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A competing-risk-based score 
for predicting twenty-year risk 
of incident diabetes: the Beijing 
Longitudinal Study of Ageing study
Xiangtong Liu1,2, Zhenghong Chen3, Jason Peter Fine4,5, Long Liu1,2, Anxin Wang1,2,  
Jin Guo1,2, Lixin Tao1,2, Gehendra Mahara1,2, Kun Yang1,2, Jie Zhang1,2, Sijia Tian1,2,  
Haibin Li1,2, Kuo Liu1,2, Yanxia Luo1,2, Feng Zhang1,2, Zhe Tang6 & Xiuhua Guo1,2

Few risk tools have been proposed to quantify the long-term risk of diabetes among middle-aged 
and elderly individuals in China. The present study aimed to develop a risk tool to estimate the 20-
year risk of developing diabetes while incorporating competing risks. A three-stage stratification 
random-clustering sampling procedure was conducted to ensure the representativeness of the Beijing 
elderly. We prospectively followed 1857 community residents aged 55 years and above who were free 
of diabetes at baseline examination. Sub-distribution hazards models were used to adjust for the 
competing risks of non-diabetes death. The cumulative incidence function of twenty-year diabetes 
event rates was 11.60% after adjusting for the competing risks of non-diabetes death. Age, body mass 
index, fasting plasma glucose, health status, and physical activity were selected to form the score. 
The area under the ROC curve (AUC) was 0.76 (95% Confidence Interval: 0.72–0.80), and the optimism-
corrected AUC was 0.78 (95% Confidence Interval: 0.69–0.87) after internal validation by bootstrapping. 
The calibration plot showed that the actual diabetes risk was similar to the predicted risk. The cut-off 
value of the risk score was 19 points, marking mark the difference between low-risk and high-risk 
patients, which exhibited a sensitivity of 0.74 and specificity of 0.65.

Diabetes is a well-recognized cause of premature death and disability and is associated with an increased risk of 
kidney failure, cardiovascular disease, lower-limb amputation and blindness1. Diabetes was directly responsible 
for 1.5 million deaths and 89 million disability-adjusted life years in 2012. The prevalence of diabetes is increas-
ing in all populations worldwide, and at a particularly accelerated rate in low- and middle-income countries2. 
China has had the largest absolute disease burden because of its large population base3. The financial costs of 
diabetes-related health expenditures also pose a substantial burden on the nation’s economy. Older adults are one 
of the fastest growing age groups both worldwide and in Beijing city4. By the end of 2008, the total population of 
Beijing had reached 12.3 million, with the number of people aged over 60, over 65, and over 80 years being 2.18, 
1.62, and 0.29 million, representing 17.7%, 13.2%, and 2.4% of the total population, respectively5.

However, the test generally used to identify high-risk subjects, the 2-hour oral glucose tolerance test, is limited 
by its invasive and time-consuming nature and its relatively high costs6. Blood glucose has a large random vari-
ation and only provides information on a subject’s current glycemic state. In the past few years, researchers have 
been able to construct multivariable risk tools that are intended to aid clinicians in conducting risk assessments. 
The application of risk assessment tools to screen high-risk subjects based on demographic and anthropometric 
characteristics and simple laboratory tests is both feasible and economical7.
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There are a number of risk assessment tools based on readily available clinical variables that predict the devel-
opment of new diabetes cases, including ones proposed by the Framingham Offspring study8, Rancho Bemardo 
study9, and Guangzhou Biobank Cohort study10. The available tools have been derived from European7,8,11–13, 
American6,8,9,14, Australian15, Brazilian16, Africa17, and Asian10,18–21 populations. Differences in ethnicities, loca-
tions, and lifestyles partly limit the applicability of some of the effective risk scores to the Chinese population. 
Despite the large number of risk tools being developed, only a very small minority are designed for middle-aged 
and older Asian populations, Chinese populations in particular8,10. In addition, few diabetes risk prediction mod-
els included health status, despite the fact that some studies have confirmed that health status is an important dia-
betes predictor22. Furthermore, current diabetes risk prediction algorithms were developed for 10-year periods or 
less. The increasing life expectancy and elderly population suggest the need for longer-term risk assessment tools.

Additionally, conventional statistical methods that analyse time-to-event data assume an absence of com-
peting risks23. However, competing risks must be explicitly considered explicitly in frail populations, especially 
among the elderly24. Ignoring the presence of competing risks can bias estimates of the incidence of the event 
of interest upwards24–26. Specifically, the sum of the estimates of each event type’s incidence will exceed the esti-
mates of the incidence of the composite outcome, defined as any of the event types25. To overcome this prob-
lem, sub-distribution hazards models (e.g., Fine-Gray model) were proposed, in which the cumulative incidence 
function (CIF) is provided to estimate the incidence of an event while accounting for the presence of competing 
events25. Sub-distribution hazards models permit one to assess the association of predictors on the absolute risk 
of DM as well as to calculate the absolute risk of DM conditionally on those predictors. Sub-distribution hazards 
models are being increasingly applied to predict diseases26,27. However, to the best of our knowledge, no algorithm 
has been proposed that quantifies the 20-year risk of diabetes among middle-aged and elderly individuals using 
a sub-distribution hazards model.

In this report, we develop a risk tool for estimating the 20-year risk of developing diabetes among middle-aged 
and elderly individuals who are free of diabetes at baseline. Our risk estimates enable an adjustment for the 
competing risk of non-diabetes death, and simultaneously include lifestyle behaviours, psychological factors, 
cognitive function and physical conditions simultaneously. The tool is based on the Beijing Longitudinal Study 
on Ageing, which has contributed to the development of a 10-year risk score algorithm for coronary artery disease 
using a sub-distribution hazards model27, and offers 20 years of rigorous surveillance data for diabetes occurrence.

Results
Baseline Characteristics and Follow-up. We followed 1857 participants who did not have diabe-
tes at baseline for a median 10.9 (Interquartile range: 8.0–15.3)-years period. The average age at baseline was 
69.00 ±  8.81 years for women and 69.88 ±  8.55 years for men at baseline. At the end of year 2012, there were 
144 documented cases of incident diabetes, and 919 deaths from non-diabetes. Approximately 4.7% of the par-
ticipants were lost to -follow-up (n =  87). The incidence density of diabetes was 7.908/1000 person-years. The 
cumulative incidence function (CIF) of incident diabetes was 11.60% after adjusting for the competing risks 
of non-diabetes deaths. There were differences between the incident diabetes and non-diabetes groups in the 
baseline distribution of age, disability, marital status, self-assessment of health status, blood lipids, and physical 
exercise (P <  0.05) (Table 1). The baseline characteristics of the subjects based on non-diabetes and diabetes 
events for men and women at the baseline are also provided in Table 1. The sensitivity analysis showed that there 
were no statistically significance differences in the distribution of baseline characteristics between those lost to 
follow-up and those retained.

Diabetes Risk Prediction Model. Univariate analyses were used to regress the sub-distribution hazard of 
diabetes incidence on all twelve candidate variables, and the estimated regression coefficients, estimated regres-
sion sub-hazard ratios, estimated 95% confidence intervals, and the statistical significance of the estimated regres-
sion coefficients are reported in Table 2. After accounting for competing risk events in the risk set, standard 
diabetes risk factors (female gender, age, overweight/obesity, IFG, poor self-assessment of health, divorced or 
single, and high blood lipids) were significant in the univariate analysis (P <  0.05). Then, all significant variables 
in the univariate analyses were entered into the multivariate prediction model; five variables were retained after 
backward selection (Table 2). In the multivariate prediction model, after all adjustments, a greater risk of diabetes 
incidence was associated with impaired FPG (SHR =  1.99, 95% CI =  1.37–2.90), poor self-assessment of health 
(SHR =  1.73, 95% CI =  1.19–2.51), overweight (SHR =  2.15, 95% CI =  1.44–3.21) or obesity (SHR =  1.96, 95% 
CI =  1.27–3.03), and less physical activity (SHR =  1.39, 95% CI =  1.01–1.91). The bootstrap-adjusted regression 
coefficients, SHR and score of the sub-distribution hazards model are presented in Table 3.

Calibration, Discrimination, Reclassification, and Internal Validation. The calibration plot of 
the sub-distribution hazards model showed good calibration (Hosmer-Lemeshow test, chi-square =  4.544, P 
value =  0.805), and the actual diabetes risk in the BLSA cohort was similar to the predicted risk (Fig. 1). The 
sub-distribution hazards model performed better in terms of discrimination and calibration than Cox propor-
tional hazards model. The area under the ROC curve (AUC) value were 0.76 (95% CI: 0.72–0.80) and 0.73 (95% 
CI: 0.69–0.77) for the sub-distribution hazards model and Cox proportional hazards model, respectively (Fig. 2). 
The AUC values of the sub-distribution hazards model were better than those of the Cox proportional hazard 
model at t =  20 years (Z =  4.30, P =  0.00002). The difference value of AUCs between sub-distribution and Cox pro-
portional hazard models were more than zero (P =  0.307) (Fig. 3). After internal validation by bootstrapping, the 
optimism-corrected AUC of the sub-distribution hazards model at t =  20 years was 0.78 (95% CI: 0.69–0.87), and 
the optimism-corrected AUC of the Cox proportional hazard model at t =  20 years were 0.74 (95% CI: 0.65–0.84),  
suggesting a well-validated model.
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Additional value of self-rated health. The additional variable self-rated health was assessed by the paired 
difference of risk scores. The empirical distribution function of the change in estimated risk scores for subjects 
who had events (thick solid line) and those who were event-free (thin solid line) was assessed (Fig. 4). The differ-
ence between the areas under the two curves is IDI, and the distances between the two black dots and between 
the two grey dots represent the continuous NRI and median improvement, respectively. The estimations of IDI 
and NRI were 0.019 (95% CI: 0.002–0.054; P =  0.024) and 0.124 (95% CI: 0.032–0.236; P =  0.028), respectively, 
at t =  20 years. The median increment in the risk score after including self-rated health status in the prediction 
model was − 0.002 (95% CI: − 0.008–0.005; P =  0.351) at t =  20 years.

Diabetes Risk Score Tool. Finally, we developed a simple risk score tool to estimate the 20-year diabetes risk 
for each individual using the baseline cumulative incidence function and the bootstrap-adjusted regression coeffi-
cients of the sub-distribution hazards model (Table 4). The score ranges from − 4 to 38, and is positively related to 
the predicted risk of developing diabetes by linear regression (P for trend <  0.001). The competing-risk-based score 

Characteristic

Total (n = 1985) Men (n = 925) Women (n = 932)

Diabetes 
(%)

Non-diabetes 
(%) P

Diabetes 
(%)

Non-
diabetes (%) P

Diabetes 
(%)

Non-
diabetes (%) P

sex 0.042 — — — — — —

 men 60 (6.49) 865 (93.51)

 women 84 (9.01) 848 (90.99)

age-group < 0.001 < 0.001 < 0.001

 55–65 93 (13.92) 575 (86.08) 40 (11.49) 308 (88.51) 53 (16.56) 267 (83.44)

 66–75 39 (5.76) 638 (94.24) 17 (4.90) 330 (95.10) 22 (6.67) 308 (93.33)

 > = 76 12 (2.34) 500 (97.66) 3 (1.30) 227 (98.70) 9 (3.19) 273 (96.81)

marital status 0.001 0.023 0.015

 divorced or single 30 (4.88) 585 (95.12) 11 (3.77) 281 (96.23) 19 (5.88) 304 (94.12)

 married 114 (9.18) 1128 (90.82) 49 (7.74) 584 (92.26) 65 (10.67) 544 (89.33)

self-rated of health 0.015 0.77 0.002

 not health 36 (11.04) 290 (88.96) 12 (6.98) 160 (93.02) 24 (15.58) 130 (84.42)

 health 108 (7.05) 1423 (92.95) 48 (6.37) 705 (93.63) 60 (7.71) 718 (92.29)

fasting plasma glucose < 0.001 0.002

 impaired 35 (13.62) 222 (86.38) 0 0 35 (13.62) 222 (86.38)

 normal 109 (6.81) 1491 (93.19) 60 (6.49) 865 (93.51) 49 (7.26) 626 (92.74)

blood lipid 0.001 0.072 0.009

 abnormal 49 (11.48) 378 (88.52) 18 (9.33) 175 (90.67) 31 (13.25) 203 (86.75)

 normal 95 (6.64) 1335 (93.36) 42 (5.74) 690 (94.26) 53 (7.59) 645 (92.41)

blood pressure 0.854 0.990 0.869

 abnormal 70 (7.87) 819 (92.13) 28 (6.50) 403 (93.50) 42 (9.17) 416 (90.83)

 normal 74 (7.64) 894 (92.36) 32 (6.48) 462 (93.52) 42 (8.86) 432 (91.14)

education level 0.087 0.089 0.572

 college or above 66 (6.75) 912 (93.25) 28 (5.29) 501(94.71) 38 (8.46) 411 (91.54)

 high school or below 78 (8.87) 801 (91.13) 32 (8.08) 364 (91.92) 46 (9.52) 437 (90.48)

body mass index 0.187 0.988 0.133

 thin 37 (10.16) 327 (89.84) 11 (6.92) 148 (93.08) 26 (12.68) 179 (87.32)

 normal 69 (6.68) 964 (93.32) 35 (6.31) 520 (93.69) 34 (7.11) 444 (92.89)

 overweight 20 (8.13) 226 (91.87) 7 (6.31) 104 (93.69) 13 (9.63) 122 (90.37)

obesity 18 (8.41) 196 (91.59) 7 (7.00) 93 (93.00) 11 (9.65) 103 (90.35)

area 0.322 0.139 0.631

 mountain 29 (9.86) 265 (90.14) 20 (9.26) 196 (90.74) 9 (11.54) 69 (88.46)

 rural 36 (7.68) 433 (92.32) 18 (6.34) 266 (93.66) 18 (9.73) 167 (90.27)

 urban 79 (7.22) 1015 (92.78) 22 (5.18) 403 (94.82) 57 (8.52) 612 (91.48)

diet 0.167 0.463

 balanced 55 (8.97) 558 (91.03) 17 (6.88) 230 (93.12) 0.248 38 (10.38) 328 (89.62)

 middle status 63 (6.61) 890 (93.39) 26 (5.36) 459 (94.64) 37 (7.91) 431 (92.09)

 extra serving of meat 26 (8.93) 265 (91.07) 17 (8.81) 176 (91.19) 9 (9.18) 89 (90.82)

physical activity 0.012 0.114 0.026

 not frequently 73 (9.63) 685 (90.37) 33 (7.89) 385 (64.82) 40 (11.76) 300 (88.24)

 frequently 71 (6.46) 1028 (93.54) 27 (5.33) 480 (35.18) 44 (7.43) 548 (92.58)

Table 1.  Baseline characteristics between participants of incident diabetes and non-diabetes from the 
BLSA study. P values were based on two-independent sample chi-square test.
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exhibited a reasonable sensitivity of 0.74 and specificity of 0.65, with an optimal cut-off value of 19 marking the 
difference between low-risk and high-risk patients at t =  20 years.

Discussion
Using a community-based sample with a 20-year follow-up, we have constructed a multivariable risk factor algo-
rithm applying a competing risk model that can be used to predict an individual’s risk and provides a helpful 
guide to identifying the groups at high risk for diabetes among adults over 55 years of age. To the best of our 
knowledge, this is the first community-based diabetes prediction model considering competing risk to be devel-
oped for an elderly population in China.

In terms of discrimination and calibration, the competing risk model is superior to Cox proportional hazard 
model. The competing risk analysis and Cox proportional hazard model may show no relevant differences when 
the mortality rate is low. From a statistical perspective, these models are not comparable, as they model different 
endpoints (cumulative incidence versus cause specific hazard). The present study extends and expands on the 
previous general diabetes risk models by adding a new risk factor, and the prediction model including self-rated 
health status was superior to the model without it. A user-friendly risk score tool predicting the 20-year proba-
bility of diabetes was developed.

Currently, the Finnish Diabetes Risk Score (FINDRISK)7, Framingham DM risk score8, Cambridge Diabetes 
Risk Score11, and German Diabetes Risk score13 are the most widely used scores in clinical guidelines. In addi-
tion, there are a number of other important risk algorithms or functions28. However, a prediction model spe-
cifically designed for the risk of incident diabetes in the Chinese elderly population is not currently available, 
especially one considering the competing risk. Our risk prediction model provided a feasible tool for identifying 
the high-risk individuals among the elderly in Beijing.

To the best of our knowledge, this is the first community-based diabetes prediction model considering com-
peting risk that has been developed for the elderly population in China. It should be emphasized is that the gen-
eral model evaluation methods are not applicable for competing risk models, calibration plots, net reclassification 
index (NRI), and integrated discrimination improvement (IDI) were calculated, and these values were adjusted 
for the competing risk of non-diabetes death.

The AUCs of previous diabetes risk scores for elderly adults ranged from 0.71 to 0.78 in their original 
population9,10. Our score based on the competing risk model showed a moderately high AUC value of 0.76  
(95% CI: 0.72–0.80). Of note, a model with an AUC value less than 0.80 for predicting incident diabetes 
may have limited clinical utility. However, all predictors included in our scores are readily available clinical 

Characteristic

Univariate analyses
Multivariate analyses (forward 

selection)

SHR (95 CI) Coefficient P SHR (95 CI) Coefficient P

gender (men)

 women 1.50(1.08–2.08) 0.41 0.015 — — —

age-group, y

 ≥ 76 Ref. Ref. — Ref. Ref.

 55–65 5.48 (3.01-10.00) 1.70 < 0.001 4.37 (2.36-8.10) 1.48 < 0.001

 66–75 2.32 (1.21-4.43) 0.84 0.011 1.98 (1.02-3.83) 0.68 0.043

body mass index, (kg/m2)

 18.0-23.9 Ref. Ref. — Ref. Ref.

 < 18.0 0.60 (0.33–1.06) − 0.52 0.077 0.64 (0.36-1.14) − 0.44 0.131

 24.0–27.9 2.58 (1.73–3.85) 0.95 < 0.001 2.15 (1.44–
3.21) 0.76 < 0.001

 ≥ 28.0 2.35 (1.52–3.63) 0.86 < 0.001 1.96 (1.27–
3.03) 0.68 0.002

fasting plasma glucose (normal)

 6.1–7.0 2.12 (1.46–3.08) 0.75 < 0.001 1.99 (1.37–
2.90) 0.69 < 0.001

self-rated health (healthy)

 unhealthy 1.57 (1.09–2.29) 0.45 0.017 1.73 (1.19–
2.51) 0.55 0.004

Physical activity (frequently)

 not frequently 1.36 (1.00–1.96) 0.31 0.059 1.39 (1.01–
1.91) 0.33 0.047

marital status (married)

 divorced or single 1.82 (1.22–2.71) 0.60 0.003 — — —

blood-lipid (normal)

 high 1.75 (1.24–2.46) 0.559 0.001 — — —

Table 2.  Beta coefficients and HRs (95%CI) from sub-distribution hazards model based on the BLSA 
study.
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variables. If further predictors related to blood test results were included, the scores would likely show an 
improved performance.

In our score based on the competing risk model, age is the strongest predictor of incident diabetes (a contri-
bution of 15 points). Individuals aged 55 to 65 years have the highest risk of developing diabetes in our scores 
(accounting for 39.47% of the total score based on the competing risk model), followed by individuals aged rang-
ing from 66 to 75 years. Similarly results were found in the Guangzhou Biobank Cohort Study (GBCS), which was 
a 4.1-year population-based follow-up of 16,043 Chinese aged 50 years or above10.

BMI is the second-strongest predictor in our scores, and has been included in most of the published scores 
used to predict incident diabetes10. In our scores, the FPG variable is the third-strongest predictor after BMI 
(a contribution of 7 points). This result is roughly consistent with previous reports9. The value representing 
impaired fasting glucose (IFG) has been defined to be from 6.1 to 6.9 mmol/L. It is unsurprising that indi-
viduals with IFG have a high risk of developing diabetes. The risk of incident diabetes increased with high 
FPG levels.

Physical activity is also an important predictors of incident diabetes, and environmental pathways may be able 
to account for this relationship13. It has been demonstrated that interventions that include increases in physical 
activity are able to reduce the incidence of diabetes in high risk adults29,30. Another reason for this finding is that 
participants who frequently exercise are more likely to be aware of their blood glucose levels than people who 
never or rarely exercise.

We are the first to include self-rated health status in a diabetes prediction score. The competing-risk-based 
score included the self-rated health status and was assigned 6 points. Self-rated health (SRH) is a reflection of 
social, psychological, and biologic dimensions; it is one of the most widely used yet poorly understood measures 
of health31. In the present study, SRH was based on individuals’ assessment of their health status compared with 
that of peers their age. Similar to our results, SRH scores provide additional valuable information for risk predic-
tion in patients with diabetes32, and it has also been recommended as a tool for assessing cardiovascular disease 
risk assessment33. Thus, diabetes guidelines should extend their focus on clinical and social aspects of diabetes to 
include questions on patient’s SRH34.

There were some limitations to our study. First, we did not included waist circumference. However, the 
Guangzhou Biobank Cohort Study showed that using waist circumference or waist-to-hip ratio instead of 
BMI did not substantially improve the discrimination substantially10. Second, due to the long-term follow-up, 
follow-up biases could easily have been introduced. However, the sensitivity analysis showed that there were no 
statistically significant differences in the distribution of baseline characteristics between those lost to follow-up 
and those who remained in the study. In addition, because cases of diabetes were identified through reexamina-
tion and questionnaires, diabetes onset occurred prior to diagnosis.

Conclusion
We constructed a multivariable risk score using a community-based sample with a 20-year follow-up that can be 
used to predict an individual’s risk for diabetes among adults over 55 years of age. To the best of our knowledge, 
this is the first community-based diabetes risk score to consider competing risk developed for an elderly popula-
tion in China. Further studies are needed to test this score in other population samples of China.

Characteristic SHR (95 CI) Coefficient P Score

Age-group, y

 ≥ 76 Ref. Ref. — 0

 55–65 4.37 (2.34–8.18) 1.48 < 0.001 15

 66–75 1.98 (0.99–3.95) 0.68 0.054 7

Body mass index, (kg/m2)

 18.0–23.9 Ref. Ref. — 0

 < 18.0 0.64 (0.36–1.15) − 0.44 0.134 − 4

 24.0–27.9 2.15 (1.40–3.28) 0.76 < 0.001 8

 ≥ 28.0 1.96 (1.24–3.01) 0.68 0.004 7

Fasting plasma glucose

 normal Ref. Ref. — 0

 IFG 1.99 (1.32–3.01) 0.69 0.001 7

Self-rated health

 healthy Ref. Ref. — 0

 unhealthy 1.73 (1.18–2.54) 0.55 0.005 6

Physical activity

 frequently Ref. Ref. — 0

 not frequently 1.39 (0.99–1.95) 0.33 0.060 3

Table 3.  Bootstrap-adjusted beta coefficients and SHRs (95%CI) from sub-distribution hazards model and 
risk scores for predicting incident diabetes based on the BLSA study.
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Methods
The BLSA study. According to the 10% sampling data from Beijing in China’s fourth census, a three-stage 
stratification (i.e., natural living environment, education level and degree of ageing) random-clustering sampling 
procedure was conducted to ensure the representativeness of the elderly population in Beijing35. The communi-
ties included were located in Huairou district, Daxing district, and Xuanwu district, which are representative of 
the northern, middle and southern region of Beijing, respectively. Periodic health examinations were performed 
every 2–3 years (in year 1992, 1994, 1997, 2000, 2004, 2007, 2009 and 2012) and included questionnaire inter-
views, anthropometric measurements, clinical examinations, and laboratory assessments. We used complete data 
for the period from 1992 to 2012 in the study. A community-based cohort of 2101 people (1037 men and 1064 
women, 55–96 years old) were recruited for the BLSA (Beijing Longitudinal Study on Ageing) from August 1992 

Figure 1. Calibration plots by deciles for diabetes prediction models of 20-year risk, adjusted for the competing 
risk of non-d1iabetes death: (a) the bar plot; (b) the line plot.

Figure 2. ROC curves for diabetes risk prediction model. 
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Figure 3. Differences curves of AUCs for 2 diabetes risk prediction models. 

Figure 4. The additional value of self-assessment of health as assessed by the paired difference of risk scores 
at t = 20 years. 

Deciles of points
20-year risk estimate 

(%) No. of participants (%)

− 4~− 1 0.25 108 (5.82)

0~3 0.48 158 (8.51)

3~7 0.88 202 (10.88)

7~10 1.74 236 (12.72)

10~13 2.81 188 (10.13)

13~15 3.82 162 (8.73)

15 ≤  17 5.06 219 (11.80)

17~20 7.03 198 (10.67)

20~24 8.79 180 (9.70)

24~38 16.41 205 (11.05)

P for trend < 0.001

Table 4.  The risk score tool for diabetes using sub-distribution hazards model based on the BLSA study.
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to December 2012, and this study was managed by Xuanwu Hospital of Capital Medical University in Beijing, 
China. In total, 244 subjects were excluded because of they had either a baseline FPG level higher than 7.0 mmol/L 
(126 mg/dl) or a history of diabetes (as informed by a physician) or because they were taking antidiabetic medi-
cine. This left 1857 participants (925 men and 932 women) who did not have diabetes at baseline for the analysis.

The study followed the guidelines of the Helsinki Declaration and was approved by the ethics committee of 
Xuanwu Hospital, Capital Medical University. Written informed consent was obtained from all participants.

Assessment of risk factors and outcomes. The candidate baseline variables presented in Table 1 were 
chosen for their common availability and use in previous diabetes prediction models. The demographic charac-
teristics and information on dietary habits, lifestyle, psychological factors and physical condition were obtained 
using questionnaires with a high degree of reliability and accuracy36; the questionnaires were administered by 
hospital research doctors of the hospitals who were specifically trained for the job. The questionnaires were 
designed by the Beijing Geriatric Clinical and Research Centre and the Australian Geriatric Research Centre of 
Flinders University. The measurement and classification of each category variable have been reported elsewhere 
in detail35.

A food frequency questionnaire was conducted for the dietary assessment37. Then, a latent class model was 
constructed and the best model was selected according to the value of the Bayesian information criterion. Based 
on the posterior probability (representing the frequency of food intake), dietary habits were divided into three 
latent groups: sufficient nutrition, intermediate-type and meat-based diet. Self-reported smoking, drinking, res-
idence, and health status and the frequency of physical activity were evaluated by questionnaires with a high 
degree of reliability and accuracy. If the elderly exercised almost every day, this was defined as exercising fre-
quently. The activities included Qi Gong, TaiChi, walking, running/jogging, dancing, etc.

Age was categorized into three sub-groups: 55 to 65 years, 66 to 75 years, and ≥ 76 years. Marital status was 
divided into two categories: married and unmarried. Height, weight, hip circumference, and waist circumference 
(2.5 cm above the umbilicus) were measured in the standing position without heavy clothing to the nearest 0.1 cm 
or 0.1 kg by nurses who were responsible for annual routine health examinations. BMI was calculated according to 
the equation BMI =  weight (kg)/height (m)2 and was classified based on the common Chinese criteria38, i.e., thin 
corresponding to BMI <  18.5 kg/m2, normal to 18.5 ≤  BMI <  24.0 kg/m2, overweight to 24.0 ≤  BMI <  28.0 kg/m2, 
and obese to BMI ≥  28.0 kg/m2.

Blood pressure (BP) was measured twice on the left arm of the seated participants with a mercury sphygmo-
manometer and an appropriately sized cuff; the average of the blood pressure measurements was constituted 
the examination blood pressure value. The two BP measurements were obtained with a 5-minute interval. If the 
two measurements differed by more than 5 mmHg, an additional reading was taken, and the final, average of the 
readings was used for the analysis. BP was classified into two groups: high (systolic blood pressure > 140 mmHg 
or diastolic blood pressure > 90 mmHg) and normal blood pressure.

Blood samples were collected after an overnight fast of at least 12 hours. FPG (Fasting plasma glucose), total 
cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein 
cholesterol (LDL-C) were subsequently determined with standardized enzymatic methods. Based on the stand-
ard of impaired FPG and dyslipidaemia, a FPG level of 6.1 to 6.9 mmol/L (109.8–125.9 mg/dl) was considered 
to impaired fasting glucose (IFG)39. A TC level of 5.18 mmol/L (200 mg/dL) or greater, a TG level of 1.7 mmol/L 
(150 mg/dL) or greater, a HDL-C level less than 1.03 mmol/L (40 mg/dL) in men and 1.29 mmol/L (50 mg/dL) in 
women, or an LDL-C level of more than 3.35 mmol/L (130 mg/dL) were considered to indicate dyslipidemia40.

The outcome of interest was the first incidence of diabetes at follow-up. This was identified according to either 
a self-reported history of diabetes diagnosis, or the use of antidiabetic medicine after the baseline examination, 
or a measured FPG level ≥  7.0 mmol/L (126 mg/dl) at any of the periodic examinations. The date of diagnosis 
(incidence) was defined as the date of the examination visit when a new case of diabetes was identified or the 
diagnosis date on the most recently documented diabetes history collected by the questionnaire, whichever came 
first. Survival status was determined through interviews with surviving household members or neighbours when 
surviving household members were unavailable. The information was verified by a subset of participants based 
on household registration records. Cause of death was determined according to the International Classification 
of Disease (ICD), ninth revision (ICD-9 or ICD-10). Non-diabetes death, including from cardiovascular diseases, 
cancers and other causes, was classified as competing events.

Statistical Analysis. Time of follow-up was calculated from the return date of the 1992 questionnaire 
until either incidence of diabetes, death, loss to follow-up, or the end of follow-up (December 2012), whichever 
came first. Considering the extensive length of the follow-up and the potential bias due to the competing risk 
of non-diabetes mortality, we employed a sub-distribution hazards model to adjust for the risk estimates of the 
competing risk of non-diabetes death as a competing risk25. The sub-distribution hazards model calculated the 
cumulative incidence of diabetes in the following manner:

∑ λ=
<

−
� �ˆCIF t S t(20) ( ) ( )

(1)t
i i

20
1

i

In equation (1), the quantities under summation denote the instantaneous hazard of diabetes at event time ti 
and the survival rate from non-diabetes death past event time ti−1.

Sub-distribution hazards models were fitted to predict the risk of developing diabetes using package cmprsk 
and package crrstep in R software, which adjusted for clinical and biochemical variables. In the first step, uni-
variate sub-distribution hazards models were used to regress the sub-distribution hazard of diabetes incidence 
on all nineteen candidate variables, and the variables with a statistical significance of the estimated regression 



www.nature.com/scientificreports/

9Scientific RepoRts | 6:37248 | DOI: 10.1038/srep37248

coefficients of P >  0.20 were removed. Then, all significant variables were included to develop the multivari-
ate prediction model with backward selection. In the third step, the remaining variables were included to build 
the final prediction model. For each model, sub-distribution hazard ratio (SHRs) and 95% confidence intervals  
(95% CIs) were calculated to estimate the relative risk.

Self-rated health is an important risk factor for diabetes, as confirmed in some studies22,41. However, no dia-
betes risk prediction models considered the impact of self-assessed of health status. Therefore, the diabetes risk 
prediction model in this study accounted for self-assessment of health status. We did not account for the interac-
tion terms between the independent variables. All continuous variables included in the model were categorized, 
and thus the estimated contribution of these factors to diabetes risk could be expressed through simplified point 
scores assigned to each for the category. In addition, β -coefficients were calculated to determine points for each 
risk factor by multiplying the β -coefficients by 10 and rounding to the nearest integer. The sum of these points for 
each model was further calculated to predict the hazard of the incidence of diabetes over a mean follow-up period 
of 9.81 years for each person.

After the prediction models were developed, it was critical to evaluate their performance. The receiver oper-
ating characteristic (ROC) curve and areas under the ROC curves (AUCs, also referred to as C statistics) were 
used to evaluate the discriminative ability of the sub-distribution hazards models42 and were obtained by the 
ROCR package in R (R Foundation for Statistical Computing, Vienna, Austria)43. The cut-off point was estimated 
by calculating the value that minimizes the Euclidean distance between the ROC curve and the upper left corner 
of the graph. The calibration of the model was assessed graphically by comparing the predicted probability of 
the observed probability across the 10 deciles of predicted risk44, which was performed with the R package pec. 
Calibration refers to the agreement between observed outcomes and predictions. The more range there is between 
10 deciles, the better discriminating the model. Hosmer-Lemeshow test was used to indicate the goodness of fit.

Additionally, internal validation was supported by estimating the potential of over- fitting and the optimism 
of the models45, which was performed by applying bootstrap resampling 1000 times with R package pROC. 
The bootstrap optimism-corrected AUC was computed by subtracting the optimism from the original AUC. 
Bootstrap-adjusted regression coefficients better reflect what can be expected when the model is tested or applied 
in new individuals from the same theoretical source population45. However, no internal validation methods can 
substitute for external validation.

Recently, some novel alternatives to the area under the receiver operating characteristic curve, such as net 
reclassification improvement (NRI) and integrated discrimination improvement (IDI), have been proposed46 to 
measure the improvement from the new risk factor in the prediction. The NRI and IDI are two new metrics used 
to the formally assess new risk factors, to supplement the improvement in the AUC, and were assessed using the 
R package of survIDINRI. All p-values reported were two-sided. Two-independent sample chi-square tests were 
in SAS software (Version 9.2, SAS Institute Inc., Cary, NC).
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