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Abstract: Protists are a dominant group in marine microplankton communities and play important
roles in energy flux and nutrient cycling in marine ecosystems. Environmental sequences produced
by high-throughput sequencing (HTS) methods are increasingly used for inferring the diversity and
distribution patterns of protists. However, studies testing whether methods disentangling biological
variants affect the diversity and distribution patterns of protists using field samples are insufficient.
Oligotrich (s.l.) ciliates are one group of the abundant and dominant planktonic protists in coastal
waters and open oceans. Using oligotrich (s.l.) ciliates in field samples as an example, the present
study indicates that DADA2 performs better than SWARM, UNOISE, UPARSE, and UCLUST for
inferring diversity patterns of oligotrich (s.l.) ciliates in the Pearl River Estuary and surrounding
regions. UPARSE and UNOISE might underestimate species richness. SWARM might not be suitable
for the resolution of alpha diversity owing to its rigorous clustering and sensitivity to sequence
variations. UCLUST with 99% clustering threshold overestimates species richness, and the beta
diversity pattern inferred by DADA2 is more reasonable than that of the other methods. Additionally,
salinity is shown to be one of the key factors responsible for variations in the community distribution
of ciliates, but infrequent marine–freshwater transitions occurred during evolutionary terms of
this group.

Keywords: protist; diversity; environmental sequences; salinity; ecological transition

1. Introduction

Protists, single-celled eukaryotes, are widely distributed in soil, marine environments,
and freshwater worldwide and play key roles in energy flux as well as trophic interactions
and nutrient cycling [1–3]. They are a dominant group in marine microzooplankton
communities and act as primary producers, predators, decomposers, and/or parasites in
marine ecosystems [2,4,5]. However, protists with low abundance in a region are easily
ignored in observation in vivo due to their small size and difficulty in identification and
cultivation [6,7]. Foissner [8] assumed that more than a half of the diversity of many protist
groups has not been revealed. Consequently, insufficient sampling of protists in studies
using isolated cells might halt revealing their accurate patterns of diversity, phylogeny,
and transition. Fortunately, rare and cryptic protists could be revealed by high-throughput
sequencing (HTS) with large data output, which provides us a chance to investigate more
accurate diversity and distribution patterns of protists [9–13].
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Considering that both real biological variants (inter-/intra-specific variants) and spu-
rious sequences introduced by sequencing are included in HTS datasets, a method that
disentangles biological variation is one of the main factors affecting the accuracy of down-
stream analyses [14–17]. Nowadays, two sequence grouping approaches are popular for
disentangling biological variations [14]. One is the construction of operational taxonomic
units (OTUs) with different quality filtering and clustering algorithms, e.g., UPARSE [16],
UNOISE [18], UCLUST [19], and SWARM [20]; different clustering thresholds of sequences
have been reported to define OTUs of protists (e.g., 95% in [21]; 97% in [22]; 98% in [23];
99% in [24]). Another is correcting amplicon errors by generating Amplicon Sequence
Variants (ASVs) at single nucleotide resolution, e.g., DADA2 [25]. To our knowledge, many
references focusing on protist diversity based on HTS data are published every year, but
there are only a few studies that compare the effects of different HTS data processing
methods on analyses [17,26,27]. Some studies suggested that DADA2-derived ASVs could
more accurately reproduce a known alpha diversity than SWARM-derived OTUs for ciliate
species [27], and USEARCH and QIIME strongly affected the number of predicted OTUs
but not the biogeographical patterns of protists [26]. Additionally, the numbers of OTUs
varied with the change in clustering thresholds in prokaryotes and protists [28]. Conse-
quently, protist diversity inferred from HTS data is highly affected not only by sequence
grouping approaches but also by clustering thresholds producing OTUs. However, some
questions are still unclear. For instance, testing whether ASVs and/or OTUs affect beta
diversity patterns of protists in real case scenarios using field samples [27].

Oligotrich (s.l.) ciliates are a major group of the abundant and dominant planktonic
protist communities in coastal waters and open oceans [1,29–33]. Salinity gradients of the
Pearl River Estuary (PRE) and surrounding coasts range from 0.1‰ to 32.0‰ [34]. In the
present study, we will explore whether methods disentangling biological variants will
affect the diversity patterns of protists by using oligotrich (s.l.) ciliates collected from this
region as an example. Our aim is to provide suggestions for data analyses in future studies.
Moreover, we investigate the ecological transitions of oligotrich (s.l.) ciliates using both
released sequences of identified species in GenBank and environmental sequences from
this region since expanded taxa sampling has been proven to be beneficial for classifying
transition patterns of ciliates [35].

2. Materials and Methods
2.1. Environmental Sequences of Oligotrich (s.l.) Ciliates

Oligotrich (s.l.) ciliates consist of two subclasses, Oligotrichia and Choreotrichia [36].
The environmental SSU rDNA V4 region sequences were downloaded from GenBank
under the accession number PRJNA646537. The geographic locations of sampling sites and
the salinity of each site in this study are shown in Figure 1. In summary, PRE1–PRE11 are
sampling sites along the flow direction of the Pearl River Estuary (PRE), and sampling sites
DY1–DY5, GZ1–GZ5, SZ1–SZ6, ZH1–ZH5, and ZJ1–ZJ6 are in the sampling areas Daya
Bay (DY), Guangzhou (GZ), Shenzhen (SZ), Zhuhai (ZH), and Zhanjiang (ZJ), respectively.
Among these sampling areas, SZ and DY are located on the eastern side of PRE, ZH and ZJ
are on the western side of PRE, and GZ is in the upper reaches of PRE. The hydrological
and nutritional conditions from the western and eastern sides of PRE are different, and
PRE provides a complex ecosystem with various salinity gradients from the upper to lower
reaches [34]. According to the Venice Salinity Classification System (Source: Limnology and
Oceanography, 1958), the water salinity is classified as freshwater (≤0.5‰, low-brackish
(0.5–18.0‰), high-brackish (18.0–30.0‰), and marine (30.0–40.0‰).
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Figure 1. The location of sampling regions. Sampling areas and their abbreviations are as follows:
Daya Bay (DY1, DY2, DY5), Pearl River Estuary (PRE1–PRE10), Guangzhou (GZ1–GZ5), Shenzhen
(SZ1–SZ4), Zhuhai (ZH1–ZH5), and Zhanjiang (ZJ1–ZJ4, ZJ6). The numbers shown in parentheses
represent the salinity of the sampling sites (unit: ‰), and salinity values of freshwater, low-brackish,
high-brackish, and marine areas are colored in blue, green, orange, and black, respectively. Adapted
with permission from [34] published by John Wiley and Sons, 2022.

To test whether the methods of disentangling biological variants affect diversity
patterns, all downloaded data were processed using five frequently used methods: UP-
ARSE and UNOISE in USEARCH v11.0 [16,18], UCLUST in QIIME v1.9.1 [15,19], SWARM
v3 [20], and DADA2 in QIIME2 v2019.10 [14,25]. In total, six oligotrich (s.l.) datasets, viz.,
UPARSE–97, UNOISE–100, UCLUST–97, UCLUST–99, SWARM–100, and DADA2–100,
were produced from environmental sequences as follows. For datasets UPARSE–97,
UNOISE–100, SWARM–100, UCLUST–97, and UCLUST–99, which produce OTUs, the same
quality filtering protocol was performed in order to only compare differences among clus-
tering algorithms. Briefly, the paired-end reads were merged with FLASH [37] and filtered
with the following settings: sequences of length <200 or >500, average quality <20, ambigu-
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ous bases >0, or homopolymer length >6 were removed using QIIME v1.8.0 [15]. Derepli-
cation and the discarding of singletons were performed by using USEARCH v11.0 [16].
Sequences of UPARSE–97 were clustered into OTUs at the default 97% similarity. Sequences
of UNOISE–100 were denoised into zero-radius operational taxonomic units (ZOTUs),
which are valid OTUs superior to conventional 97% OTUs, using unoise3 with default pa-
rameters [18]. Sequences of SWARM–100 were clustered using SWARM v3 with d = 1 [20]
and subsequently subjected to chimera detection using VSEARCH v2.15.0 [38]. And 97%
and 99% similarity thresholds were set for the UCLUST algorithm as an example to check
whether diversity patterns varied with changes in clustering thresholds, considering that
both of them have been reported to define OTUs of protists [22,24]. For DADA2–100, the de-
multiplexed reads with QIIME2 v2019.10 [25] were filtered and denoised using DADA2 [14]
with “—-p–trunc–len–f” and “—-p–trunc–len–r” parameters set to 240 and 210, respectively.
The sequences of each ASV with one nucleotide difference were produced. For all datasets,
the Silva 138 SSURef database (https://doi.org/10.5281/ZENODO.3891931, accessed on
17 May 2021) was utilized to annotate taxonomic information for each representative se-
quence. After that, only sequences annotated as oligotrich (s.l.) ciliates (similarity > 90%
as in [26]) were kept in each dataset for downstream analyses. We assumed that these
sequences might reflect the abundance and community diversity of oligotrich (s.l.) ciliates
even though these sequences are not biologically realistic. DY3, DY4, PRE11, SZ5, SZ6,
and ZJ5 were deleted from subsequent analyses because fewer than five oligotrich (s.l.)
sequences were detected in these sampling sites by all methods.

In order to explore the diversity patterns of oligotrich (s.l.) ciliates among different
datasets, a Bray–Curtis distance matrix was used to quantify the community dissimilarity.
Hierarchical clustering and Principal Co-ordinates Analysis (PCoA) were performed in
the R platform [39] using the packages “ape” [40] and “vegan” [41]. The sequences of
OTUs/ASVs from different analytical methods were log (x + 1) transformed to improve
normality and homoscedasticity before downstream analysis. Hierarchical clustering was
performed using the “ward.D2” algorithm of the “hclust” function. PCoA was performed
based on the Bray–Curtis dissimilarity, and the “stat_ellipse” (level = 0.95) command
was used to add ellipses by group except DY (too few points to calculate an ellipse) to
visualization results from PCoA. The differences between predefined groups based on
sampling areas were statistically tested by permutational multivariate analysis of variance
(ADONIS) [42] using 1000 permutations.

2.2. Sequence Alignment and Phylogenetic Analyses

All available SSU rDNA sequences (>1000 bp, 191 in total) of identified oligotrich
(s.l.) species as of August 2021, as well as six sequences of the subclass Hypotrichia used
as the outgroup, were downloaded from GenBank (accession numbers in Supplementary
Table S1). The dataset DADA2–100 performed better for inferring diversity patterns of
oligotrich (s.l.) ciliates in the Pearl River Estuary and surrounding regions than other five
datasets due to more reliable alpha diversity and beta diversity (detailed information in
discussion). Hence, the dataset containing 197 identified sequences listed in Supplementary
Table S1 and 103 representative sequences from dataset DADA2–100 were aligned using
the GUIDANCE2 server [43]. The resulting alignment was manually checked in SeaView
v4 [44] for trimming two ends and ambiguous sites.

Maximum likelihood (ML) analyses were carried out using RAxML-HPC2 on XSEDE
on CIPRES Science Gateway (http://www.phylo.org/sub_sections/portal, accessed on
30 August 2021) [45] using the GTRGAMMA model, and support for the best-scoring
ML tree was assessed by 1000 bootstrap replicates. Bayesian inference (BI) analysis was
also performed on CIPRES Science Gateway using MrBayes on XSEDE v3.2.7a, using the
GTR+I+G model, which was selected by jModeltest v2.1.10 [46]. Markov chain Monte Carlo
simulations were run for 10,000,000 generations with four chains. Trees were sampled every
100 generations, and the first 25% of trees were discarded as burn-in. The 50% majority rule
consensus tree was used to calculate the posterior probabilities (PP) for each node. Trees
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were viewed and edited with FigTree v. 1.4.4 [47]. Finally, Mesquite v3.6 [48] was used to
infer the most parsimonious pattern of marine–freshwater transitions of oligotrich (s.l.)
ciliates using the ML tree above.

3. Results
3.1. Diversity Patterns of Oligotrich (s.l.) Ciliates

Since the total number of oligotrich (s.l.) OTUs/ASVs contained in each dataset
varied greatly from 63 (UPARSE–97) to 248 (UCLUST–99) (Table 1), the ratio of oligotrich
(s.l.) OTUs/ASVs number in each sampling area to the total number of oligotrich (s.l.)
OTUs/ASVs within each dataset was also compared (Table 2). The proportions of oligotrich
(s.l.) OTUs/ASVs in each sampling area/site in UPARSE–97 and UNOISE–100 were
generally higher than those in the other four datasets (Table 2 and Supplementary Table S2).
Among the six sampling areas, the largest proportion of oligotrich (s.l.) OTUs/ASVs
was detected in PRE, with largest in UPARSE–97 (71.43%) and lowest in DADA2–100
(45.63%). The lowest proportion of oligotrich (s.l.) OTUs/ASVs was detected in DY
based on DADA2–100 (5.83%), UCLUST–97 (13.46%), and UCLUST–99 (6.85%) (Table 2).
However, the lowest one was detected in SZ based on SWARM–100 (10.95%), UNOISE–100
(13.48%), and UPARSE–97 (15.87%) (Table 2).

Table 1. The number of total and oligotrich (s.l.) OTUs/ASVs in six datasets.

DADA2–100 SWARM–100 UNOISE–100 UPARSE–97 UCLUST–97 UCLUST–99

Number of total
OTUs/ASVs 3890 6656 2915 3095 7613 19,993

Number of
oligotrich (s.l.)
OTUs/ASVs

103 137 89 63 104 248

Table 2. Number and proportion of oligotrich (s.l.) OTUs/ASVs in each sampling area from the six
datasets. The proportions in parentheses indicate the ratio of the oligotrich (s.l.) OTU/ASV number
in each sampling area to the total number of oligotrich (s.l.) OTUs/ASVs within each dataset.

Sampling Areas DADA2–100 SWARM–100 UNOISE–100 UPARSE–97 UCLUST–97 UCLUST–99

DY 6 (5.83%) 17 (12.41%) 14 (15.73%) 15 (23.81%) 14 (13.46%) 17 (6.85%)
GZ 31 (30.10%) 54 (39.42%) 49 (55.06%) 31 (49.21%) 39 (37.50%) 88 (35.48%)
PRE 47 (45.63%) 76 (55.47%) 58 (65.17%) 45 (71.43%) 67 (64.42%) 137 (55.24%)
SZ 8 (7.77%) 15 (10.95%) 12 (13.48%) 10 (15.87%) 16 (15.38%) 30 (12.10%)
ZH 23 (22.33%) 40 (29.20%) 40 (44.94%) 28 (44.44%) 27 (25.96%) 51 (20.56%)
ZJ 32 (31.07%) 63 (45.99%) 46 (51.69%) 32 (50.79%) 45 (43.27%) 110 (44.35%)

The hierarchical clustering analyses show that oligotrich (s.l.) samples grouped into
two major clades in DADA2–100 (Figure 2a). Generally, Clade A consisted of most samples
from sampling areas ZH and GZ, as well as samples of PRE1–PRE4. Clade B contained
most samples from sampling areas ZJ, SZ, and DY, as well as samples of PRE5–PRE10.
Different from the general clustering pattern in DADA2–100 (Figure 2a), samples ZJ1 and
DY5 were far from Clade A and Clade B in SWARM–100, UPARSE–97, and UCLUST–97
(Figure 2b,d,e), and samples ZJ1, DY2, and DY5 were far from Clade A and Clade B in
UNOISE–100 and UCLUST–99 (Figure 2c,f). Additionally, sample PRE5 fell into Clade
A instead of Clade B in UPARSE–97 (Figure 2d). Notably, community structures of ZJ
samples were more similar to each other than to PRE samples in DADA2–100 (Figure 2a).
By contrast, some ZJ samples clustered with PRE samples first and then with other ZJ
samples in all other five datasets (Figure 2b–f).
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Figure 2. Hierarchical clustering analysis of oligotrich (s.l.) community of 32 samples from six
datasets. (a) DADA2–100; (b) SWARM–100; (c) UNOISE–100; (d) UPARSE–97; (e) UCLUST–97;
(f) UCLUST–99. Samples from the same sampling area are indicated by the same color except for
samples from PRE. Samples named PRE1–4 and PRE5–10 are indicated by different colors.

PCoA results showed that oligotrich (s.l.) samples were basically grouped depending
on the six sampling areas (DY, GZ, PRE, SZ, ZH, ZJ), and PRE was divided into two
groups (PRE1–PRE4, PRE5–PRE10) (Figure 3). ADONIS results supported the significant
(p < 0.001) differentiations of community structures among these seven groups based on
all six datasets (Figure 3). Consistent with the hierarchical clustering results (Figure 2),
samples of PRE1–PRE4 were clearly separated from those of PRE5–PRE10, ZJ, SZ, and DY
in all six datasets (Figure 3). However, for DADA2–100, samples of PRE1–PRE4, ZH, and
GZ tended to group together and were separated from other sampling sites (Figure 3a).
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Figure 3. The distributions of oligotrich (s.l.) communities from six datasets ((a). DADA2–100;
(b). SWARM–100; (c). UNOISE–100; (d). UPARSE–97; (e). UCLUST–97; (f). UCLUST–99) based
on Principal Co-ordinates Analysis (PCoA). Samples from the same sampling area are indicated by
the same color except for samples from PRE. Samples named PRE1–4 and PRE5–10 are indicated
by different colors. The ellipses represent 95% confidence intervals except for DY (too few samples
to calculate an ellipse). P represents global significance among oligotrich (s.l.) communities from
different sampling areas based on ADONIS. p values < 0.05 indicate significant differences among
community structures.

3.2. Phylogeny and Transition Patterns of Oligotrich (s.l.) Ciliates

To investigate the ecological transition patterns of oligotrich (s.l.) ciliates, a phyloge-
netic tree including 197 sequences from identified species (Supplementary Table S1) and
103 ASVs from dataset DADA2–100 was constructed (Figure 4), as DADA2–100 yielded
more reliable diversity patterns of oligotrich (s.l.) ciliates in the Pearl River Estuary and
surrounding regions than the other five datasets. Monophyly of the subclass Choreotrichia
was supported by high support (98% ML, 1.00 BI), but that of subclass Oligotrichia was not.
In the phylogenetic trees, crown clades usually contained identified oligotrich (s.l.) species
and ASVs from various habitats. Though most ASV groups had identified species, some
ASVs formed isolated clades (Clade 1, Clade 2 in Figure 4) without identified species. This
indicates that oligotrich (s.l.) diversity in low-brackish habitats might have been underes-
timated in previous morphological investigations. Transition pattern analyses showed a
high-brackish ancestor for oligotrich (s.l.) ciliates (Figure 4). The subclass Choreotrichia
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appeared to have evolved from the high-brackish ancestor with high support values (98%
ML, 1.00 BI), with some transitions to freshwater, low-brackish, and marine areas and even
back to high-brackish for some species (e.g., Tintinnopsis radix and Leprotintinnus nordqvisti)
(Figure 4). By contrast, the subclass Oligotrichia seemed to be derived from an equivocal
ancestor with poor support values (ML < 50%, BI < 0.50), with some transition to freshwater,
low brackish, high-brackish, and marine areas and possible additional transition back to
low-brackish areas for some species (e.g., Parallelostrombidium paraellipticum and P. obesum)
(Figure 4).

Figure 4. Maximum likelihood (ML) tree based on SSU rDNA of 103 environmental sequences
(ASVs in DADA2–100) and 197 sequences of identified species from GenBank (accession numbers
in Supplementary Table S1). The tree shows the topology and transition pattern; support values
(ML/BI) > 50%/0.50 are labeled. The number of collapsed sequences and ecological characteristics
are shown in parentheses. F, freshwater; L, low-brackish; H, high-brackish; M, marine.

4. Discussion
4.1. Methods Disentangling Biological Variants Highly Affect Diversity Patterns of Oligotrich
(s.l.) Ciliates

The alpha and beta diversities of six oligotrich (s.l.) datasets were compared in order
to check which method performed best for inferring diversity patterns of oligotrich (s.l.)
ciliates in the Pearl River Estuary and surrounding regions. The detailed discussion is
as following:

Among six oligotrich (s.l.) datasets generated by different algorithms and thresholds
(viz. DADA2–100, SWARM–100, UNOISE–100, UPARSE–97, UCLUST–97, UCLUST–99),
the actual number of oligotrich (s.l.) OTU/ASV as well as ratio of the oligotrich (s.l.)
OTUs/ASVs number in each sample area/site were different (Tables 1 and 2, Supplemen-
tary Table S2). This is consistent with previous investigations that the alpha diversity of
protists is highly variable depending on sequence grouping approaches, as well as software
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and clustering thresholds producing OTUs [26–28,49]. Recent investigations revealed that
compared with OTUs, ASVs could more accurately reproduce a known alpha diversity
from mock communities of various groups, e.g., bacteria [14,50,51], fungi [50], ciliated
protists [27]. In this study, the number of oligotrich (s.l.) OTUs/ASVs inferred by UCLUST–
99 (248) is unreasonable (Table 1), because only 288 morphological oligotrich (s.l.) ciliate
species were reported in the South China Sea from 1991 to 2018 [52]. The numbers of
oligotrich (s.l.) OTUs/ASVs inferred by UPARSE–97 (63) and UNOISE–100 (89) were much
lower than those in the other three datasets (103–137) (Table 1). One possible explanation is
that UPARSE and UNOISE could not detect fine-scale or low-abundance biological vari-
ations [14,18]. Previous studies showed that SWARM was not suitable for the resolution
of genetic diversity and alpha diversity in the samples with high intraspecific sequence
variations due to its rigorous clustering and sensitivity to sequence variations [20,27,53].
Only alpha diversity patterns revealed by DADA2–100 and UCLUST–97 seemed be reliable.
Interestingly, numbers of ASVs/OTUs are comparable between DADA2–100 (103) and
UCLUST–97 (104), but the ratio of oligotrich (s.l.) OTU/ASV numbers in each sampling
area to the total number of oligotrich (s.l.) OTUs/ASVs within each dataset was rather
different between these two datasets (Tables 1 and 2). This indicates that beta diversity
patterns should be compared between these two datasets in order to check which one
is better.

In this study, a general beta diversity pattern of oligotrich (s.l.) ciliates was revealed
in the six oligotrich (s.l.) datasets, but methods disentangling biological variants also had
an impact on the beta diversity patterns (Figures 2 and 3). Clearly, community varia-
tions were observed between PRE1–PRE4 and PRE5–PRE10 in DADA2–100, SWARM–100,
UNOISE–100, UCLUST–97 and UCLUST–99, and PRE5 groups with PRE1–PRE4 instead
of PRE6–PRE10 in UPARSE–97. This might be explained by the sharp increase in salinity
between sampling sites PRE1–PRE4 (0.3–0.9‰) and PRE5–PRE10 (4.7–12.2‰). It is possible
that the mixture of freshwater and seawater formed a low-salinity front between sampling
sites PRE4 and PRE5 [54]. Numerous studies have proven that salinity appeared to be the
factor that correlated best with distributions of phytoplankton and bacterioplankton in
estuaries (e.g., [55–59]) and hence community compositions of oligotrich (s.l.) ciliates with
phytoplankton and bacterioplankton as food also changed greatly between PRE1–PRE4
and PRE5–PRE10. Similar to PRE1–PRE4, sampling sites GZ1–GZ5 are in the upper estuary
of the Pearl River Estuary and are highly influenced by large freshwater discharge from
the Pearl River. Theoretically, community structures of oligotrich (s.l.) ciliates in the upper
Pearl River Estuary with lower salinity and higher nutrient content should be much dif-
ferent from those in the lower Pearl River Estuary. In the present study, the GZ samples
were grouped with PRE1–PRE4 in all six datasets (Figures 2 and 3). Hierarchical cluster-
ing analyses of DADA2–100, SWARM–100, UPARSE–97, UCLUST–97, and UCLUST–99
showed that most ZH samples grouped with PRE1–PRE4 in Clade A, and most SZ samples
fell into Clade B including PRE5–PRE10 (Figure 2a,b,d,f), although sampling areas ZH and
SZ are located at a similar latitude of PRE5. Different community structures of oligotrich
(s.l.) ciliates in ZH and SZ samples might be due to following reason. The surface flow
velocity on the western side (ZH) is usually greater than that on the eastern side (SZ) of the
Pearl River Estuary [60]. This indicates that community structures of oligotrich (s.l.) ciliates
in ZH might be more highly influenced by river runoff than in SZ. Thus, cluster patterns of
most SZ and ZH samples falling into Clade A in UNOISE–100 (Figure 2c) were less reliable
than in the other five datasets (Figure 2a,b,d,f). Sampling areas ZJ and DY are located in
the nearshore area of the South China Sea (surrounding regions of the Pearl River Estuary),
and most samples from these sampling areas clustered with PRE5–PRE10 in all six datasets
(Figures 2 and 3). Possibly, salinity also plays an important role in this cluster pattern, since
salinity values in sampling areas ZJ, DY and sampling sites PRE5–PRE10 were generally
higher than those in other areas (Figure 1). Notably, both the geographical locations and
salinity of sampling sites ZJ2–ZJ4 and ZJ6 were very similar to each other (Figure 1), but
their close relationships based on hierarchical clustering analysis were only as obvious in
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DADA2–100 (Figure 2a). Additionally, three samples collected from DY area fell into a
subclade of Clade B in DADA2–100, while DY5 always formed a separate basal clade in the
other five datasets (Figure 2b–f). Hence, DADA2–100 showed the most reliable clustering
patterns for ZJ and DY samples, although a general beta diversity pattern of oligotrich (s.l.)
ciliates was revealed in the six oligotrich (s.l.) datasets. All these results reveal that the beta
diversity pattern inferred by DADA2–100 was more reasonable in real case scenarios using
field samples of oligotrich (s.l.) ciliates.

In sum, among the six datasets compared in this study, DADA2–100 performed best
for inferring the diversity pattern of oligotrich (s.l.) ciliates in the Pearl River Estuary and
surrounding regions. As described in the Introduction, this is the first study to test whether
ASVs and/or OTUs affect the beta diversity patterns of protists in real case scenarios. In
future, more studies using filed samples are expected to test whether ASVs perform best
for inferring diversity pattern of protists in various regions.

4.2. Community Distribution and Ecological Transitions of Oligotrich (s.l.) Ciliates in
Environments with Various Salinity Gradients

As revealed in various groups of archaea, bacteria, and protists (e.g., [34,55,57,58,61]),
the present study also revealed that salinity gradients play a vital role in structuring
patterns for the community distribution of oligotrich (s.l.) ciliates in the Pearl River Estuary
and surrounding regions that encompass an entire freshwater–marine salinity gradient.
First, communities of oligotrich (s.l.) ciliates in sampling sites PRE1–PRE10 along the flow
direction of the Pearl River Estuary were divided into two distinct groups PRE1–PRE4
(Clade A) and PRE5–PRE10 (Clade B) (Figure 2a), which is consistent with the sharp change
in salinity gradients between sampling sites PRE1–PRE4 (0.3–0.9‰) and PRE5–PRE10
(4.7–12.2‰). Additionally, all samples from high-brackish and marine habitats fell into
Clade B, though these samples were collected from two sampling areas (ZJ and DY) of
around 500 km. It is believed that both the physicochemical barrier of salinity gradients
and the presence of locally adapted taxa limit the colonization success of microbes in
different habitats with salinity gradients [62]. Within Clade B, several samples (DY2, ZJ1,
PRE5–PRE10, SZ2–SZ4) were from freshwater and low-brackish habitats, which indicates
that in addition to salinity, other environmental factors and geographical distance also
shape the community distribution of oligotrich (s.l.) ciliates. This was also revealed in
various prokaryotic and eukaryotic microbial groups in estuaries (e.g., [34,52,63]).

As mentioned above, salinity gradients have been proven to be important physico-
chemical factor in structuring community distribution and limiting transitions of microbes
including protists. Ancestors of different ciliate groups seem to originate in various habitats.
Oligotrich (s.l.) and hypotrich (present study, [35]) ciliates are ancestrally high-brackish,
and peritrich and colpodean ciliates have freshwater/terrestrial ancestors [64,65]. However,
species in various habitats are reported for each of these ciliate groups. That is because
infrequent marine–freshwater transitions always occurred during their evolutionary terms
(present study; [35,64–66]) due to the ability of microbes to rapidly adapt and highly colo-
nize to new environments [62,67]. Environmental SSU rDNA V4 region sequences of the
Pearl River Estuary and surrounding coasts cover oligotrich (s.l.) ciliates in various salinity
gradients (0.1–32.0‰) [34], providing us a good chance to classify ecological transition
patterns of this taxonomy group with expanded taxa sampling [35]. Although the short
fragments of SSU rDNA have limited phylogenetic signals [64], previous studies have
proven that the addition of SSU rDNA V4 region sequences produced from amplicons
could improve the ecological transition patterns of ciliates by broad taxa sampling in vari-
ous habits [35,64]. In our phylogenetic trees (Figure 4), some ASVs formed separate clades
(Clade 1, Clade2) and might be new taxa. This is consistent with a previous report that the
oligotrich (s.l.) morphospecies diversity was underestimated [68]. Additionally, these ASVs
representing new taxa were from low-brackish habitats (Figure 4). By contrast, among
all SSU rDNA sequences of identified oligotrich (s.l.) species deposited in GenBank, only
4% (8 out of 191) and 8% (15 out of 191) were from freshwater and low-brackish habitats
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(Supplementary Table S1). In future, more detailed transitions and evolutionary patterns
of oligotrich (s.l.) ciliates are expected be outlined with broader sampling, especially
freshwater and low-brackish habitats.

5. Conclusions

This study investigates whether methods disentangling biological variants will affect
the diversity patterns of protists by using oligotrich (s.l.) ciliates in field samples as a
case. Our work demonstrates that DADA2 performed better than SWARM, UNOISE,
UPARSE, and UCLUST for inferring diversity patterns of oligotrich (s.l.) ciliates. In
addition, salinity was shown to be one of the key factors responsible for variations in the
community distribution of ciliates but infrequent marine–freshwater transitions occurred
during the evolutionary terms of this group.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10050913/s1, Table S1: Detailed information of
identified oligotrich (s.l.) ciliate species from GenBank. All sequences are SSU rDNA sequences.
Ecological habitat is classified as F = freshwater (≤0.5‰), L = low-brackish (0.5–18‰), H =high-
brackish (18–30‰), and M = marine (30–40‰). References [66,69–152] are cited in the Supplementary
Materials. Table S2: Number and proportion of oligotrich (s.l.) OTUs/ASVs in each sampling site
from the six datasets.
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