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Abstract: A new benzo[c]phenanthridine, oxynorchelerythrine (1), and two new 

benzenoid derivatives, methyl 4-(2-hydroxy-4-methoxy-3-methyl-4-oxobutoxy)benzoate 

(2) and (E)-methyl 4-(4-((Z)-3-methoxy-3-oxoprop-1-enyl)phenoxy)-2-methylbut-2-enoate 
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(3), have been isolated from the twigs of Zanthoxylum ailanthoides, together with 11 

known compounds (4–14). The structures of these new compounds were determined 

through spectroscopic and MS analyses. Among the isolated compounds, decarine (4),  

(−)-syringaresinol (6), (+)-episesamin (8), glaberide I (9), (−)-dihydrocubebin (10), and 

xanthyletin (11) exhibited potent inhibition (IC50 values ≤ 4.79 µg/mL) of superoxide  

anion generation by human nutrophils in response to N-formyl-L-methionyl-L-leucyl-L-

phenylalanine/cytochalasin B (fMLP/CB). Compounds 4, 8, and 11 also inhibited 

fMLP/CB-induced elastase release with IC50 values ≤ 5.48 µg/mL. 

Keywords: Zanthoxylum ailanthoides; Rutaceae; benzo[c]phenanthridine; benzenoid;  

anti-inflammatory activity 

 

1. Introduction 

Zanthoxylum ailanthoides Sieb. & Zucc. (Rutaceae) is a medium-to-large-sized tree, found at low 

altitude in forests of China, Japan, Korea, Philippines, and Taiwan [1]. Various benzo[c]phenanthridines, 

coumarins, lignans, flavonoids, quinolines, benzenoids, and triterpenoids are widely distributed in this 

plant [2–12]. Many of these compounds exhibit anti-platelet aggregation [10], anti-HIV [11], and  

anti-inflammatory [12] activities. Granule proteases (e.g., elastase, cathepsin G, and proteinase-3) and 

reactive oxygen species (ROS) (e.g., superoxide anion (O2
•−) and hydrogen peroxide) produced by 

human neutrophils are involved in the pathogenesis of a variety of inflammatory diseases.  

In our studies of Formosan plants for in vitro anti-inflammatory activity, Z. ailanthoides was found 

to be an active species. The MeOH extract of the twigs of Z. ailanthoides showed potent inhibitory 

effects on superoxide anion generation and elastase release by human neutrophils in response to 

formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (fMLP/CB). Figure 1 illustrates the 

structures of a new benzo[c]phenanthridine, oxynorchelerythrine (1) and two new benzenoid 

derivatives, methyl 4-(2-hydroxy-4-methoxy-3-methyl-4-oxobutoxy)benzoate (2) and (E)-methyl  

4-(4-((Z)-3-methoxy-3-oxoprop-1-enyl)phenoxy)-2-methylbut-2-enoate (3). Eleven known compounds 

(4–14), have been isolated and identified from the twigs of Z. ailanthoides and their structures are 

depicted in Figure 2. 

This paper describes the structural elucidation of the compounds numbered 1 through 3, and the 

inhibitory activities of all isolates on superoxide generation and elastase release by neutrophils. 

Figure 1. The chemical structures of new compounds 1–3 isolated from  

Zanthoxylum ailanthoides. 
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Figure 2. The chemical structures of known compounds 4–14 isolated from  

Zanthoxylum ailanthoides. 
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2. Results and Discussion 

Oxynorchelerythrine (1) was isolated as a white amorphous powder. Its molecular formula, 

C20H15NO5, was determined on the basis of the quasi-molecular ion at m/z 372.0846 ([M + Na]+, calcd 

for C20H15NO5Na: 372.0848) in the HR-ESI-MS spectrum (positive-ion mode) (Figures S1 and S2) 

and was supported by the 1H-, 13C-, and DEPT NMR data. The UV absorptions of 1 at 236, 281,  

and 286 nm were similar to those of oxychelerythrine [13], and suggested the presence of a  

2,3,7,8-tetraoxygenated benzo[c]phenanthridin-6-one skeleton. The presence of carbonyl group was 
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revealed by the band at 1644 cm−1 in the IR spectrum, which was confirmed by the resonance at  

δC 162.4 in the 13C-NMR spectrum. The IR of 1 also showed the NH absorption at 3218 cm−1 and the 

methylenedioxy bands at 1040, 938 cm−1. The 1H-NMR spectrum of 1 showed the resonances for  

six aromatic protons [δH 7.20 (1H, s, H-1), 7.43 (1H, br s, H-4), 7.46 (1H, d, J = 9.0 Hz, H-9),  

7.51 (1H, br d, J = 9.0 Hz, H-12), 8.02 (1H, d, J = 9.0 Hz, H-11), 8.09 (1H, d, J = 9.0 Hz, H-10),  

two methoxy groups [δH 4.01 (3H, s, OMe-8), 4.05 (3H, s, OMe-7)], a methylenedioxy group [δH 6.13 

(2H, s, OCH2O-2,3)], and an NH group [δH 9.14 (1H, br s, D2O exchangeable, NH)]. Comparison of 

the 1H- and 13C-NMR data (Table 1) (Figures S3 and S4) of 1 with those of oxychelerythrine [14] 

suggested that their structures are closely related, except that the NH group (δH 9.14) of 1 replaced the 

N-Me group [δH 3.89 (3H, s)] of oxychelerythrine [14]. This was supported by HMBC correlations 

between NH (δH　 9.14) and C-4b (δC 135.6), C-6 (δC 162.4), C-6a (δC 119.7), and C-10b (δC 128.9) 

and NOESY correlations between NH (δH 9.14) and H-4 (δH 7.43). The full assignment of 1H- and  
13C-NMR resonances was supported by 1H–1H COSY, DEPT, HSQC, NOESY (Figure 3), and HMBC 

(Figure 3) spectral analyses. On the basis of the above data, the structure of 1 was elucidated  

as oxynorchelerythrine.  

Figure 3. Key NOESY (3a) and HMBC (3b) correlations of 1. 
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Methyl 4-(2-hydroxy-4-methoxy-3-methyl-4-oxobutoxy)benzoate (2) was isolated as colorless oil. 

The ESI-MS afford the quasi-molecular ion [M + Na]+ at m/z 305 (Figure S5), implying a molecular 

formula of C14H18O6Na, which was confirmed by the HR-ESI-MS (m/z 305.1003 [M + Na]+, calcd 

305.1001) (Figure S6). The presence of two carbonyl groups was revealed by the bands at 1714 and 

1728 cm−1 in the IR spectrum, which was confirmed by the resonances at δ 166.7 and 175.7 in the  
13C-NMR spectrum. The 1H- and 13C-NMR data (Table 1) (Figures S7 and S8) of 2 were similar to 

those of methyl 4-hydroxybenzoate [15], except that the 2-hydroxy-4-methoxy-3-methyl-4-oxobutoxy 

group [δH 1.30 (3H, d, J = 7.0 Hz, H-5ꞌ), 2.88 (1H, m, H-3ꞌ), 3.09 (1H, br s, D2O exchangeable, OH-2ꞌ), 

3.74 (3H, s, OMe-4ꞌ), 4.11 (3H, m, H2-1ꞌ and H-2ꞌ); δC 14.1 (C-5ꞌ), 42.0 (C-3ꞌ), 52.0 (OMe-4ꞌ), 69.8  

(C-1ꞌ), 71.8 (C-2ꞌ), 175.7 (C-4ꞌ)] at C-4 of 2 replaced the 4-hydroxy group [δH 6.58 (1H, s)] of methyl 

4-hydroxybenzoate [15]. This was supported by HMBC correlations between H-1ꞌ (δH 4.11) and  

C-4 (δC 162.1), C-2ꞌ (δC 71.8), and C-3ꞌ (δC 42.0) and NOESY correlations between H-1ꞌ (δH 4.11) and  

H-3/5 (δH 6.93), H-3ꞌ (δH 2.88), and H-5ꞌ (δH 1.30). According to the above data, the structure of 2 was 

elucidated as methyl 4-(2-hydroxy-4-methoxy-3-methyl-4-oxobutoxy)benzoate (2). This was further 

confirmed by the 1H–1H-COSY, NOESY (Table 1), DEPT, HSQC, and HMBC (Table 1) techniques. 
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Table 1. 1H- and 13C-NMR data of 2. At 500 (1H) and 125 MHz (13C) in CDCl3; δ in ppm, 

J in Hz. 

Position δC δH NOESY  HMBC a 

1 123.1    
2 131.6 7.99 (d, J = 9.0) 3, MeOCO-1 3, 4, 6, MeOCO-1 
3 114.1 6.93 (d, J = 9.0) 2, 1ꞌ 1, 4, 5 
4 162.1    
5 114.1 6.93 (d, J = 9.0) 6, 1ꞌ 1, 3, 4 
6 131.6 7.99 (d, J = 9.0) 5, MeOCO-1 2, 4, 5, MeOCO-1 
1ꞌ 69.8 4.11 (m) 3, 5, 3ꞌ, 5ꞌ 4, 2ꞌ, 3ꞌ 
2ꞌ 71.8 4.11 (m) 3ꞌ, 5ꞌ, OH-2ꞌ 1ꞌ, 4ꞌ, 5ꞌ 
3ꞌ 42.0 2.88 (m) 2ꞌ, 5ꞌ 1ꞌ, 2ꞌ, 4ꞌ 
4ꞌ 175.7    
5ꞌ 14.1 1.30 (d, J = 7.0) 1ꞌ, 2ꞌ, 3ꞌ, OMe-4ꞌ 2ꞌ, 3ꞌ, 4ꞌ 

MeOCO-1 51.9 3.89 (s) 2, 6 MeOCO-1 
MeOCO-1 166.7    

OH-2ꞌ  3.09 (br s) 2ꞌ  
OMe-4ꞌ 52.0 3.74 (s) 5ꞌ 4ꞌ 

a From the H- to the C-atom. 

(E)-Methyl 4-(4-((Z)-3-methoxy-3-oxoprop-1-enyl)phenoxy)-2-methylbut-2-enoate (3) was isolated 

as an amorphous powder. The molecular formula C16H18O5 was deduced from a sodium adduct ion at 

m/z 313.1055 [M + Na]+ (calcd 313.1052) in the HR-ESI mass spectrum (Figures S9 and S10). The 

presence of carbonyl groups was revealed by the band at 1715 cm−1 in the IR spectrum, which was 

confirmed by the resonances at δ 166.9 and 167.8 in the 13C-NMR spectrum. The 1H- and 13C-NMR 

data (Figures S11 and S12) of 3 were similar to those of (E)-methyl 4-(4-(3-hydroxypropyl)phenoxy)-

2-methylbut-2-enoate [12], except that the (Z)-3-methoxy-3-oxoprop-1-enyl group [δH 3.73  

(3H, s, OMe-9), 5.83 (1H, d, J = 12.4 Hz, H-8), 6.86 (1H, d, J = 12.4 Hz, H-7); δC 51.3 (OMe-9),  

116.7 (C-8), 143.6 (C-7), 166.9 (C-9)] at C-1 of 3 replaced 3-hydroxypropyl group of (E)-methyl  

4-(4-(3-hydroxypropyl)phenoxy)-2-methylbut-2-enoate [12]. This was supported by (i) the HMBC 

correlations (Figure 4) between between H-7 (δH 6.86) and C-1 (δC 127.3), C-2 (δC 132.2),  

C-6 (δC 132.2), and C-9 (δC 166.9); (ii) the NOESY correlation (Figure 4) between H-7 (δH 6.86) and 

H-2 (δH 7.69) and H-8 (δH 5.83); and (iii) the cis-coupling constant (J = 12.4 Hz) for H-7 and H-8 of 3. 

The NOESY correlations between H-1ꞌ (δH 4.69) and H-5ꞌ (δH 1.93) suggested 2ꞌE-configuration of 3. 

The structure elucidation of 3 was supported by 1H–1H COSY and NOESY (Figure 4) experiments, 

and 13C NMR assignments were confirmed by DEPT, HSQC, and HMBC (Figure 4) techniques.  
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Figure 4. Key NOESY (4a) and HMBC (4b) correlations of 3. 
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release; (d) Glaberide I (9) (with a 6-oxo group) exhibited more effective inhibition than its analogue 6 

(with a 4-hydroxy-3,5-dimethoxyphenyl group at C-6 against fMLP-induced O2
•− generation and 

elastase release; (e) Decarine (4) and (+)-episesamin (8) were the most effective among the isolated 

compounds, with IC50 values of 1.31 ± 0.18 and 1.42 ± 0.16 µg/mL, respectively, against  

fMLP-induced superoxide anion generation and elastase release.  

The action mechanisms of 4, 8, and 11 in human neutrophils were further investigated.  

Mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase/Akt are the 

downstream signaling of fMLP in human neutrophils [31]. Compounds 4, 8, and 11 (10 μg/mL) caused 

a significant reduction of the phosphorylation of Akt and MAPks in fMLP-induced neutrophils  

(Figure 5). Notably, phosphorylation of JNK caused by fMLP was most significantly inhibited by 

these compounds. These results suggest that the anti-inflammatory effects of compounds 4, 8, and 11 

are through the inhibition of activation of MAPKs and Akt in fMLP-activated neutrophils. Our study 

suggests Z. ailanthoides and its isolates (especially 4, 8, and 11) could be further developed as 

potential candidates for the treatment or prevention of various inflammatory diseases.  

Table 2. Inhibitory effects of compounds 1–14 from the twigs of Zanthoxylum ailanthoides 

on superoxide radical anion generation and elastase release by human neutrophils in 

response to fMet-Leu-Phe/cytochalasin B a. 

Compounds 
Superoxide anion  Elastase 

IC50 [µg/mL] b or (Inh %) c 

Oxynorchelerythrine (1) (29.69 ± 1.29) g (20.28 ± 5.20) f 
Methyl 4-(2-hydroxy-4-methoxy-3-methyl-4-

oxobutoxy)benzoate (2) 
(19.46 ± 4.19) f (8.32 ± 2.49) e 

(E)-methyl 4-(4-((Z)-3-methoxy-3-oxoprop-1-
enyl)phenoxy)-2-methylbut-2-enoate (3) 

(33.42 ± 4.53) f (24.15 ± 3.22) e 

Decarine (4) 1.31 ± 0.18 g 1.95 ± 0.28 g 
6-Acetonyldihydrochelerythrine (5) (48.36 ± 4.85) f 7.12 ± 0.31 e 

(−)-Syringaresinol (6) 4.79 ± 0.39 g (7.66 ± 3.71) 
5ꞌ,5ꞌꞌ-Didemethoxypinoresinol (7) (45.22 ± 3.31) g (23.91 ± 5.75) e 

(+)-Episesamin (8) 4.33 ± 0.56 g 1.42 ± 0.16 g 
Glaberide I (9) 3.98 ± 0.44 g (23.00 ± 2.92) f 

(−)-Dihydrocubebin (10) 2.42 ± 0.47 f (32.78 ± 4.94) f 
Xanthyletin (11) 4.16 ± 0.35 g 5.48 ± 0.27 g 

Lanyulactone (12) (36.03 ± 5.00) f (34.55 ± 6.14) f 
Methyl 3,4-dimethoxybenzoate (13) (40.21 ± 6.27) e (29.96 ± 6.18) e 

p-Hydroxybenzoic acid (14) (17.30 ± 9.77) g (32.79 ± 1.48) g 
LY294002 d 1.14 ± 0.12 f 1.94 ± 0.23 f 

a Results are presented as averages ± SEM (n = 4); b Concentration necessary for 50% inhibition (IC50);  
c Percentage of inhibition (Inh%) at 10 µg/mL; d LY294002, a phosphatidylinositol-3-kinase inhibitor, was 

used as a positive control for superoxide anion generation and elastase release; e p < 0.05 compared with the 

control; f p < 0.01 compared with the control; g p < 0.001 compared with the control. 
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Figure 5. Compounds 4, 8, and 11 inhibit the phosphorylation of MAPKs and Akt in 

fMLP-activated neutrophils. Cells were treated with 4, 8, and 10 (10 μg/mL) for 5 min, and 

then stimulated with fMLP for 30 s. Phosphorylation of MAPKs and Akt was analyzed  

by immunoblotting. Densitometric analysis of all samples was normalized to the 

corresponding total protein. 

 

3. Experimental Section 

3.1. General Experimental Procedures 

Melting points were determined on a Yanaco micro-melting point apparatus (Yanaco, Kyoto, 

Japan) and were uncorrected. Optical rotations were measured using a Jasco DIP-370 (Jasco, Tokyo, 

Japan) in CHCl3. Ultraviolet (UV) spectra were obtained on a Jasco UV-240 spectrophotometer (Jasco, 

Tokyo, Japan). Infrared (IR) spectra (neat or KBr) were recorded on a Perkin Elmer 2000 FT-IR 

spectrometer (Perkin Elmer, Norwalk, CT, USA). Nuclear magnetic resonance (NMR) spectra, 

including correlation spectroscopy (COSY), nuclear Overhauser effect spectrometry (NOESY), 

heteronuclear multiple-bond correlation (HMBC), and heteronuclear single-quantum coherence 

(HSQC) experiments, were acquired using a Varian Unity 400 or a Varian Inova 500 spectrometer 

operating (Varian Cary, Palo Alto, CA, USA) at 400 or 500 MHz (1H) and 100 or 125 MHz (13C), 

respectively, with chemical shifts given in ppm (δ) using tetramethylsilane (TMS) as an internal 

standard. Electrospray ionisation (ESI) and high-resolution electrospray ionization (HRESI)-mass 

spectra were recorded on a Bruker APEX II (Bruker, Bremen, Germany) or a VG Platform 

Electrospray ESI/MS mass spectrometer (Fison, Villeurbanne, France). Silica gel (70–230, 230–400 

mesh, Merck, Darmstadt, Germany) was used for column chromatography (CC). Silica gel 60 F-254 

(Merck, Darmstadt, Germany) was used for thin-layer chromatography (TLC) and preparative  

thin-layer chromatography (PTLC). 
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3.2. Plant Material  

The twigs of Z. ailanthoides were collected from Hengchun, Pingtung County, Taiwan, in January 

2009 and identified by Dr. J.-J. Chen. A voucher specimen (ZA 2009) was deposited in the 

Department of Pharmacy, Tajen University, Pingtung, Taiwan. 

3.3. Extraction and Isolation  

The dried twigs (1.3 kg) of Z. ailanthoides were pulverized and extracted with MeOH (3 × 10 L) for 

3 days. The extract was concentrated under reduced pressure at 35 °C, and the residue (132 g) was 

partitioned between EtOAc and H2O (1:1) to provide the EtOAc-soluble fraction (fraction A; 46 g). 

The H2O-soluble fraction was further extracted with BuOH, and the BuOH-soluble part (fraction B;  

43 g) and the H2O-soluble one (fraction C; 40 g) were separated. Fraction A (46 g) was purified by CC 

(2.2 kg of SiO2, 70–230 mesh; CH2Cl2/MeOH gradient) to afford 13 fractions: A1–A13. Fraction  

A1 (2.2 g) was subjected to CC (100 g of SiO2, 230–400 mesh; CH2Cl2/actone 20:1, 1.0 L-fractions) to 

give 9 subfractions: A1-1–A1-9. Fraction A1-5 (255 mg) was purified by MPLC (11.5 g of SiO2,  

230–400 mesh, CHCl3/MeOH 20:1, 300 mL-fractions) to give 11 subfractions: A1-5-1–A1-5-11. 

Fraction A1-5-4 (25 mg) was further purified by preparative TLC (SiO2; n-hexane/EtOAc 6:1) to 

obtain 11 (5.7 mg). Fraction A1-5-5 (31 mg) was further purified by preparative TLC (SiO2; 

CHCl3/actone 30:1) to afford 8 (7.2 mg). Fraction A2 (3.0 g) was subjected to CC (142 g of SiO2,  

230–400 mesh; CH2Cl2/MeOH 35:1, 1.0 L-fractions) to give 6 subfractions: A2-1–A2-6. Fraction  

A2-3 (125 mg) was further purified by preparative TLC (SiO2; hexane/acetone 5:2) to obtain 12  

(5.5 mg). Fraction A3 (4.8 g) was purified by CC (225 g of SiO2, 230–400 mesh; n-hexane/acetone  

3:2–0:1, 1.2 L-fractions) to give 12 subfractions: A3-1–A3-12. Fraction A3-3 (310 mg) was purified 

by MPLC (14.5 g of SiO2, 230–400 mesh; CHCl3/MeOH 50:1–0:1, 350 mL-fractions) to give 12 

subfractions: A3-3-1–A3-3-12. Fraction A3-3-6 (29 mg) was further purified by preparative TLC 

(SiO2; CHCl3/MeOH 30:1) to yield 4 (9.3 mg). Fraction A3-7 (170 mg) was purified by MPLC (8.5 g 

of SiO2, 230–400 mesh, CHCl3/MeOH 40:1, 200 mL-fractions) to give 6 subfractions: A3-7-1–A3-7-6. 

Fraction A3-7-5 (32 mg) was further purified by preparative TLC (SiO2; hexane/EtOAc 1:1) to yield 

10 (7.3 mg). Fraction A3-10 (360 mg) was further purified by CC (17 g of SiO2, 230–400 mesh; 

CHCl3/MeOH 20:1, 500 mL-fractions) to give 8 subfractions: A3-10-1–A3-10-8. Fraction A3-10-2  

(55 mg) was further purified by preparative TLC (SiO2; CH2Cl2/acetone 10:1) to obtain 1 (4.2 mg),  

6 (5.8 mg), and 9 (6.3 mg). Fraction A8 (3.1 g) was subjected to CC (132 g of SiO2, 230–400 mesh; 

CHCl3/MeOH 15:1–0:1, 400 mL-fractions) to afford 14 subfractions: A8-1–A8-14. Fraction A8-6  

(220 mg) was further purified by CC (12 g of SiO2, 230–400 mesh; CHCl3/EtOAc 2:1–0:1,  

250 mL-fractions) to give 9 subfractions: A8-6-1–A8-6-9. Fraction A8-6-3 (28 mg) further purified by 

preparative TLC (SiO2; CH2Cl2/acetone 3:1) to afford 7 (6.2 mg). Fraction A9 (3.4 g) was subjected to 

CC (144 g of SiO2, 230–400 mesh; CHCl3/MeOH 10:1–0:1, 300-mL fractions) to afford 12 subfractions: 

A9-1–A9-12. Fraction A9-7 (146 mg) was further purified by preparative TLC (SiO2; CH2Cl2/MeOH 

20:1) to obtain 3 (3.2 mg). Fraction A9-8 (275 mg) was purified by MPLC (12.4 g of SiO2, 230–400 mesh, 

CHCl3/EtOAc 1:1–0:1, 180 mL-fractions) to give 10 subfractions: A9-8-1–A9-8-10. Fraction A9-8-4  

(32 mg) was further purified by preparative TLC (SiO2; hexane/EtOAc 1:1) to yield 14 (8.3 mg). 
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Fraction A10 (3.2 g) was subjected to CC (135 g of SiO2, 230–400 mesh; n-hexane/acetone 3:1,  

500 mL-fractions) to afford 10 subfractions: A10-1–A10-10. Fraction A10-2 (310 mg) was purified by 

MPLC (13.5 g of SiO2, 230–400 mesh, n-hexane/EtOAc 5:1–0:1, 200-mL-fractions) to give  

7 subfractions: A10-2-1–A10-2-7. Fraction A10-2-3 (46 mg) was further purified by preparative TLC 

(SiO2; CH2Cl2/EtOAc, 10:1) to obtain 13 (9.5 mg). Fraction A10-2-5 (42 mg) was further purified by 

preparative TLC (SiO2; CHCl3) to afford 5 (6.8 mg). Fraction A10-2-6 (38 mg) was further purified by 

preparative TLC (SiO2; CHCl3/MeOH 60:1) to yield 2 (5.1 mg). 

3.3.1. Oxynorchelerythrine (1)  

White amorphous powder. UV (MeOH): λmax (log ε) = 236 (4.89), 281 (3.61), 286 (4.65) nm.  

IR (KBr): υmax = 3218 (NH), 1644 (C=O), 1040, 938 (OCH2O) cm−1. 1H-NMR (CDCl3, 500 MHz):  

δ = 4.01 (3H, s, OMe-8), 4.05 (3H, s, OMe-7), 6.13 (2H, s, OCH2O-2,3), 7.20 (1H, s, H-1), 7.43 (1H, 

br s, H-4), 7.46 (1H, d, J = 9.0 Hz, H-9), 7.51 (1H, br d, J = 9.0 Hz, H-12), 8.02 (1H, d, J = 9.0 Hz,  

H-11), 8.09 (1H, d, J = 9.0 Hz, H-10), 9.14 (1H, br s, D2O exchangeable, NH). 13C-NMR (CDCl3,  

125 MHz): δ = 56.5 (OMe-8), 61.8 (OMe-7), 101.5 (OCH2O), 102.5 (C-4), 104.6 (C-1), 117.1 (C-4a), 

117.7 (C-9), 117.8 (C-10), 118.4 (C-12), 119.7 (C-6a), 121.0 (C-10a), 123.3 (C-11), 128.9 (C-10b), 

131.6 (C-12a), 135.6 (C-4b), 147.0 (C-3), 147.5 (C-2), 150.0 (C-7), 152.6 (C-8), 162.4 (C-6). ESI-MS: 

m/z = 372 [M + Na]+. HR-ESI-MS: m/z = 372.0846 [M + Na]+ (calcd for C20H15NO5Na: 372.0848).  

3.3.2. Methyl 4-(2-Hydroxy-4-methoxy-3-methyl-4-oxobutoxy)benzoate (2)  

Colorless oil. UV (MeOH): λmax (log ε) = 254 (3.96) nm. IR (neat): υmax 3480 (OH), 1728 (C=O), 

1714 (C=O) cm−1. 1H-NMR: see Table 1. 13C-NMR: see Table 1. ESI-MS: m/z = 305 [M + Na]+.  

HR-ESI-MS: m/z = 305.1003 [M + Na]+ (calcd for C14H18O6Na: 305.1001). 

3.3.3. (E)-Methyl 4-(4-((Z)-3-methoxy-3-oxoprop-1-enyl)phenoxy)-2-methylbut-2-enoate (3)  

Amorphous powder. UV (MeOH): λmax (log ε) = 296 (4.18) nm. IR (KBr): υmax = 1715 (C=O) cm−1. 
1H-NMR (CDCl3, 400 MHz): δ = 1.93 (3H, s, H-5ꞌ), 3.73 (3H, s, OMe-9), 3.76 (3H, s, OMe-4ꞌ),  

4.69 (2H, d, J = 5.6 Hz, H-1ꞌ), 5.83 (1H, d, J = 12.4 Hz, H-8), 6.86 (1H, d, J = 12.4 Hz, H-7), 6.89  

(2H, d, J = 8.8 Hz, H-3 and H-5), 6.93 (1H, br t, J = 5.6 Hz, H-2ꞌ), 7.69 (2H, d, J = 8.8 Hz, H-2 and H-6). 
13C-NMR (CDCl3, 100 MHz): δ = 13.0 (C-5ꞌ), 51.3 (OMe-9), 51.5 (OMe-4ꞌ), 64.8 (C-1ꞌ), 114.2 (C-3), 

114.2 (C-5), 116.7 (C-8), 127.3 (C-1), 129.6 (C-3ꞌ), 132.2 (C-2), 132.2 (C-6), 137.0 (C-2ꞌ), 143.6  

(C-7), 159.2 (C-4), 166.9 (C-9), 167.8 (C-4ꞌ). ESI-MS: m/z = 313 [M + Na]+. HR-ESI-MS:  

m/z = 313.1055 [M + Na]+ (calcd for C16H18O5Na: 313.1052).  

3.4. Biological Assay  

The effect of the isolated compounds on neutrophil pro-inflammatory response was evaluated by 

monitoring the inhibition of superoxide anion generation and elastase release in fMLP/CB-activated 

human neutrophils in a concentration-dependent manner. The purity of the tested compounds was  

>98% as identified by NMR and MS. LY294002 (purity >99%, Sigma, St. Louis, MO, USA) was used 

as a positive control. 
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3.4.1. Preparation of Human Neutrophils 

Human neutrophils from venous blood of healthy, adult volunteers (20–28 years old) were isolated 

using a standard method of dextran sedimentation prior to centrifugation in a Ficoll Hypaque gradient 

and hypotonic lysis of erythrocytes [32]. Purified neutrophils containing >98% viable cells, as 

determined by the trypan blue exclusion method [33], were re-suspended in a calcium (Ca2+)-free 

HBSS buffer at pH 7.4 and were maintained at 4 °C prior to use.  

3.4.2. Measurement of Superoxide Anion Generation 

The assay for measurement of superoxide anion generation was based on the SOD-inhibitable 

reduction of ferricytochrome c [34,35]. In brief, after supplementation with 0.5 mg/mL 

ferricytochrome c and 1 mM Ca2+, neutrophils (6 × 105/mL) were equilibrated at 37 °C for 2 min and 

incubated with different concentrations (10–0.01 μg/mL) of compounds or DMSO (as control) for  

5 min. Cells were incubated with cytochalasin B (1 μg/mL) for 3 min prior to the activation with  

100 nM formyl-L-methionyl-L-leucyl-L-phenylalanine for 10 min. Changes in absorbance with the 

reduction of ferricytochrome c at 550 nm were continuously monitored in a double-beam, six-cell 

positioner spectrophotometer with constant stirring (Hitachi U-3010, Tokyo, Japan). Calculations were 

based on differences in the reactions with and without SOD (100 U/mL) divided by the extinction 

coefficient for the reduction of ferricytochrome c (ε = 21.1/mM/10 mm).  

3.4.3. Measurement of Elastase Release 

Degranulation of azurophilic granules was determined by measuring elastase release as described 

previously [35]. Experiments were performed using MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide as the 

elastase substrate. Briefly, after supplementation with MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide  

(100 μM), neutrophils (6 × 105/mL) were equilibrated at 37 °C for 2 min and incubated with 

compounds for 5 min. Cells were stimulated with fMLP (100 nM)/CB (0.5 μg/mL), and changes in 

absorbance at 405 nm were monitored continuously in order to assay elastase release. The results were 

expressed as the percent of elastase release in the fMLP/CB-activated, drug-free control system.  

3.4.4. Western Analysis 

Neutrophils were preincubated with compounds for 5 min before adding fMLP at 37 °C for 30 s. 

Cells was lysed in 5 × Laemmli’s sample buffer. Cell lysates were subjected to Immunoblotting,  

and the immunoreactive bands were visualized by an enhanced chemiluminescence system  

(Amersham Biosciences, Foster City, CA, USA) and detected by UVP imaging system (UVP, Upland, 

CA, USA) [36,37]. 

3.4.5. Statistical Analysis 

Results are expressed as the mean ± SEM, and comparisons were made using Student’s t-test.  

A probability of 0.05 or less was considered significant. The software SigmaPlot (Systat Software,  

San Jose, CA, USA) was used for the statistical analysis. 
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4. Conclusions  

Fourteen compounds, including a new benzo[c]phenanthridine (1) and two new benzenoids (2 and 3), 

were isolated from the twigs of Z. ailanthoides. The structures of these compounds were established on 

the basis of spectroscopic data. Reactive oxygen species (ROS) [e.g., superoxide anion (O2
•−), 

hydrogen peroxide] and granule proteases (e.g., elastase, cathepsin G) produced by human neutrophils 

contribute to the pathogenesis of inflammatory diseases. The effects on neutrophil pro-inflammatory 

responses of isolates were evaluated by suppressing fMLP/CB-induced O2
•− generation and elastase 

release by human neutrophils. The results of anti-inflammatory experiments indicate that compounds 

4, 6, and 8–11 can significantly inhibit fMLP-induced O2
•− generation and/or elastase release. Decarine 

(4) and (+)-episesamin (8) were the most effective among the isolated compounds, with IC50 values of 

1.31 ± 0.18 and 1.42 ± 0.16 µg/mL, respectively, against fMLP-induced O2
•− generation and elastase 

release. Compounds 4, 8, and 11 (10 μg/mL) caused a significant reduction of the phosphorylation of 

Akt and MAPks in fMLP-induced neutrophils. Thus, the anti-inflammatory effects of compounds 4, 8, 

and 11 are through the inhibition of activation of MAPKs and Akt in fMLP-activated neutrophils. Our 

study suggests Z. ailanthoides and its isolates (especially 4, 8, and 11) could be further developed as 

potential candidates for the treatment or prevention of various inflammatory diseases.  
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