologies. In general, a smaller annual demand is most economically met using
smaller‐scale technologies, and vice versa. See Supporting Information Figure 1 and Supporting Information for a detailed algorithm. EV:

extracellular vesicles [Color figure can be viewed at wileyonlinelibrary.com]

310 | NG ET AL.



2.4 | Whole EV bioprocess modeling

We experimentally determined the relationship between cell and EV

numbers (Methods), with a reasonable R2 of ~0.8 (Supporting Information

Table 3). A mathematically equivalent equation was previously described

for bacteria (Biller et al., 2014). Primary human mesenchymal stem cells

were chosen as the model cell type since their EVs have demonstrated

therapeutic efficacy in more than 20 disease models (Fais et al., 2016).

Cells from four different donors, cultured in StemPro serum‐free media

(Gibco, Waltham, MA), were examined. Since three out of four donors

behaved similarly, we used a doubling time of 22 hr and an EV output of

11,500 per cell per doubling for our model.

Optimal cell expansion technologies for a range of EV demands

span both planar vessels and SUBs, indicating that the range of lot

sizes and annual demands considered was sufficiently extensive

F IGURE 2 Ultrafiltration dominates as the optimal EV harvest technology in most conditions considered. Optimization is based on the total
COG of every possible combination of cell expansion and EV harvest technologies. Corresponding solutions at the top and bottom halves of
each cell indicate the optimal pair of (red) cell expansion and (blue) EV harvest technologies for a given lot size and annual demand. Red, blue,
and black borders respectively indicate a switch in cell expansion technologies only, EV harvest technologies only, or both. Solution space that is

empty either falls below 10 lots/year or exceeds 200 lots/year. Dark shaded space indicates conditions where no technology can meet within
the limitations imposed. Shown are solutions when EV recovery is assumed to (a) vary between EV harvest technologies, or (b) be fixed at 100%
for all EV harvest technologies. The key outcome of the latter assumption is that a given EV demand and lot size will now require the same

number of units of cell expansion technology regardless of the EV harvest technology; hence, the comparison is chiefly made between EV
harvest technologies, rather than whole bioprocesses. Solutions that differ between the two assumptions are underlined, emboldened, and
highlighted in more contrasting colors. COG: costs of goods; EV: extracellular vesicles [Color figure can be viewed at wileyonlinelibrary.com]
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(Figure 2). Although cell numbers required to generate EVs are

within the range of cell numbers in bioprocesses solely for cell

expansion, solutions differ because cell expansion technologies for

EV harvest are additionally limited by volume constraints: candidate

technologies producing the same number of cells or EVs can

significantly differ in media consumption, and require dramatically

different numbers of EV harvest units.

Likewise, volume constraints favor EV harvest technologies that

accept larger volumes, since EV‐free buffer can be added to conditioned

media to meet the minimum volume of any EV harvest technology,

increasing the range of lot sizes that larger‐volume technologies can

tolerate without violating space constraints (Figure 3). Smaller‐volume

technologies, namely PPT and SEC1, require many units, which quickly

drives up costs of consumables and labor (Supporting Information

Figure 4). Meanwhile, despite differing in percent recovery, UC, SEC2,

and UF2 yield comparable COG in most conditions. Even when percent

recovery is set at 100% for all technologies, solutions remain largely the

same (Supporting Information Figure 5). This is because a smaller

percent recovery needs not translate to requiring more units; a longer

culture time in the same number of vessels will suffice to produce more

EVs, which accumulate exponentially.

Among all methods of EV isolation considered in this study,

ultrafiltration (UF1 and UF2) remain valid for the widest range of lot

sizes. While they may not be optimal for all conditions considered,

their COG stays close to that of the optimal technology. Until more

protocols utilizing larger‐volume technologies for EV isolation are

published, we conclude that ultrafiltration is currently the most

versatile and cost‐effective EV isolation method for scale‐up.

2.5 | Harvest costs dominate COG but can be
reduced at large lot sizes

In general, EV harvest accounts for more than 50% of annual COG.

However, when lot size is sufficiently large, the need to use larger‐
scale cell expansion technologies lowers the contribution of EV

harvest to overall COG.

Figure 4 shows an example using UF2. L‐10 is most widely used in

the current industry (Rowley et al., 2012), while L‐40, compact flasks,

F IGURE 3 Ultrafiltration remains most cost‐effective over a large range of lot sizes. Shown are COG over a range of lot sizes for the same

annual demand of 5 × 1012 EVs/year: (a) 5 × 1010 EVs/lot at 100 lots/year, (b) 1 × 1011 EVs/lot at 50 lots/year, and (c) 5 × 1011 EVs/lot at 10 lots/
year. Left column, the annual cost of goods for the whole EV bioprocess for each of the suitable cell expansion and EV harvesting technologies.
Middle column, the percentage contribution to the annual cost of goods due to EV harvest for each of the suitable cell expansion and EV

harvesting technologies. Right column, the annual EV harvest cost when using 1‐layer planar vessels (L‐1), divided into its constituent parts
(equipment, consumables and labor costs). As lot size increases, larger‐scale cell expansion technologies become valid, for which only larger‐
scale EV harvest technologies can match. COG: costs of goods; EV: extracellular vesicles [Color figure can be viewed at wileyonlinelibrary.com]
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cL‐120, and 20 L SUBs have been recommended for cost‐effectiveness.
When coupled to these cell expansion technologies, UF2 can

contribute as little as 20% to the annual COG. Meanwhile, hollow‐
fiber bioreactors (HF) and SUBs are emerging cell expansion

technologies being investigated for scaling up EV production (Mitchell,

Court, Mason, Tabi, & Clayton, 2008; Watson et al., 2016). Because HF

is relatively costly among cell expansion technologies, adding EV

harvest to an HF bioprocess will consume only about 10% extra COG

(Figure 4).

Trends observed in cell expansion bioprocesses (Figure 4) when

varying lot size and annual demand remain largely applicable after EV

harvest is incorporated. However, since the EV harvest technologies

considered have not been demonstrated to be automatable, we

cannot attribute the economy of scale to automation. Indeed, labor

dominates in most harvest costs. Given that automation of purifying

biologics is possible and being developed (Dong et al., 2016;

Godawat, Konstantinov, Rohani, & Warikoo, 2015), harvest costs

will likely decrease further in the future.

2.6 | Biological parameters are the strongest cost
driver

To identify key cost drivers as well as account for uncertainty in our

estimates, we perform a sensitivity analysis by varying cost or

process parameters and examining their individual impact on annual

COG of selected technology combinations (Figure 5). Unsurprisingly,

since harvest costs dominate overall COG in most conditions

(Figure 3), the price of cell culture media—which concerns only cell

expansion costs—hardly affects annual COG. On the contrary, labor

rate and the price of consumables for EV harvest can influence

annual COG almost proportionally to their degree of change. Labor

rate, being involved in both cell expansion and EV harvest, is a

particularly strong cost driver regardless of the technology combina-

tion, although its impact on our solutions is mild (Supporting

Information Figure 5).

All computations were based on biological parameters from three

donors that behaved similarly (Supporting Information Table 3). Cells

from the fourth donor, which produced about three times as many

EVs per population doubling, can reduce COG by more than 60%

(Figure 6). Even more impressively, when cells are cultured under

starvation conditions (1% of media supplement; Bian et al., 2014)

that boost EV output per population doubling by an order of

magnitude, COG can be reduced approximately six‐fold (Figure 6).

These comparisons were based on optimal technology combinations,

which could differ between biological conditions for the same lot size

and annual demand. If a comparison between biological conditions

was made for the same technology combination at the same lot size

and annual demand, cost reduction would be more dramatic. This is

because an increased EV output per population doubling means that

a culture vessel produces more EVs with the same initial and final cell

densities, such that EVs would be more concentrated in the

conditioned media, leading to less cell expansion units, less volume,

and ultimately less EV harvest units. Biological parameters are

therefore the strongest cost driver.

3 | DISCUSSION

New methods continually emerge to tackle technical and logistical

challenges in EV isolation. Generally, biological effects of EV

preparations have been observed regardless of the isolation method,

so multiple methods could potentially be used to manufacture EVs.

Due to the heterogeneity of EVs, each method typically enriches for a

different EV subset with varying quality (e.g. purity, aggregation,

structural integrity). Active substances and their mechanisms of

action likely differ between EV products even if the products

originate from the same cell source (Lener et al., 2015). Process and

product become tightly intertwined; the bioprocess should be kept as

consistent as possible during scale‐up to generate EV fractions with

reproducible performance. This is already seen in the manufacturing

of cell therapies (Campbell et al., 2015; Davie & Brindley, 2012) and

glycosylated proteins (Rosenlöcher et al., 2016) such as antibodies

(Ivarsson, Villiger, Morbidelli, & Soos, 2014), where small adjustments

in bioprocesses can propagate to large variability in product quality.

Bioprocess design should, therefore, be established as early as

possible, even before empirical iterations, emphasizing the impor-

tance of DSTs. By accommodating technological variations, our

model can additionally evaluate new or hypothetical methods (e.g.

UF2), particularly the extent of their economic advantage over

existing methods, and identify key cost drivers that may inspire and

guide future innovations. Whilst our model can be adaptable to new

F IGURE 4 When lot size is sufficiently large, EV harvest can
become cheaper than cell expansion. The legend shows different lot

sizes in EVs/lot; all conditions are normalized at 100 lots/year. Tissue
culture flask (T‐175), 10‐layer planar vessels (L‐10), 40‐layer planar
vessels (L‐40), Compact flasks (cT), Compact multi‐layers (cL120),
Hollow‐fiber bioreactors (HF), and 20 L single‐use bioreactors (20 L)

were assessed to find the percentage contribution to annual COG
due to ultrafiltration (UF2), for the range of lot sizes (5x1011– 5x1013

EVs/Lot). COG: costs of goods; EV: extracellular vesicles [Color

figure can be viewed at wileyonlinelibrary.com]
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technological developments, new insights in the field necessitate the

“pressure testing” of our assumptions so that suitable updates can be

made, as and when they are required. For example, switching from

2D to 3D culture will likely result in new biological parameters and

media feed regimen. More advanced considerations including volume

reduction and space consumption may be included. We encourage

users to focus on relative comparisons of COG since absolute COG of

any technology will likely change over time.

Critically, our model reveals the relative scalability between

technologies, at least from an economic perspective. Scalability,

historically derived from the concept of expansion flexibility, refers to

the ability of a system to accommodate capacity changes without

requiring significant new designs (Spice, Yip‐Hoi, & Koren, 2005). UC is

generally considered not scalable. Conventional ultracentrifuges

(e.g. Beckman Coulter Optima L‐90K) employ swing‐bucket or fixed‐
angle rotors whose rotational axes are outside the sample chamber; to

ensure a gravitational balance between the symmetrically positioned but

individually and manually filled chambers, the rotors are designed to be

substantially heavier than the samples. Consequently, a majority of

electrical power is “wasted” on accelerating the rotor instead of the

sample. At the industrial scale, such a design will warrant unrealistically

large rotors and exorbitant power consumption. On the contrary,

continuous‐flow ultracentrifuges (e.g. Alfa Wassermann KII) are designed

so that the rotational axis is inside the sample chamber. A fluid sample

will naturally balance itself symmetrically around the axis, eliminating the

need to add weight to the rotor. Despite being more scalable, continuous‐
flow ultracentrifuges are relatively new and have not yet been widely

adopted by academic groups. Meanwhile, compared to UC, size‐exclusion
chromatography (e.g. SEC1, SEC2) and ultrafiltration (e.g. UF1, UF2) are

more scalable: although larger columns and filters may be necessary for

industrial‐scale manufacturing, system operation and design remain the

same. Perhaps the least scalable of all is polymer‐induced precipitation

(e.g. PPT). The need to remove the polymer additive increases the

number of steps and reliance on other purification technologies, such as

F IGURE 5 Labor rate and price of consumables for EV harvest, but not price of cell culture media, are key cost drivers. Each cost parameter is varied
by ±30%, and changes in annual COG at 100 lots/year are computed for different technology combinations (Tissue culture flask [T‐175], 10‐layer planar
vessels [L‐10] and Compact flasks [cT]) at different lot sizes with the selection of EV harvest technologies (Ultrafiltration [UF1 and UF2],
Size‐exclusion chromatography [SEC1 and SEC2], polymer‐induced precipitation [PPT] and ultracentrifugation [UC]). (a) the “Price of cell culture media”
is varied about the base price of $150/L to $195 and $105/L and the percentage change in annual COG is displayed. (b) the “Labor rate” is altered from

$200 to $260 and $140/hr and the percentage change in annual COG is displayed. (c) the “price of consumables for EV harvest” is increased and
decreased by 30% and the change in annual COG is displayed. COG: costs of goods; EV: extracellular vesicles [Color figure can be viewed at
wileyonlinelibrary.com]
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centrifugation and chromatography. Solutions from our model, which

incorporates both cost and bioprocess parameters in identifying optimal

technologies, correlate with the relative scalability of these isolation

methods.

Currently, most clinical trials investigating EV therapy are in Phase I

(Fais et al., 2016; György et al., 2015), and as such, the effective dose

range of EVs is unclear. We also recognize that dose will likely vary

between disease applications. Hence, lot sizes and annual demand were

expressed in EVs instead of doses, to allow users to define their own

dose. One Phase II trial has been completed and reported, in which 22

patients were intradermally administered a median of 247 μg (by protein

mass) of EVs per dose over a median of seven doses per patient (Besse

et al., 2016). Given that pure EVs contain about 0.1 fg of protein each

(Webber & Clayton, 2013), a median dose would consume about

2.5 × 1012 EVs. The maximum lot size (1 × 1014/lot) and annual demand

(100 lots/year) we could explore in this study would supply about 4,000

of such doses per year, or treat about 570 patients a year. This already

requires three units of 20 L SUBs and 15 units of UF2, or 60,000 units of

UC if the current standard for EV isolation was utilized. However, we

note that primary endpoints were not met in this Phase II trial. Since

preclinical doses that showed efficacy in animal studies are on the order

of 1012 EVs/kg, perhaps the effective clinical dose would be two orders of

magnitude higher than what was tested in the Phase II trial. If this is true,

none of the technologies investigated in this study would be feasible to

meet the demand. Larger‐scale cell expansion technologies are already

being investigated for scaling up EV production (Mitchell et al., 2008;

Watson et al., 2016); we recommend that future studies should focus on

larger‐scale EV harvest technologies capable of meeting clinical demands.

But who would be in the best position to conduct such studies? Given

that the bioprocess would produce both cells and EVs, the most

economical strategy may be to develop both cells and EVs as products.

Our model predicts that adding EV harvest to an existing cell expansion

process can cost as little as 10% of annual COG, especially if lot size is

large. Therefore, current cell manufacturers may face the fewest barriers

by converting conditioned media, which is otherwise regarded as waste,

to commercializable products (Smith et al., 2015). EVs purified by PPT are

currently sold by Systems Biosciences as “standards.”However, since PPT

will unlikely be the method of choice for clinical manufacturing of EVs,

“standards” generated by scalable technologies might be more appro-

priate. A potential disadvantage for cell manufacturers is the constraint in

choice of cell culture media. If their existing bioprocesses employ EV‐
containing media (e.g. serum), they would not be able to harvest EVs

purely generated by the cells. Moreover, the optimal media composition

for maximizing the quality and quantity of cellular products may not be

optimal for producing EVs. Production of both cell and EV therapies may,

therefore, be challenging; commercializing one product for research use

while reserving the other for clinical use may be more realistic. By

commercializing EV products generated from clinical‐grade cells, cell

manufacturers would not only advance large‐scale methods for EV

isolation but also provide reliable and relevant “standards” that the

academic community advocates (Witwer et al., 2013).

4 | METHODS

4.1 | Modular modeling

EV demand is parametrized by lot size (EVs/lot) and annual demand

(lots/year). One lot is defined as one stage of cell expansion followed

by EV harvest. Such a modular framework allows the user to build

multi‐stage bioprocesses and consider parallel processing without

needing to alter the computational algorithm. Our protocol modifies

a previously published model for cell manufacturing (Hassan et al.,

2015; Simaria et al., 2014) to accommodate modular modeling; other

published models do not specify technologies (McCall & Williams,

2013) or costs (Ungrin et al., 2012).

Figure 7 summarizes our approach. The user inputs lot size (Nv
lot),

annual demand (Nlot
yr ), and biological parameters (kc , kv) that

characterize EV accumulation. We begin by using percent recovery

of each EV harvest technology (TH) to determine the number of EVs

needed at the end of cell expansion before EV harvest (Nv
E). For a

given TH we compute the number of units (uE) of each cell expansion

technology (TE) and the corresponding COG (zE). By matching the

volume output of each to TE the volume input of the given TH, we

compute the number of units TH (uH), COG for EV harvest (zH), and the

total COG (z). Recognizing space and time constraints, we impose

upper limits to uE and uH (UE , UH) for each technology, and a minimum

F IGURE 6 Changes in cell source or culture conditions can

significantly influence COG. Biological parameters were selected
from Supporting Information Table 3. Four donors’ mesenchymal
stem cells were assessed for their EV output per doubling, and as

donors 1–3 were similar (Supporting Information Table 3), these
parameters were used for the model. Donor 4 had a significantly
greater EV output per doubling: the plot shows how biological
variation and culture conditions affect Annual COG at a range of lot

sizes for 100 Lots/year. SP represents StemPro serum‐free medium
which was used to empirically determine the biological parameters.
COG: costs of goods; EV: extracellular vesicles [Color figure can be

viewed at wileyonlinelibrary.com]
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lag of 24 hr between cell seeding and EV harvest. Iterative

comparisons of all TE continue for each TH until z is minimized and

the cheapest pair of TE and TH is identified.

Box 1 lists our assumptions and limitations; Supporting Informa-

tion Tables 2–5 list the numerical values used.

4.2 | Equations

To compute the number of EVs needed at the end of cell expansion

before EV harvest (Nv
E), divide lot size by the percent recovery (yj) of

a given TH.

=N
N

yv j
E v

j
,

lot

(1)

To compute the number of units of each cell expansion

technology (uE), first determine cell number (Nc) using cell density

(dc) and culture surface area. While a planar TE has a fixed surface

area (ai
pln), a microcarrier‐based SUB has a surface area proportional

to the surface area (amc) and volume density (dmc) of the

microcarriers, as well as the SUB volume (Vi
sub).

= +( )N d a a d Vc c i i
pln

mc mc
sub (2)

The same equation can apply to all TE by setting Vi
sub at zero for

planar TE and ai
pln at zero for SUBs. Next, determine the maximum

number of EVs (Nv i
max

, ) that one unit of TE can produce, which is when

cells grow from the seeding density (dc
min) to the maximum allowable

density (dc
max).

F IGURE 7 Two optimization loops compute costs and identify the cheapest combination of cell expansion and EV harvest technologies for a
given demand and lot size. The inner loop optimizes for the cheapest combination for a given EV harvest technology, while the outer loop

ensures that every EV harvest technology is considered. See Equations for the explanation of symbols. EV: extracellular vesicles
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= − = − +( )( ) ( )N
k
k

N N
k
k

d d a a d Vv i
max v

c
c
min

c
max v

c
c
min

c
max

i i,
pln

mc mc
sub (3)

Finally, compute the number of units each TE needs to meet the

lot size, rounded up to the nearest integer (square brackets without

lower horizontal bars denote the ceiling function).

⎡
⎢
⎢⎢

⎤
⎥
⎥⎥=u

N

N
E i

v j
E

v i
max,

,

,

(4)

To compute the number of units of each EV harvest technology (uH),

divide the TE by the maximum sample volume (Vj) of one TH unit, and

round up to the nearest integer. Media consumption is normalized to

surface area for planar (Vi
pln) but not for SUBs.

⎡
⎢
⎢⎢

⎤
⎥
⎥⎥=

+
u u

V a V

V
·H j E i

i i i

j
, ,

pln pln sub

(5)

To compute the cost of goods for the cell expansion technologies

(zE), three types of costs are considered: consumables, labor, and

equipment. The cost of consumables for one lot depends on the price

of vessel (pi
vess), media (pmed), and microcarriers (pmc).

⎡⎣ ⎤⎦= + + +( )C u p p V a V p d Vi E i i i i i i
cons

,
vess

med
pln pln sub

mc mc
sub (6)

To determine labor cost per lot, first compute the number of

operators (mE i, ) needed to handle uE i, , taking into account that each

operator can manage up to UE i
m

, units.

⎡
⎢⎢

⎤
⎥⎥=m

u

U
E i

E i

E i
m,
,

,

(7)

Then compute the total wages from the hourly rate (plab) and the

time taken to seed cells (ti
seed) and collect conditioned media (ti

coll). A

multiplier β accounts for labor costs beyond that of an operator (e.g.

supervisors and management).

∙ β= + +( )C m p t t (1 )i E i i i
lab

, lab
seed coll (8)

Equipment for cell expansion is split into three categories:

incubators where cells undergo expansion, biosafety cabinets

(BSCs) where cells are handled under aseptic conditions, and

ancillary equipment such as those for automation. The price of

incubators (pi
inc) or ancillary equipment (pi

anc) depends on the

specific TE and each incubator or ancillary equipment can process

up to Ui
inc or Ui

anc units simultaneously. The price of a BSC (pbsc) is

the same for any expansion technology and a BSC can be used by

up to Ubsc operators at a time. A delta function (δi) indicates if a

particular TE requires a BSC. Add the three costs to compute

equipment costs per lot.

⎡
⎢⎢

⎤
⎥⎥

⎡
⎢⎢

⎤
⎥⎥

⎡
⎢⎢

⎤
⎥⎥

∙δ
= + +C p

u

U
p

m

U
p

u

Ui i
E i

i

E i i
i

E i

i

eq inc ,

inc bsc
,

bsc
anc ,

anc (9)

Use Nlot
yr to compute the annual COG. Since equipment can be shared

between lots, an additional lot in the same year does not increase

equipment cost, but equipment can depreciate over time (tdep). Annual

COG of eachTE is stored as zi, while the global minimum (i.e. annual COG

of optimal combination ofTE and TH) among all values of zi is stored as zE .

= + +( )z N C C
C

ti i i
i

lot
yr cons lab

eq

dep

(10)

To compute the cost of goods for the EV harvest technologies

(zH), likewise, annual COG for EV harvest is broken down into

consumables, labor, and equipment. One TH unit represents a multi‐
step process of purification, with an overall price of consumables

(pj
cons). Consumables include single‐use tubes, chromatography

columns, and polymers for precipitation.

∙=C u pj H j j
cons

,
cons (11)

Similarly, compute labor cost per lot for EV harvest units, but

instead using the total labor time (tj
proc) for the entire multi‐step

process. Waiting between steps is not considered labor.

⎡
⎢
⎢⎢

⎤
⎥
⎥⎥=m

u

U
H j

H j

H j
m,

,

,

(12)

∙ ∙ β= +C m p t (1 )j H j j
lab

, lab
proc (13)

Equipment for EV harvest involves only BSCs and ancillary

equipment such as benchtop centrifuges. Because BSCs may also be

used for cell expansion, they are considered in computing zH only if

additional BSCs are required for EV harvest. Annual COG of each TH

is stored as zj; the global minimum is stored as zH.

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎢⎢

⎤
⎥⎥

⎡⎢ ⎤⎥ ⎡⎢ ⎤⎥ ⎡⎢ ⎤⎥ ⎡⎢ ⎤⎥
⎡
⎢⎢

⎤
⎥⎥

⎡⎢ ⎤⎥ ⎡⎢ ⎤⎥

∙ ∙

∙

=
+ − >δ δ

δ

( )
C

p p

p

if

if ≤
j

j
u

U

m

U

m

U

m

U

m

U

j
u

U

m

U

m

U

eq

anc
bsc

anc

H j

j

H j E i i H j E i i

H j

j

H j E i i

,
anc

,
bsc

,
bsc

,
bsc

,
bsc

,
anc

,
bsc

,
bsc

(14)

= +( )z N C C
C

t
·j j j

j
lot
yr cons lab

eq

dep
(15)

4.3 | Determination of biological
parameters

Human mesenchymal stem cells were cultured on CELLstart substrate

(Gibco, Waltham, MA USA) in StemPro serum‐free media (Gibco,

Waltham, MA USA). Conditioned media were sampled at reported time

points, clarified of cellular debris and apoptotic bodies by centrifugation

at 500 rcf for 10 min followed by 2000 rcf for 20 min, and finally

analyzed for particle concentration using nanoparticle tracking analysis

(NanoSight NS300, Malvern, UK). Since cell‐free controls demonstrated
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that CELLstart and StemPro do not contain nor release measurable

particles, all measurable particles in the conditioned media were

deemed as EVs. Doubling time of cell expansion was calculated using

seeding and harvest densities, and the duration between seeding and

harvest (Supplementary Figure 6). When cell and EV numbers from

different donors and culture conditions were fitted into Equation 3, the

average R2 was 0.83 ± 0.081.
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