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Abstract

Background: A large number of papers have been published on analysis of microarray data with
particular emphasis on normalization of data, detection of differentially expressed genes, clustering
of genes and regulatory network. On other hand there are only few studies on relation between
expression level and composition of nucleotide/protein sequence, using expression data. There is
a need to understand why particular genes/proteins express more in particular conditions. In this
study, we analyze 3468 genes of Saccharomyces cerevisiae obtained from Holstege et al., (1998) to
understand the relationship between expression level and amino acid composition.

Results: We compute the correlation between expression of a gene and amino acid composition
of its protein. It was observed that some residues (like Ala, Gly, Arg and Val) have significant
positive correlation (r > 0.20) and some other residues (Like Asp, Leu, Asn and Ser) have negative
correlation (r < -0.15) with the expression of genes. A significant negative correlation (r = -0.18)
was also found between length and gene expression. These observations indicate the relationship
between percent composition and gene expression level. Thus, attempts have been made to
develop a Support Vector Machine (SVM) based method for predicting the expression level of
genes from its protein sequence. In this method the SVM is trained with proteins whose gene
expression data is known in a given condition. Then trained SVM is used to predict the gene
expression of other proteins of the same organism in the same condition. A correlation coefficient
r = 0.70 was obtained between predicted and experimentally determined expression of genes,
which improves from r = 0.70 to 0.72 when dipeptide composition was used instead of residue
composition. The method was evaluated using 5-fold cross validation test. We also demonstrate
that amino acid composition information along with gene expression data can be used for
improving the function classification of proteins.

Conclusion: There is a correlation between gene expression and amino acid composition that can
be used to predict the expression level of genes up to a certain extent. A web server based on the
above strategy has been developed for calculating the correlation between amino acid composition
and gene expression and prediction of expression level http://kiwi.postech.ac.kr/raghava/lgepred/.
This server will allow users to study the evolution from expression data.

Page 1 of 14

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/6/59
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15773999
http://kiwi.postech.ac.kr/raghava/lgepred/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:59

Background

The use of microarray technologies to monitor gene
expression in model organisms, cell lines and tissues has
become an important part of biological research over the
last several years. Even though a number of papers have
been published on the analysis of microarray data, partic-
ularly on normalization, classification and clustering of
data in the last few years [1,2], there is limited work on
relation between sequence and expression of gene. In past
attempts have been made to establish relation between
expression and nucleotide sequence of genes [2-8]. There
are studies, which showed the relationship between gene
expression and synonymous codon bias [9]. In the past,
methods have been developed to predict the expression
level of genes from their nucleotide sequences that is
based on observation that synonymous codon usage
shows an overall bias towards a few codons called major
codons [9-11]. Cogan and Wolf 2000 studied the relation-
ship between mRNA concentration and codon bias in
detail and found strong correlation (r = 0.62) between
codon adaptation index and gene expression [9].
Recently, Jansen et al. 2003 [11] studied the two com-
monly used numerical indices to measure the expression
of genes; i) 'codon adaptation index' (CAI) and ii) 'codon
usage' (CU). They improve the performance of two indi-
ces using genome wide yeast expression data (15) and
achieve correlation r = 0.63 t0 0.70 and r = 0.63 t0 0.71 of
CAI and CU with gene expression level respectively. These
studies indicate that it is possible to predict the expression
of genes with reasonable accuracy from its nucleotide
sequence. There are studies, which indicates directly or
indirectly the correlation between amino acid composi-
tion and gene expression [6-9,12-14]. The question arises
if there is correlation than can we use this knowledge to
predict the expression level of genes from amino acid
sequence of their protein like nucleotide sequence.

The aim of this study is two fold; to understand the corre-
lation between expression level of genes and primary
structure of protein at genome level, and to examine
whether the correlation between amino acid composition
and gene expression is sufficient enough to derive rules for
predicting gene expression from amino acid composition
of a protein. A systematic attempt has been made to ana-
lyze the gene expression data of Saccharomyces cerevisiae
(Holstege et al., 1998) to detect the relationship between
composition of protein and expression level of gene [15].
We select this data because it was analyzed/used in a
number of studies in the past so validation and compari-
son is easy [9,11-14]. We compute correlation between
percent composition and gene expression level, for each
residues and observed significant correlation between per-
cent composition and expression level. This means that it
is possible to derive rules from proteins whose expression
level is known and these rules can be used to predict the
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expression of other remaining protein in the same organ-
ism in the same condition. Similar trend was observed on
gene expression data obtained from Jelinsky and Samson,
1999 study [16].

In this study we used a Support Vector Machine (SVM) to
learn from known expression data and to predict gene
expression of remaining proteins of an organism in the
same condition using composition of protein [17-21].
Initially we took amino acid composition as input vector
for a protein that has 20 features. Then we tried dipeptide
composition as input vector for the SVM where total fea-
tures are 400. These features provide local order of
sequence with composition [18,21]. The method was
more accurate when dipetide composition was used as a
feature instead of amino acid composition. The perform-
ance was nearly same when we tried relative composition
and dipeptide composition (in reference to overall com-
position of genome) instead of absolute composition.

One of the major applications of microarray technology is
functional classification of genes where gene expression
pattern is used to recognize the functional class of
gene[8,10]. It is based on the fact that genes of similar
function yield similar gene expression pattern. Brown et
al., 2000 developed a SVM based method for predicting
five functional classes of genes based on their gene expres-
sion in 79 different conditions [19]. We also developed a
method based on SVM for recognition of genes belonging
to cytoplasmic ribosomes (One of the class used by Brown
etal., 2000) using i) gene expression data (79 features); ii)
amino acid composition of proteins (20 features) and iii)
combination of two. The overall performance in terms of
total cost saving [S(M)] was 226, 199 and 234 for gene
expression data, amino acid composition and combina-
tion respectively. This demonstrates that additional
amino acid composition information can improve the
performance of functional classification methods based
on gene expression data. We also developed a web server
that allows one to analysis gene expression data to deduce
the relation between expression and composition of resi-
dues in protein. This server allows one to train and test the
SVM on his or her own gene expression data.

Table I: The average expression level of genes according to the
length of protein.

Length of Total No. of Average Expression
Protein Proteins Level (E. Level)
25-100 59 15.58
100-200 561 8.39
200400 168 3.71
400-800 1179 251
800-1200 327 1.85
1200 168 2.13
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An example plot between expression of genes and length of
their protein sequence on one subset of reference data (692
genes). It is generated using LGEpred server option "Stand-
ard plot" using option "gene expression on the X-axis".

Results

Length correlation

We examined the correlation between the length of gene
and its expression level. A significant negative correlation
r =-0.18 was found between the expression and the length
of gene. This means that short sequences are expressed
more in comparison to long sequences. In order to under-
stand the relationship between expression level and
length, we computed the average expression of genes for
different length of its protein sequence (Table 1). The
average expression is almost inversely proportional to
average length of genes. A similar trend was observed on
two alternate datasets, where length correlation was r = -
0.15 and -0.18 for set1 and set2, respectively. These results
agree with previous observations where researchers have
shown that metabolic systems prefer to express those
genes that are less costly [14,24]. As shown in Table 1,
genes having protein length less than 100 amino acids
have average expression [e = 15.58]. There was slightly
higher expression [e = 2.13] in genes of length more than
1200 in comparison to genes with length in the range of
800-1200. [However, the number of genes was only 168
in this range.] The average expression of genes having up
to 200 residues is too high in comparison to long genes.
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As shown in scatter plot between gene expression and
length of protein (Figure 1), most of the genes whose
expression is higher than the average are small proteins.

Correlation between gene expression and protein
composition

In the first step, we computed the percent composition of
each protein corresponding to genes in our reference data-
set (3462 genes) using equation 1. Thus we have 20 values
(one for each type of amino acid) for each protein. In the
next step, we calculated the correlation between composi-
tion of a residue and expression level of gene, for each
type of residue. It was observed that some residue types
have significant positive correlation, while some others
have negative (Table 2). We also computed the correlation
for only those genes whose proteins are more than 100
residues in order to see the length effect on correlation. A
similar trend was observed except that correlation further
improves for residues that have positive correlation and
slightly decrease for residues having negative correlation.
It is interesting to note that correlation (negative/positive)
does not show any relationship with the overall composi-
tion of residues in whole genome (Table 2). Following is
a brief analysis of both types of residues.

Positive correlation

We further analyzed the residues (Ala, Gly, Arg and Val),
which showed more than 0.2 positive correlations with
gene expression. It is interesting to note that, in general,
these residues are less costly for metabolism so they may
be preferred for efficient metabolism. We examined
whether the average correlation of these positively corre-
lated residues are effective for all the range or it is only in
a specified range. For this, we computed the average
expression level for genes whose protein has percent com-
position in different range. As shown in Table 3, the aver-
age expression level (E. level) is in increasing order,
proportional to percent composition except the range '1-
3" where E. level is higher than the next higher range. We
examined the proteins, which have percent composition
of these residues in range 1-3 and found that most of the
corresponding genes are small. As we observed above (See
Table 1) that expression level is inversely proportional to
the size of gene. Thus, the genes in range '1-3' have unu-
sually high expression for these residues. This is the reason
why the correlation between percent composition and
gene expression improved further for most of the residues,
which have positive correlation when we analyzed only
proteins having more than 100 residues (Table 2).

We also computed the average expression level in differ-
ent range of amino acid composition for those genes
whose proteins have more than 100 residues. As shown in
Table 4, the average expression level of these residues
decreased significantly in the range of 1-3% composition,
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Table 2: The correlation between percent composition of residues and gene expression level. The residues which have more than +0.2
correlation are shown in by underline and residue having correlation (negative) -0.15 are shown by bold letter. Second column have

percent amino acid compositions in whole yeast genome.

Amino Acid Overall composition All Genes (3462) Proteins (>100 residues) Membrane Proteins Non-Membrane Proteins

A 549 0.336
C 1.26 -0.003
D 5.58 -0.168
E 6.54 -0.061
F 4.42 -0.122
G 4.98 0215
H 2.23 -0.052
| 6.56 -0.136
K 7.35 0.166
L 9.50 -0.208
M 2.08 -0.087
N 6.17 -0.210
P 4.37 -0.064
Q 3.96 -0.052
R 443 0.204
S 8.98 -0.152
T 5.92 0.008
\ 5.56 0.269
W 1.04 -0.072
Y 3.38 -0.009

-0.102 0.030 0.000
-0.152 -0.147 -0.207
-0.045 -0.105 -0.088
-0.109 -0.093 -0.107
-0.056 -0.131 -0.048
-0.116 -0.091 -0.128
0.158 -0.117 0.182
-0.191 -0.131 -0.212
-0.098 -0.003 -0.094
-0.220 -0.209 -0.226
-0.057 0.039 -0.086
-0.061 -0.072 -0.065
0.183 -0.260 0.240
-0.159 0.013 -0.180
0.003 0.279 -0.036
0.298 0.214 0.294
-0.077 -0.043 -0.055
-0.018 -0.030 0.018

Table 3: The number of genes and the average expression level of genes which have percent composition of positively correlated

residues (e.g. Ala, Gly, Arg & Val) in different bin/range.

Percent Ala Gly Arg Val
Composition Genes* E. Level®* Genes E. Level Genes E. Level Genes E. Level
-3 163 2.59 339 2.96 558 3.77 106 293
3-5 1074 2.11 1180 243 1741 2.92 941 248
5-7 1212 2.80 1193 3.81 802 2.86 1498 3.00
7-9 626 5.36 523 6.55 201 8.03 705 5.37
9-11 246 9.41 158 7.82 58 20.34 171 13.22
I—-13 64 15.25 36 12.79 27 17.56 24 16.45
13-15 31 15.76 I5 12.73 9 29.74 5 22.04
>15 35 15.78 7 13.54 3 23.90 2 19.55

* Total number of genes in this range
** Average expression level of genes in this range

whereas it was nearly unaffected in higher range of com-
position. These results show that expression level is pro-
portional to composition of these residues over a wide
range.

Negative correlation

As shown in table 2, some residues (Asp, Leu, Asn and Ser)
have a negative correlation with expression level. The
expression data of these residues were further analyzed
and the average expression level of genes having different

percent composition of these residues is calculated. As
shown in table 5, the correlation between percent compo-
sition and average expression level is very strong. This
shows that the expression for genes of proteins having
these residues is not preferred in the cell. In contrast to
positively correlated residues, negatively correlated
residues showed average expression level as per trend even
in the range of '1-3". It is because lower percent composi-
tion is usually found in small genes and both lower per-
cent composition of these residues and short length of
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Table 4: The number of genes and the average expression level of genes (only genes having more than 100 residues) which have
percent composition of positively correlated residues (e.g. Ala, Gly, Arg & Val) in different bin/range.

Percent Ala Gly Arg Val
Composition

Genes * E. Level **¥ Genes E. Level Genes E. Level Genes E. Level
-3 152 2.15 333 2.82 543 3.70 543 3.70
3-5 1063 2.05 1166 2.39 1728 2.86 1728 2.86
5-7 1204 2.75 1176 798 2.85 798 2.85
7-9 613 4.86 510 6.14 194 7.52 194 7.52
9-11 242 9.19 155 7.39 55 19.58 55 19.58
In—-13 6l 15.19 33 12.64 23 17.30 23 17.30
1315 30 15.81 15 12.73 5 29.86 5 29.86
> 15 32 16.52 7 13.54 2 12.85 2 12.85
* Total number of genes in this range
* Average expression level of genes in this range

Table 5: The number of genes and the average expression level of negatively correlated residues.

Percent Asp Leu Asn Ser
Composition

Genes* E. Level** Genes E. Level Genes E. Level Genes E. Level
-3 260 9.81 20 14.06 249 8.69 31 12.52
3-5 847 3.97 114 12.19 1195 5.21 264 7.85
5-7 1505 3.35 467 6.20 1323 2.96 907 5.39
7-9 657 3.10 1033 4.05 478 1.72 1202 341
9-11 117 3.15 1118 3.09 148 1.83 645 2.06
In—-13 32 2.38 526 242 34 3.15 221 2.77
13-15 10 2.86 151 1.98 Il 0.95 103 1.98
15 5 1.22 32 2.57 9 1.14 87 3.16

* Total number of genes in this range
** Average expression level of genes in this range

proteins are preferred in gene expression. We also com-
puted the average expression level for those genes whose
protein have more than 100 residues and found that the
average expression level was slightly decreased in lower
range (Data not shown).

Correlation on alternative dataset

Dataset |

As we did with the reference dataset, we computed the cor-
relation between expression level and percent composi-
tion on 2693 genes in the alternate Dataset 1. As shown in
Table 6, most of the residues, which have positive/nega-
tive correlation with gene expression in the reference
dataset, also exhibited the same trend in the alternate
datasetl. Among positive correlated residues, Arg showed
very poor correlation on this dataset, whereas this residue
showed high correlation in the reference dataset. We

examined this residue and other residues, which have pos-
itive a correlation. It is interesting that all these residues
including Arg showed increasing average expression level
with the range of percent composition.

Dataset 2

One of the objectives of this study is to understand the
correlation when environment is changed. Here, correla-
tion was computed between gene expression level and
percent composition on 2693 genes in alternate dataset 2,
after exposure to the alkylating agent methyl methanesul-
fonate [2]. Overall, similar trend was observed for genes in
both alternate dataset (dataset] & dataset 2) and reference
dataset (See table 6). As shown in Table 6, normally, the
positiveness (or negativeness) of correlation of a residue
was same; only the degree of correlation was different. We
examined residues, which have positive correlation. It was
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Table 6: The correlation between percent composition of residues and gene expression level on alternate dataset | (untreated) and 2
(treated). The residues in reference dataset having positive correlation are shown by underline and negative correlation by bold

letter.
Amino Acid Alternate Dataset | (Untreated) Alternate Dataset 2 (Treated)
All Genes > 100 residues All Genes > 100 residues
A 0.341 0.348 0.331 0.338
C -0.052 -0.062 -0.045 -0.051
D -0.084 -0.083 -0.055 -0.057
E 0.004 0.016 -0.012 -0.004
F -0.072 -0.069 -0.057 -0.052
G 0.156 0.165 0.173 0.184
H -0.075 -0.059 -0.064 -0.051
| -0.075 -0.085 -0.060 -0.071
K 0.070 0.062 0017 0.007
L -0.157 -0.155 -0.137 -0.131
M -0.046 -0.057 -0.053 -0.060
N -0.162 -0.156 -0.159 -0.158
P -0.026 -0.035 -0.006 -0.010
Q -0.037 -0.049 -0.036 -0.047
R 0.018 0.022 -0.046 -0.040
S -0.102 -0.099 -0.108 -0.109
T 0.029 0.022 0.041 0.032
\'A 0.178 0.188 0.193 0.209
w -0.056 -0.064 -0.034 -0.043
Y -0.031 -0.040 -0.002 -0.009

Table 7: The number of genes and the average expression level of genes which have percent composition of positively correlated
residues (e.g. Ala, Gly, Arg & Val) in different bin/range on alternate dataset | and 2.

Percent Ala Gly Arg Val
Composition
Genes * E.Level ** E.Level Genes E.Level E.Level Genes E.Level E.Level Genes E.Level E.Level
(Set 1) (Set 2) (Set 1) (Set2) (Set 1) (Set?2) (Set 1) (Set2)
-3 156 251 3.30 248 3.6l 4.24 464 4.24 5.44 95 3.50 4.95
3-5 784 1.90 2.72 868 2.35 3.09 1317 3.15 4.26 715 2.90 3.59
5-7 927 2.44 3.43 965 3.44 4.47 650 2.40 3.27 1173 291 3.76
7-9 521 3.93 5.46 433 5.81 6.74 157 5.08 4.98 572 4.46 5.39
9-11 211 9.90 10.72 122 5.30 5.90 32 12.41 8.29 113 11.02 12.20
I-13 47 18.77 14.10 27 9.54 9.55 13 12.03 8.18 16 15.08 16.01
13- 15 22 16.86 13.19 13 14.68 13.59 3 51.07 32.87 2 22.45 15.25
15 16 26.69 21.81 5 20.46 20.50 2 16.75 15.25 2 36.30 25.65

* Number of genes in this range
** Average expression level of genes in this range

interesting that all these residues showed increasing aver-
age correlation with the range of percent composition
(Table 7).

Genes whose expression level changes four fold or more
As shown above, the correlation between gene expression
level and percent composition changes slightly in case of

untreated and treated genes. The reason is that the expres-
sions of a number of genes are unaffected after treatment.
Thus we examined only those 325 genes whose expression
level change significantly (> 4-fold). As shown in Table 8,
most of residues, which showed high positive or negative
correlation in untreated or reference dataset, lose their
correlation in treated genes. In other sense, the expression
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Table 8: The analysis of genes in alternate dataset | & 2, whose
expression changes 4 folds or more when treated with Alkylating
agent. Residues showed in reference dataset positive and
negative correlation are shown by undeline and bold font
respectively.
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Table 9: The correlation between amino acid composition and
log (EC) where EC is (Expression of Treated Genes)/(Expression
of Untreated Genes). Residues shows positive and negative
correlations are shown by bold font and by underline
respectively.

Amino Acid Untreated Genes Genes treated
with Alkylating

agent

A 0.350 0.265
C -0.029 0.023
D -0.099 -0.040
E -0.070 -0.118
F -0.087 0017
G 0.300 0.108
H 0.026 -0.011
| -0.073 0.067
K 0.075 -0.035
L -0.200 -0.071
M -0.041 0.027
N -0.232 -0.165
P -0.000 0.028
Q -0.159 -0.109
R 0.073 -0.137
S -0.076 -0.137
T 0.002 0.108
v 0.202 0.190
w -0.131 0.035
y -0.047 0.043

of those genes after treatment increases significantly
which favorable residues dominated earlier.

Correlation between expression change (EC) and percent
composition

One of the major objectives of microarray is to determine
the effect on gene expression in different conditions.
Thus, we computed the correlation between log(EC) and
percent composition, where as EC is (Expression of
treated genes)/(Expression of untreated genes). As shown
in Table 9, some residues have positive correlation with
EC, which means that they increase the expression level in
treated case genes. In contrast, some other residues have
negative correlation. This is interesting that residues (Ala,
Gly and Val) that have positive correlation with expres-
sion level of genes have negative correlation with expres-
sion changes. In contrast, residues having negative
correlation with expression level have positive correlation
with expression change. These observations indicate that
composition of protein have direct relationship with
expression of gene and with the change of expression in
different conditions.

Amino Acid Correlation with log(Fold

change)

-0.184
0.055
0.029

-0.036

0.136

-0.118

-0.014

0.158

-0.111

0.220
0.046

0.143
0.064
0.068

-0.036

-0.113

-0.110

-0.068

0.185
0.076

—<i<|—||m?ﬂ,o'UZZI'IK_Ilm'ﬂ"'"Uﬂ|>

Development of prediction method

The results shown in Table 1 to Table 5 show that there is
a strong relationship between primary structure of pro-
teins and expression level of their genes. Based on the
above observation, we made a systematic attempt to
develop a method for predicting expression level of a gene
from its protein sequence; from microarray data of the
same organism in a given condition. Based on protein fea-
tures, we developed two types of prediction methods; one
from amino acid composition and the other from dipep-
tide composition.

Amino acid composition

In this case we developed a method using percent compo-
sition of proteins as input feature of vector dimension 20
(for 20-residues). A SVM was trained on a training dataset
using percent composition as input and gene expression
level as output. The SVM was trained using regression
mode with linear, polynomial and RBF kernel and
achieved correlation coefficient r = 0.46, 0.60 and 0.66
respectively, between predicted and observed values of
gene expression, when evaluated using 5-fold cross-vali-
dation (Table 10). It is known that SVMs perform better if
their input and output values are normalized. As the vari-
ation of output (expression level) was very high, we nor-
malize the output. Here, two functions were used to
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Table 10: The correlation between predicted and experimentally determined gene expression is shown. The value shown by bold font
is average correlation on 5 sets of data using in 5-fold cross-validation.

Normalization Linear Kernel RBF Kernel Polynomial Kernel
Function
Amino Acid Dipeptide Amino Acid Dipeptide Amino Acid Dipeptide

No Function 0.46 (0.44, 0.44, 0.51 (0.49, 0.52, 0.66 (0.63, 0.60, 0.66 (0.63,0.63, 0.60 (0.57, 0.58, 0.62 (0.64, 0.62,

0.48, 0.47, 0.46%) 0.51, 0.52, 0.52) 0.62, 0.67, 0.75) 0.62, 0.66, 0.74) 0.60, 0.61, 0.65) 0.58, 0.59, 0.66)
Natural 0.57 (0.58, 0.52, 0.59 (0.58, 0.55, 0.67 (0.65, 0.64, 0.68 (0.68, 0.65, 0.64 (0.63,0.61, 0.66 (0.67,0.53,
Logarithm 0.59, 0.58, 0.58) 0.60, 0.60, 0.60) 0.68, 0.68, 0.72) 0.65, 0.67, 0.73) 0.64, 0.66, 0.67) 0.65, 0.68, 0.73)
Square root 0.54 (0.53,0.51, 0.58 (0.57, 0.56, 0.70 (0.69, 0.67, 0.72 (0.72, 0.68, 0.66 (0.63,0.61, 0.69 (0.67, 0.53,

0.56, 0.55, 0.54)

0.58, 0.59, 0.60)

0.68,0.71, 0.74)

0.67,0.72,0.80)

0.64, 0.66, 0.68)

0.66, 0.68, 0.73)

* Correlation achieved for each set

normalize the output values; i) logarithm and ii) square
root. The performance of SVM method is shown in Table
10 with these two functions. As shown in Table 10, per-
formance improved significantly when normalized values
were used instead of direct value of the expression. The
correlation achieved using logarithm and square root
functionsisr=0.67 and 0.70 respectively with RBF kernel.
The performance of SVM based method with RBF kernel
was best when square root was used as the normalization
function.

Dipeptide composition

We also developed a SVM based method using dipeptide
protein feature. The results of this method are shown in
table 10. The correlation coefficient r = 0.51, 0.59 and
0.58 were obtained between predicted and observed val-
ues of gene expression, when direct, logarithm and square
root of gene expression was used as output vector for SVM
with a linear kernel. The performance of method was fur-
ther improved with RBF kernel where correlation reaches
tor=0.66, 0.68 and 0.72 respectively for direct, logarithm
and square root respectively. We obtained the best per-
formance at parameters "-c 10 -g 0.01" for RBF kernel in
regression mode [23].

Membrane and non-membrane proteins

In this study we also tried to develop method for predict-
ing expression level of membrane and non-membrane
protein. First we predict membrane proteins in our dataset
using popular program SOSUI, which predict 739 mem-
branes, and 2723 non-membrane proteins. We develop
SVM based prediction method (RBF kernel with -c 10 -g
0.01, using dipeptide composition) for membrane and
non-membrane protein and achieve correlation 0.49 and
0.75 respectively between predicted and actual expres-
sion. It is interesting that correlation prediction was too
poor for membrane protein, there are two possible rea-
sons one dataset was two small second the amino acid

composition of proteins do not exhibit good correlation
with gene expression. It was interesting that predictive
performance improves from 0.72 to 0.75 for non-mem-
brane proteins despite data set was smaller than original.
We also examine the correlation between amino acid
composition and gene expression and found that most of
residue shows low correlation for membrane and high
correlation for non-membrane proteins (See Table 2).

Relative composition

In addition to absolute composition (described above) we
also tried relative composition. Here input was either rel-
ative amino acid or dipeptide composition instead of
absolute composition (see Materials and Method). We
obtained similar results with relative composition (data
not shown).

Functional classification of genes

First we developed a SVM based method for predicting
functional class of genes from their expression data (79
features). We adopted the same strategy as described by
Brown et al., 2000 except that we only applied for one
class (cytoplasmic ribosomes) instead of five classes. We
used the SVM_light package whereas they use their GIST
package. The performance of our method in term of TP
(true positives), FP (False positives), TN (True Negatives)
and cost of saving S(M) [8] on cytoplasmic ribosomes is
shown in Table 11. The total cost saving value S(M) of our
method was 226 whereas Brown et al. 2000 achieved
S(M) value in range of 224 to 229 using various models.
The S(M) value achieved by our method was slightly
lower than their highest model since they used fine-tun-
ing of parameters and modified the SVM whereas we use
the standard SVM with standard RBF kernel. We also
developed a method to classify the genes based on their
relative amino (See Materials and Methods) acid compo-
sition (20 features) and achieved total cost saving value
S(M) of 190 (See Table Table 11). It is interesting to note
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Table I I: The performance of classification methods on a set of 2465 yeast genes which consists of 121 cytoplasmic ribosomes genes
(positive examples) and 2344 other genes (negative examples). GEM and AACM are gene expression based and amino acid
composition based SVM methods (RBF kernel) respectively. The SVM parameter for GEM and AACM were "-c 10 -g 0.03" and "-c 10 -

g 0.55" respectively

Method FP FN

TP TN

S(M)

GEM 4 6
AACM 22
GEM + AACM 4 2

oo

that by using simple amino acid composition one can
achieve such a high value which is even better than some
models based on gene expression data such as tried by
Brown et al., 2002. We achieved total cost saving value
S(M) of 234 when we simply combined the output of two
SVM methods described above. Here we have not tuned
any parameter. We simply add the SVM score of two meth-
ods. This clearly indicates that amino acid composition
information can play a vital role in improving the per-
formance of classification methods based on gene expres-
sion data.

Web server LGEpred for prediction of gene expression
level

Based on the method described in this study, we devel-
oped a server that provides various services to the user via
Internet.

Data analysis

This server allows one to perform various type of analysis
on microarray data. This may help users in understanding
the relationship between expression of genes and amino
acid composition of their proteins. Following is the brief
description of options.

¢ Correlation coefficient: This allows the user to compute
the correlation between amino acid composition and
gene expression from microarray data. The user can gener-
ate correlation tables on their microarray data like Table 2
and Table 6.

¢ Bin-wise analysis: One can compute the average expres-
sion of genes whose proteins have amino acid composi-
tion in a specified range. Basically, it allows
comprehensive analysis on binned data. One can generate
the average expression tables like Tables 1, 3, 4 &5.

¢ Scatter plots of gene expression: The user can generate
scatter plots between gene expression and amino acid
composition or length of protein using this option. This
allows visualization of relation between gene expression
and amino acid sequence on their own expression data.
An example figure created using LGEpred server is shown
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Figure 2

An example plot between expression of genes and percent
composition of ALA in their protein. Boxes along the X-axis
show the range of composition of ALA and height of the box
show the average expression of genes in that range.

in Figure 1. It provides an option to the user to plot graph
by taking expression level on horizontal or vertical axis.

e Specific plots of gene expression: The specific plot not
only allows us to generate a scatter plot between expres-
sion level and amino acid composition but also allows
drawing the average expression of genes which have
amino acid composition in a specified range (See Figure
2). Using these graphs one can easily detect the relation
between expression level and composition in various
ranges on their own data.

¢ SVM based prediction method: One of the major fea-

tures of LGEpred is to allow the users to develop a SVM
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based prediction method on their own microarray data.
This has three major options for the prediction of gene or
ORF expression.

¢ Training and prediction: This routine builds a SVM
model from users' microarray data using expression level
of genes and sequence of proteins. Then it predicts the
expression of unknown genes of the same organism in the
same condition from their protein sequence using this
SVM model.

¢ Evaluation and prediction: This allows users to evaluate
the SVM method developed on users' microarray data
using LGEpred server. The evaluation is very important in
the area of prediction because it provides confidence to
the user in using the method of their choice.

¢ Prediction from model: This allows users to predict the
expression of genes from their protein sequence using
SVM model built using the above options of LGEpred
server.

The aim of this server is to provide tools to the users to
analyze their own data. All the analyses shown in this
manuscript can be performed using LGEpred server. This
will allow users to understand their microarray data in
depth. This may be used for analyzing cDNA microarray
data also where user can provide the expression change
instead of expression level in case of oligonucleotide
array. This server will also be useful for detecting which
residues are preferred in which conditions and why
expression of particular genes changes drastically with
change of conditions.

Discussion

Oligonucleotide array is a powerful technique that allows
one to study the expression of large number of genes
simultaneously [1,2]. Though it is a powerful approach
and allows one to study the behavior of genes of an organ-
ism in different conditions, it has its own limitations it is
expensive, time consuming and has problems in manag-
ing and analyzing data. Despite all technical advances it is
difficult to study all genes simultaneously of an organism
that have a large number of genes like Human Genome. It
is also difficult to obtain consistent values in replicates,
particularly of those genes whose expression are close to
the resolution limits [1,11,17]. In contrast, all the protein
sequences of a large number of organisms are available
today. The questions arises whether it is possible that we
study only limited number of genes [or take those genes
from an oligonucleotide array data whose value are con-
sistent in all the samples (duplicate/triplicate)] and use
this data to predict the expression level of remaining pro-
teins of the organism in the same condition. This may
save a lot of researchers' time and effort in studying whole
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set of genes of an organism, particularly like human
genome. Though there were many studies in the past ana-
lyzing the array data, there is no method to predict the
expression level of genes. Recently, a paper has been
appeared where they describe the procedure to predict the
expression of genes [10]. In this paper, they predict the
class of genes (genes having the same type of expression
behaviors are kept in the same class). They divided the
genes into 49 classes and predicted class with 73% accu-
racy using microarray data from sequences in the 800 bp
upstream of genes. From the best of author's knowledge,
there is no study, which describes the prediction of gene
expression from amino acid sequence of their protein.

This study is the first attempt in this direction to predict
the expression level of genes from their protein sequences.
In this study we took Holstege et al. 1998 as reference data
because it is well studied, and clean [11-15,24-28]. Even
though, previous studies indirectly indicate the correla-
tion between amino acid composition and expression
level, detailed direct correlations were not shown [3-9].
We studied the correlation between amino acid composi-
tion and expression level in detail. Interestingly, some res-
idues showed positive correlation and most of them were
small residues. This agrees with the concept of efficient
metabolism where researchers demonstrated that proteins
having higher composition of less costly amino acids are
preferred [12-14]. As shown in Table 5, this correlation
trend was shown for whole the range of amino acid
composition. The genes having higher range of composi-
tion of the positive correlated residues also have higher
average expression level. We also observed high correla-
tion between percent composition and expression level
for residues Ala, Gly and Val, as previous studies where
they found high composition of those residues made of
codon GNN in highly expressed genes [14]. There were
some exceptions in the case of lowest range, where the
average expression level was higher than that of the genes
in the next higher range. In fact, most of the genes, which
fall in the lowest composition range, belong to category of
small genes. As shown in Table 1, the gene expression
level has negative correlation with the length of sequence,
where smaller genes have higher average expression level
(See Table 1 and 2). This is the reason why genes having
lower percent composition of positively correlated resi-
dues have unusually high expression level. The correlation
was increased when we considered only large sequences
(> 100 residues). In case of negatively correlated residues
trend was more uniform including lower range because
low composition of these residues and small sequence are
both preferred. Similar trends were observed when we
performed our correlation analysis on alternative data
sets.
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Although the aim of this study is to understand the rela-
tionship between expression level and residue composi-
tion in normal conditions, we also studied effect on
correlation if its conditions are changed. Here, we com-
puted the correlation between expression level and resi-
due composition on alternate dataset 2, which provides
expression level of genes when samples are treated with
alkylated. Even though the observed correlation between
the expression and the composition of the sequence of a
specific gene can not be described as a general rule, inter-
estingly, the correlation trend was same; both treated and
untreated sets show the same relationship except change
in the magnitude of correlation. That is, residues having
high positive/negative correlation in dataset 1 showed the
same trend in and dataset 2, were same, only magnitude
was different. We also analyzed genes whose expression
level changes significantly. It is interesting that some resi-
dues showed high correlation with fold change of expres-
sion. This indicates that in the future it would be possible
to predict the gene expression level of proteins in different
conditions if we understand in a given condition which
residues are favored. These observations suggest more
studies in this direction to understand the relationship
between gene expression level and primary structure of
proteins.

The correlation analysis performed in this study indicates
that amino acid composition has correlation with
expression. This also indicates that similar sequence will
have similar level of gene expression. Now, the question
is how to utilize these observations to predict the gene
expression of unknown proteins of the same organism.
One of the standard practice is to use similarity search
tools like BLAST and FASTA for searching similar
sequence in dataset of known proteins (whose expression
level is known) [29]. The major problems with these tools
are that i) they fail in the absence of significant similarity,
ii) it is difficult to obtain similarity when the length of
query and target sequence are very different, and iii) it is
difficult to predict expression level from similarity scores.
The machine learning techniques (like ANN and SVM)
can be used to learn the relationship between sequence
and expression level. The major problem with these tech-
niques is that they cannot be used directly because there
are many variations in protein sequence length and these
techniques require fixed length patterns. Alternatively,
one needs to generate fixed length patterns from these
proteins to learn the relationship (or derive the rules
from) in known data to predict the gene expression level
of other proteins of the same organism. It has been shown
in the past that composition, pseudo composition, and
dipeptide composition of protein can be used as input
pattern of fixed length for classification of proteins using
machine-learning techniques [21,31,32]. In this study,
first we used the amino acid composition as input and
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gene expression level as output to develop a SVM based
method for predicting gene expression level form amino
acid sequence of proteins. As shown in Table 10, we
achieved a significant correlation of 0.66 (SVM with RBF
kernel) between predicted and observed values of expres-
sion level when evaluated using 5-fold cross-validation. It
is well known that SVM performs better when its output
values are normalized. Here we used two functions (natu-
ral logarithm and square root) to normalize expression
level(output). These normalization functions, logarithm
and square root, increased the correlation from 0.66 to
0.67 and to 0.70 respectively.

It has been observed in past studies of protein classifica-
tion that accuracy of classification improves significantly
when dipeptide composition is used as input instead of
single residue (or amino acid) composition [18,21,23].
We also observed similar trends in this study; the correla-
tion between predicted and observed values increased
from 0.66, 0.67 and 0.66 to 0.66, 0.68 and 0.72 respec-
tively for without normalization, normalization with log-
arithm and square root, when dipeptide composition was
used as input instead of amino acid composition. This is
because dipeptide provides information about sequence
order between neighbor residues instead of simple com-
position. We also tried tripeptide but the results did not
improve further because a certain number of patterns
were never observed. Our results agree with previous
observations where they found that dipeptide is better fea-
ture than amino acid composition for SVM based classifi-
cation [18,21,23].

Conclusion

The results indicate that there is correlation between
expression level and amino acid composition of proteins,
which can be exploited to predict the expression level of
genes. The correlation between expression level and com-
position is conditions dependent, which explain the fail-
ure of earlier methods of gene prediction based on codon
usage and CAl index [11]. In these methods they calculate
parameter from expression in one condition and imple-
ment for all condition. In our case we proposed condition
specific prediction where training and testing is per-
formed in same condition and organism. The expression
data is commonly used to classify the genes [8,10]. As far
as authors know there is no study, which uses the gene
expression and amino acid composition information for
classifying or clustering the gene. We made the first
attempt in this study and found that combined method
performs better than the individual methods (Table 11).
We feel that this approach will improve the performance
of existing methods in classification and clustering of
genes.
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The web server LGEpred developed in this study not only
allows us to predict gene expression level of proteins of
the same organism in the same conditions from its amino
acid sequence, but also allows one to understand the rela-
tionship between protein sequence and expression level.
The server allows the user to compute the following type
of correlations; i) correlation between length and expres-
sion level; ii) the average expression of genes which has a
number of residues of its protein in specific ranges (like
100 to 200); iii) the list of residues which have positive,
negative and neutral correlation with expression level; iv)
correlation coefficient between residue composition and
expression level; and v) the average expression level of
each residue when composition is in a specified range.
Although the computation level is not very complex or
novel, authors feel that it may be very useful for experi-
mental research working in the area of gene expression,
because it allows computing the various relations/correla-
tion between protein sequence and expression level from
known expression data. This will help the users to detect,
which residues are preferred and which are not preferred
in their gene expression data, or condition in which they
measure the expression. We understand that our method
on Holstege data for prediction of expression of genes
from protein sequence will only be valid for genes of the
same organism in the same conditions. As expression
level depends on condition and organism' it is not possi-
ble to develop a general method for predicting gene
expression. Thus our server allows users to develop their
own SVM based method from their known expression
data that can be used to predict the expression of genes of
the same organism in the same condition. This is a pri-
mary study on limited data. In order to understand
relationship in depth in various organisms in various con-
ditions, it is needed to analyze all possible available
microarray data. In order to assist researchers working
with related subjects, we designed LGEpred server by
which they can perform various studies on their gene
expression data.

Methods

Reference expression dataset

In this study, the expression data of Holstege et al. (1998)
is used as reference dataset, because its results are
obtained from careful averaging of many experiments
[1,11,14,17]. All the genes whose expression level is less
than 0.5 copies/cell were excluded, because they are close
to resolution limits. The final reference dataset contains
3462 genes, whose protein sequences are available in Sac-
charomyces Genome Database (SGD).

Alternate dataset

In addition to the reference dataset, we also performed
analysis on an alternate dataset obtained from Jelinsky
and Samson (1999). In this dataset they examined about
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6200 Saccharomyces cerevisiae gene transcript levels with
two different environmental conditions. We used 2693
genes whose expression level is more than 0.5 copies/cell
in a normal condition and corresponding protein
sequence is available in SGD. This dataset consists of two
sets; one consists of gene expression data in normal con-
dition and the other after exposure to the alkylating agent
methyl methanesulfonate. We also used a subset of 325
genes whose expression level changes significantly when
treated with alkylating agent.

Functional classification of genes

For developing a classification method, we obtained data
from Brown et al., 2000 [19]. This data consists of a set of
79-element gene expression vector for 2467 yeast genes.
In our study we used 2465 genes whose protein sequence
were available in Saccharomyces Genome Database
(SGD). Here, we work only one-class protein cytoplasmic
ribosomes, which have maximum number of genes 121.
Thus our final dataset consists of 121 genes belonging to
cytoplamic ribosomes as positive examples and rest 2344
genes as negative examples.

Five-fold cross validation

The performance of a computational algorithm is often
tested by the cross-validation or jackknife method
[21,22]. Due to time constraint we evaluate the
performance of our method through 5-fold cross valida-
tion procedure. In this validation procedure, the dataset
was partitioned randomly to 5 equally sized sets. The
training and testing of each classifier was carried out five
times using one distinct set for testing and rest four for
training.

Amino acid composition

The information of a protein can be encapsulated in a vec-
tor of 20 dimensions using amino acid composition of the
protein. The composition was used as input in this study,
which provides the global information of protein features
in the form of fixed length vector. The amino acid compo-
sition is the fraction of each amino acid type within a pro-
tein. The fractions of all 20 natural amino acids were
calculated by using the following equation

~_ R
comp(i) = o)
where comp (i) is the fraction of residue or composition of
residue of type i. Ri and N are the number of residues of
type i, and total the number of residue in protein i (length
of protein) respectively. We calculate percent composition
by multiplying fraction of residue comp(i) by 100.
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Dipeptide composition

Dipeptide composition was used to transform the variable
length of proteins to fixed length feature vectors. Dipep-
tide composition has earlier been used by Bhasin and
Raghava (2004) for protein classification [18,21]. We
adopted the same dipeptide composition based approach
in developing SVM method for predicting gene expression
level of proteins. The dipeptide composition gave a fixed
pattern length of 400 (20x20) possible dipeptides (e.g.,
Ala-Ala, Aal-Cys, Ala-Asp etc.). The dipeptide composi-
tion encapsulates information about the fraction of
amino acids as well as their local order. The dipeptide
composition was calculated using the following equation.

dpepti) = == @

where dpep (i) is fraction or composition of dipeptide type
i. Di and N are the number of dipeptide of type i and
number of residues in protein i, respectively. We calculate
percent dipeptide composition by multiplying fraction
dpep(i) by 100.

Relative composition

The composition (amino acid and dipeptide) described
above is absolute composition of proteins. In addition to
absolute composition, we also tried relative composition.
In this case first, we compute the overall composition (on
all proteins of Saccharomyces) each type of residue. Then
we compute the relative composition (in reference to
overall composition) of each gene using the following
equation,

rcomp(i) = % (3)
rdpep() = 0T ()

where rcomp (i), ocomp(i) and comp(i) are relative, overall
and absolute composition of amino acid types i respec-
tively. Similarly rdpep(i), odpep(i) and dpep(i) are relative,
overall and absolute dipeptide composition of dipeptide i
respectively.

Normalization of gene expression level for SVM learning
The gene expression level was normalized to represent on
scale of 0 to 10. We used following two functions to
rescale the value i) log function, where natural log was
used for each gene expression level and ii) sort function,
where square root of each expression level was calculated.
This normalization is very important in training and test-
ing of SVM for better accuracy.
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SVM training and prediction

In this study, SVM simulation was achieved by using the
SVM_light package [20]. This package enables the user to
define a number of parameters and to select a choice of
inbuilt kernel functions, including Polynomial, RBF, Lin-
ear, and Sigmoid. In this study the regression mode of
SVM was used.

Let us assume that we have N genes xi € R(i = 1, 2,..., N)
with corresponding target value yi € {target value}(i =
1,2,..., N). The xi corresponds to the representation of
amino acid sequence of the proteins to the SVM. Here, tar-
get value is a real value (gene expression level) corre-
sponding to proteins. The dimension of the input vector
is 20 for amino acid composition, and 400 for dipeptide
composition. The decision function implemented by the
SVM can be written as follows:

N

o) =sen 3 i {K(sx) + 1)) (5)

l =
The value of the o is given by the task of quadratic pro-
gramming task, maximize subject to 0 < o; < C, where C is
the regulatory parameter controlling the trade off between
the margin and training error. Choosing a kernel K for
SVM is analogous to the problem of choosing architecture
for neural network. In the present work, SVM parameters
were all set to default, except the kernel function.

In case of functional classification of genes, input vector
consist of 79 features, each feature represents gene expres-
sion in one condition. The dataset consists of 121 positive
examples (cytoplasmic ribosomes) and 2344 negative
examples (non-cytoplasmic ribosomes). The positive
examples are very few in comparison to the total data that
leads to imbalance in the number of positive and negative
training examples. Thus it is difficult for the SVM to cor-
rectly classify these genes. In order to handle this problem
we replicate the positive examples to match with negative
examples during the training of the SVM. Brown et al
2000 modified the SVM to handle this problem.

Performance measures

The performance of the method has been assessed by
computing the correlation coefficient between the actual
value of gene expression (experimentally determined)
and the predicted value of gene expression [23]. We com-
puted Pearson's correlation coefficient (r), which is the
ratio of the covariance between the predicted and experi-
mental values to the product of the standard deviations in
the two.

Page 13 of 14

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:59

_3XYY

r= > N
L X cv2 OV
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where, X and Y are experimental and predicted value of
gene expression respectively. N is the total number of
genes in the data set.
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