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Abstract

WRINKLED1 (AfWRI1) is a key transcription factor in the regulation of plant oil synthesis in seed and non-seed
tissues. The structural features of WRI1 important for its function are not well understood. Comparison of WRI1
orthologs across many diverse plant species revealed a conserved 9 bp exon encoding the amino acids “VYL”. Site-
directed mutagenesis of amino acids within the VYL’ exon of A{WRI1 failed to restore the full oil content of wrif-1
seeds, providing direct evidence for an essential role of this small exon in Af{WRI1 function. Arabidopsis WRI1 is
predicted to have three alternative splice forms. To understand expression of these splice forms we performed
RNASeq of Arabidopsis developing seeds and queried other EST and RNASeq databases from several tissues and
plant species. In all cases, only one splice form was detected and VYL was observed in transcripts of all WRI1
orthologs investigated. We also characterized a phylogenetically distant WRI1 ortholog (EQWRI1) as an example of a
non-seed isoform that is highly expressed in the mesocarp tissue of oil palm. The C-terminal region of EgWRI1 is
over 90 amino acids shorter than AfWRI1 and has surprisingly low sequence conservation. Nevertheless, the
EgWRI1 protein can restore multiple phenotypes of the Arabidopsis wri1-1 loss-of-function mutant, including reduced
seed oil, the “wrinkled” seed coat, reduced seed germination, and impaired seedling establishment. Taken together,
this study provides an example of combining phylogenetic analysis with mutagenesis, deep-sequencing technology
and computational analysis to examine key elements of the structure and function of the WRI1 plant transcription
factor.
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Introduction and wri1-1 seeds reveals that the majority of the genes which
are expressed at reduced level in the wri1-1 mutant are fatty

Many plant species accumulate triacylglycerol (TAG) in their acid and glycolytic enzymes [4]. Recent studies have confirmed

seeds as a major storage component that provides carbon and
energy for seedling development. These oils are also a staple
in the human diet and are increasingly important as renewable
feed stocks for industry. Currently, a wealth of information
supports the pivotal role of WRINKLED1 (WRI1) in the
regulation of plant seed oil biosynthesis. Seeds of the
Arabidopsis AtWRI1 (At3g54320) loss-of-function mutant
wri1-1 display an 80% reduction in TAG accumulation
compared to wild-type (WT) [1]. WRI1 has been identified as a
member of the APETALA2 (AP2) family of transcription factors
[2,3]. Comparison of the transcriptome between developing WT
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a number of genes encoding enzymes involved in fatty acids
synthesis and late glycolysis that are WRI1 targets [5,6] which
is also evidenced by high transcript co-expression for these
genes with WRI1 in Arabidopsis developing seeds [7] and Zea
mays (Z. mays) [8]. . Specific motifs in the fatty acids synthesis
genes to which the WRI1 protein binds have been
characterized [5,9]. WRI1 orthologs from Z. mays and Brassica
napus (B. napus) have also been shown to function in plant oil
biosynthesis [10,11,12]. Expression of AtWRI1 and two WRI1
orthologs identified from Z. mays are also able to restore the
phenotypes of wri1-1 and wri1-4, such as reduced seed oil
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content [2,11]. An increase in oil accumulation in transgenic
Arabidopsis, B. napus or Z. mays seeds expressing A{WRI1 or
other WRI1 orthologs has been reported [2,10,12]. In addition
to its roles in regulating plant oil biosynthesis, AtWRI1 is
required for optimal seed germination and seedling
establishment [13].

AtWRI1 and WRI1 orthologs from other plant species are
highly expressed in seed tissue and coordinately expressed
with fatty acid biosynthetic enzymes [2,10,11,14]. Recently, an
ortholog of WRI1 was found to be highly expressed in the
mesocarp of oil palm (EgWRI1) [15,16]. The expressed
sequence tag (EST) levels for EgWRI1 are 50 fold higher than
in date palm (which does not accumulate oil) and increase
during fruit ripening in close coordination with increases in oil
accumulation [15]. These data and the recent characterization
of AtWRI2, 3 and 4 [17] provide a strong indication that WRI1
and its homologs play similar roles in regulating fatty acid
synthesis in both seed and non-seed tissues. AtWRI3 and
AtWRI4, that are expressed most highly in non-seed tissues,
were shown to rescue the wrinkled seed and low oil
phenotypes of the wri1-3 mutant [17]. Although EgWRI1 is
highly expressed in fruit mesocarp, BlastP analysis of EgWRI1
protein versus the Arabidopsis proteome indicates its highest
similarity is with AtIWRI1, rather than Af\WRI2, 3, or 4.

Oil palm is a monocotyledonous plant that diverged from
Arabidopsis >120 million years ago. Interestingly, the sequence
of EgWRI1 is 93 amino acids shorter than A{WRI1 and exhibits
low sequence identity over the C-terminal half of the proteins.
These differences offered an opportunity to determine whether
this divergent non-seed expressed EgWRI1 is a functional
WRI1-ortholog able to control oil synthesis and other
phenotypes in a heterologous system.

Alternative splicing is an important form of regulation for
many genes and contributes to the diversity of the
transcriptome and proteome and thereby extends the range of
functions exerted by single genes. Based on in silico analysis,
approximately 6000 genes in Arabidopsis are predicted to have
alternative  splice forms, including approximately 340
transcription factor-encoding genes including WRI1 [18]. The
application of high-throughput transcript sequencing has
provided direct evidence that at least 42% (~10,000) of
Arabidopsis genes are alternatively spliced [19],

Alternative  splicing can occur in spatially and
developmentally specific patterns, which are sometimes
regulated through sensing environmental cues or stresses [20].
Some Arabidopsis genes express different splice variants in
different tissues, in response to stress, and can also lead to
differential subcellular localization of protein products [20,21].
Some Arabidopsis transcription factors repress their own
function through producing alternative splice variants and by
forming heterodimers [18,22]. Currently, three alternative splice
forms are predicted for A{WRI1 and it is unknown whether all
three AtWRI1 splice variants can be found in plant cells; or if
present, whether these may have different patterns of
expression or roles in plant fatty acid biosynthesis. The recent
availability of very comprehensive EST and transcriptomic
datasets for many Arabidopsis tissues provided the opportunity
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to evaluate the possible occurrence of the predicted alternative
AtWRI1 splice forms.

Here we show that expression of EQWRI1 in the Arabidopsis
wri1-1 mutant is able to complement reduced seed oil content
and other wri1-1 impaired phenotypes. In addition, we provide
evidence that WRI1 splice form 3 (At3g54320.3) is the only
form present in multiple Arabidopsis tissues. Furthermore,
analysis of transcriptomic data from other species leads to a
similar conclusion. The role of a small conserved exon of splice
form 3 is further investigated.

Results

Expression of HA-EgWRI1 rescues the low oil content
in wri1-1 seeds

A comparison of protein sequences between A{WRI1 and
EgWRI1 indicates that EQWRI1 is 93 amino acids shorter
compared to AfWRI1 (Figure 1A). Almost all regions of high
similarity between AfWRI1 and EgWRI1 are located in the N-
terminal ~ 230 amino acids (Figure 1A). The C-terminal regions
of AtWRI1 (190 amino acids) and EgWRI1 (98 amino acids)
are strikingly diverged, (only 28% identical) with several large
“deletions” within the EgWRI1 sequence. Furthermore, the
predicted secondary structures bear little resemblance; AfWRI1
includes six helix regions in the C-terminal end of the protein,
whereas EgWRI1 possesses no predicted helix regions in the
C-terminal region (Figure 1B).

To better understand features of the WRI1 structure that are
important for WRI1 function we tested the ability of the
divergent EQWRI1 to restore seed oil and other phenotypes in
the Arabidopsis wri1-1 mutant background. Beyond EgWRI1’s
ability to restore known wri7-1 phenotypes, we also asked
whether its expression might lead to additional phenotypes,
such as higher oil accumulation. Such a result might occur if a
heterologous protein ‘escapes’ repression that possibly acts on
the C-terminus of the native protein or its mMRNA.

In order to investigate the ability of EQWRI1 to restore
several phenotypes observed in wri1-1, we generated
transgenic plants expressing HA-EgWRI1 under the
constitutive cauliflower mosaic virus (CaMV) 35S promoter. As
a positive control, experiments were conducted in parallel with
transgenic wri1-1 expressing HA-AtWRI1. As shown in Figure
2, homozygous transgenic wri1-1 expressing HA-EgWRI1
displayed a ‘non-wrinkled’ seed surface and normal seed
shape indicating rescue of these phenotypes (also observed in
transgenic wri1-1 expressing HA-AtWRI1). We further
measured the fatty acid content in seeds of wri1-1 expressing
HA-EgWRI1. As shown in Figure 3, expression of HA-EgWRI1
restored the fatty acid content of wri1-1 seeds, similar to wri1-1
seeds rescued by expression of HA-AtWRI1. The fatty acid
content in seeds of HA-EgWRI1 transgenic lines (#1-4, #11-1,
#13-5 and #14-1) compared to WT were not different with
statistical significance (P > 0.05, t-test). In addition to its lower
oil content, the fatty acid composition of wri7-1 differs from WT
in its lower relative content of 18:1 and higher content of 22:1
[1]. When the wri1-1 mutant is complemented with HA-AtWRI1
the fatty acid composition returns to a WT profile (Figure S1).
In contrast, the fatty acid profile of wri7-1 expressing HA-
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Figure 1. Alignment of protein sequence of EgWRI1 and AfWRI1. A) EgWRI1 is 93 amino acids shorter compared to AfWRI1.
Most of the difference between protein sequences of EgWRI1 and AWRI1 occurs at the C-terminal half of the protein (highlighted
by boxes). Conservation of amino acids is denoted by different colors as illustrated by the scale bar. The alignment was analyzed by
the PRALINE program (http://www.ibi.vu.nl/programs/pralinewww/). B) Secondary structure of AfWRI1 and EgWRI1 was analyzed
by SWISS-MODEL (http://swissmodel.expasy.org/) and structure figure is manually generated based on the prediction. The orange
cylinders and purple arrows indicate helix and extended-beta strands, respectively. Numerous helix and extended-beta structures
that are found in the C-terminal of A{WRI1 are missing in the C-terminal of EgWRIA1.

doi: 10.1371/journal.pone.0068887.g001
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EgWRI1 was only partially restored. Although, most fatty acids
were not significantly different, the content of 18:1 and 22:1
were more similar to wri7-1 than to WT (Figure S1). A similar
result was observed in the complementation of wri?1 by
ZmWRI1 orthologs [11].

Seed germination and impaired seedling phenotypes of
wri1-1 are restored by HA-EgWRI1

The wri1-1 mutant exhibits reduced seed germination and
impaired seedling establishment when germinated on medium
without the addition of sucrose [13]. Expression of HA-EgWRI1
corrected the reduced seed germination of wri1-1 (Figure 4A).
Transgenic wri1-1 mutants expressing HA-EgWRI1 established
seedlings normally on agar-solidified medium lacking sucrose
(Figure 4B) and on soil (Figure 4C).

As a further test of the influence of WRI1 structural variants
we also generated transgenic wri1-1 expressing EgWRI1-TAP
or AtWRI1-TAP. The low fatty acid content (Figure S2) and
altered fatty acid profile of wri1-1 seeds (Figure S3), reduced
seed germination (Figure S5A) and impaired seedling
establishment (Figure S4B) were all restored by AtWRI1-TAP.
These results indicate that the fusion of the TAP tag at the C-
terminus of AfWRI1 did not cause any interference with the
AfWRI1 functions. In contrast, although the reduced seed
germination of wri1-1 was restored by EgWRI1-TAP (Figure
S4A), this construct only partially restored the fatty acid content
(Figure S2) and profile (Figure S3) of wri1-1. In addition,
seedling establishment remained unsuccessful in transgenic
wri1-1 plants expressing EgWRI1-TAP (Figure S4B).

Small exon “VYL” is essential for function of AGWRI1

The results above indicated that EgWRI1 is able to
complement the phenotypes of wrif-1 mutant despite major
differences in the C-terminal amino acid sequences of WRI1
from Arabidopsis and oil palm. A detailed analysis of features
conserved between AfWRI1, EgWRI1 and other WRI1
orthologs from diverse species revealed a short protein
sequence “VYL” (Figure S5A) present in the first AP2 domain
(responsible for DNA-binding [23,24]). To better understand the
function of the VYL sequence we asked if amino acid changes
of "VYL" would lead to an impairment of AfWRI1 function. A
total of four versions of AfWRI1 with amino acids substitutions
(AtWR|1V99A/V1OOA/L101A; AtWR”\/QQD; AtWR|1Y1OOC; AtWR|1L101Q)
were generated and used to transform the wrif-1 mutant.
Measurement of fatty acid content in these transgenic wri7-1
seeds indicated that AfWRI1VSSAY100ALI01A fajled to restore the
fatty acid content of wrif-1. The mutants AfWRI1Y1%¢) or
AtWRIMHQ with single changes in the VYL sequence could
partially, but not completely complement wri1-1 fatty acid
content (Figure 5). Taken together, these results indicate that
mutation of residues encoded by this small exon lead to
impairment of AfWRI1 function and that “VYL” is an essential
component of the A{WRI1 structure.

Analysis of WRI1 alternative splice forms

In AfWRI1, “VYL” is encoded by a 9 bp exon (Figure 6).
Micro-exons of 2-25 bp are known to sometimes facilitate
alternative splicing events [25]. AtWRI1 is predicted to have
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three alternative splice forms (Figure 6) of different lengths and
different protein sequences. Notably, “VYL” is absent from one
of the predicted splice forms (At3g54320.2) In addition, Multiple
Sequence Alignment examination of predicted protein
sequences from approximately 34 plant genomes in the
Phytozome database 9.0 (http://www.phytozome.org) indicated
that VYL is also missing from the predicted AfWRI1-
orthologous amino acid sequences of 13 species (Figure S5B).
These results indicate that the prediction of alternative protein
sequences (or splice forms) for WRI1-like proteins occurs
throughout the plant kingdom, and is not peculiar to
Arabidopsis or its close relatives. We also note that 2 of 34
predicted amino acid sequences of WRI1 orthologs at
Phytozome include “IYL” in place of “VYL”.

The three predicted alternative splice forms of AtWRI1
(At3g54320.1, At3g54320.2 and At3g54320.3; http:/
www.arabidopsis.org) are referred to as splice form 1, 2 and 3
in this work. As highlighted in Figure 6, the distinguishing
features of these three forms are: A) there is a short 9 bp exon
near the N-terminus that encodes the amino acid sequence
VYL. This exon is present in forms 1 and 3, but absent in form
2. B) In form 1, but not 2 or 3 there is an additional intron at the
3’ end of the coding sequence (circled). If removed by splicing,
the stop codon is altered resulting in an additional 9 amino
acids (FQGLFVGSE) at the C-terminus of form 1. C) Finally, in
form 2, the first exon begins with a downstream ATG resulting
in a protein that is 74 amino acids shorter. In the case of
AtWRI1, the three splice forms are based on predicted gene
models, rather than experimental evidence, but each has been
previously assigned the same confidence level.

These predictions for Arabidopsis and for at least 33 other
plant species with sequenced genomes, raised the question
whether different WRI1 splice forms are present in vivo and
have different functions. We specifically asked: 1) Are all three
AtWRI1 splice forms expressed in Arabidopsis? 2) Can we find
multiple WRI1 splice forms in other plant species? 3) If we can
find multiple WRI1 splice forms, are these expressed differently
in different tissues? To evaluate the possible expression of
multiple spice forms of WRI1, we tested directly by reverse
transcription polymerase chain reaction (RT-PCR), performed
RNASeq analysis of developing Arabidopsis seeds, and also
searched publicly available large transcript databases.

AtWRI1 splice form 3 is the major form expressed in
Arabidopsis seedlings

In many cases the presence of alternative splice forms can
be detected by the different sizes of RT-PCR products [18,22].
We therefore performed RT-PCR on RNA extracted from
young Arabidopsis seedlings (3-to-9-day-old) and with primers
targeted at the short 9 bp exon and the last 3’ intron. Because
expression of AtWRI1 is found to be sugar-inducible [3], we
grew Arabidopsis on medium with or without the addition of
sucrose, to determine if different AtWRI1 splice forms might be
expressed differently under these two conditions. A primer set
(FW1 + RV1) was designed to amplify a PCR product of 157bp
(in splice form 1 or 3) or 148 bp (in splice form 2) respectively
(Figure S6A). Sequencing of fourteen independent PCR
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Figure 2. HA-EgWRI1 (or HA-AtWRI1) complements the “wrinkled” feature of wri1-1 seeds.
doi: 10.1371/journal.pone.0068887.9g002
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transgenic wri1-1 expressing HA-EgWRI1 or HA-AtWRI1 are shown in the figure. Results are shown as means + SE (n = 3-4) of

biological replications.
doi: 10.1371/journal.pone.0068887.g003

products (Figure S6B) indicated in all cases, the presence of
AtWRI1 exon 3.

The primer set (FW2 + RV2) was designed to amplify a PCR
product of 269 bp (in form 2 or 3) or 167 bp (in form 1)
respectively. As shown in Figure S6C, all the samples that we
tested supported the existence of form 2 or 3 (a PCR product
of 269bp). A PCR product of form 1 (167bp) was not detected.
Further sequencing of each PCR product in Figure S6C also
confirmed this conclusion. Combining the results, this evidence
indicated that splice form 3 of AtWRI1 is the major form
expressed in Arabidopsis seedlings.

As a second approach to evaluate expression of alternative
splice forms in Arabidopsis, we searched a number of
databases of Sanger ESTs, 454 pyrosequencing and lllumina
RNASeq. Although large EST and RNASeq databases are
available from several Arabidopsis tissues, the datasets do not
include large numbers of reads from developing seeds, where
WRI1 is most highly expressed. Therefore, we performed
RNASeq analysis on three stages of developing seeds.
Approximately 100 million 50 nt lllumina reads were mapped to
the TAIR10 genome and analyzed. From these data, WRI1
was expressed at a level of 165 Fragments per Kilobase per
Million fragments (FPKM) (average of three developmental
stages). This represents approximately 0.01% of the mRNA
population and provides a more quantitative estimate of WRI1
expression than previously available for Arabidopsis
developing seeds. Over 500 WRI1 reads mapped to the region
of the WRI1 gene that overlaps the 9 bp exon 3. A section of
the reads is presented in GBrowse format (Figure S7). No
reads were detected that lacked exon 3. We also examined the
3’ sequences and found no sequences for splice form 1. Based
on the number of reads representing splice form 3 and no
reads representing forms 1 or 2, a binomial test indicated high
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probability (P > 0.999) that splice forms 1 or 2 of WRI1 are not
expressed in Arabidopsis developing seeds.

Alternative splice forms of genes are sometimes expressed
only in specific tissues [20,21]. To evaluate this possibility, we
also examined publicly available llumina RNASeq data from
Arabidopsis roots and flowers. Although WRI1 is expressed at
much lower levels in these tissues (13.1 FPKM root, 10.9
FPKM flower), the 9 bp exon 3 was represented by over 80
RNASeq reads from roots and 20 reads from flowers. No
RNASeq reads were found that lacked exon 3. Examination of
the 3’ end (represented by 130 RNASeq reads in roots and 60
reads in flowers) revealed that the predicted 3’ intron was not
spliced out in any reads. Thus, splice form 1 was also not
detected in either root or flower datasets. Taken together,
although expression of the alternative splice forms at very low
levels cannot be ruled out, these data indicate that splice forms
1 or 2 are unlikely to play a biological role in Arabidopsis
flowers and roots grown under standard condition.

Analysis of WRI1 alternative splice form expression in
plant species other than Arabidopsis

The presence/absence of the 9 bp short exon in WRI1 was
also examined for a number of other plant species. We chose a
69 nt sequence which includes exon 3 with 60 additional bp of
flanking sequence (Figure S8A) to search 2.2 million
pyrosequencing (454) ESTs from developing seeds of B. napus
[14]. More than 200 of these ESTs were identified as WRI1
orthologs and of these > 80 spanned the exon 3 region. All of
these reads included sequences that represent exon 3.
Similarly, in the analysis of > 0.9 million castor ESTs [14], > 50
of these ESTs spanned the 5 sequence region and all
contained the VYL sequence. Finally, from analysis of > 4

July 2013 | Volume 8 | Issue 7 | 68887



WRI1 of Arabidopsis and Oil Palm

- -
S N
o o

o]
o

H
o

% Germination
S 3

o

WT wri1-1 #1-4 #2-3 #11-1 #16-3 #1-2 #7-2 #8-3
HA-EgWRI1 in wri1-1  HA-AtWRI1 in wri1-1

< e ,!
{

HA-EgWRI1
(wri1-1) #1-4

120
100
=< 80
60

in soil (%

40

20

Seedlings establishment

WT wri1-1 #1-4 #2-3 #11-1 #16-3 #1-2 #7-2 #8-3

HA-EgWRI1 in wri1-1 HA-AtWRI1 in wri1-1

Figure 4. Seed germination and seedling establishment of wri1-1 transformed with HA-AtWRI1 or HA-EgWRI1. A)
Expression of HA-EgWRI1 rescues the reduced germination of wri1-1 seeds. Results are shown as means + SE (n = 3). Seed
germination of all HA-EgWRI1 transgenic lines were not significantly different compared to WT (P > 0.05, t-test). B) Expression of
HA-AtWRI1 or HA-EgWRI1 in wri1-1 complements the failure of seedling establishment in growth medium without sucrose. C) HA-
EgWRI1 rescues impaired seedling establishment of wri7-1 plants in soil. Results are shown as means + SE (n = 4). Seedling
establishment of HA-EgWRI1 transgenic lines (#1-4, #11-1, #16-3) did not differ significantly compared to WT (P > 0.05, t-test).
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doi: 10.1371/journal.pone.0068887.g005

million ESTs of oil palm mesocarp [15], > 200 ESTs spanned
the exon 3 region, and all encoded ‘VYL”.

In addition, an analogous procedure was used to identify
splicing at the 3’-end that distinguishes splice form 1 from
splice forms 2 & 3. A search sequence of 32 nt located just
before the last intron (spliced out in AtWRI1 splice form 1;
Figure S9A), was used to identify B. napus ESTs that encoded
the 3’ end (see Figure S9B). In the B. napus EST database, 80
ESTs were identified that closely matched the 3’ sequence of
WRI1 and in all cases the stop codon position matched that of
AtWRI1 splice forms 2 and 3, but not 1. The same conclusion
was reached by analysis of 90 castor ESTs containing the 3’
stop codon. Taken together, for B. napus, castor and oil palm,
we could not detect evidence for splice forms other than those
corresponding to WRI1 splice form 3.

Discussion

Monocot non-seed EgWRI1 is functional in dicot
Arabidopsis plant

In addition to AtWRI1, the seed-expressed BnWRI1 or
ZmWRI1 orthologs have been confirmed to function in
regulation of seed oil biosynthesis by their ability to
complement wri1 or to increase seed oil content [10,11,12].
Recently two AtWRI1 homologs (AtWRI3 and AtWRI4) that are
stem and flower expressed, were shown to also activate
expression of fatty acid biosynthetic genes and to complement
the wri1 mutant [17]. In this study we asked whether a more
highly diverged WRI1 ortholog associated with very high oil
levels in non-seed tissue might have evolved different
properties associated with this function. It was also unknown
whether this shorter and divergent monocot non-seed EgWRI1
could function in regulating seed oil synthesis in a dicot or
result in different phenotypes in germination and seedling
development. Whether ZmWRI1a and ZmWRI1b can
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complement germination and seedling development
phenotypes of wri1 has not been reported. Our work indicated
that expression of EgWRI1 is able to rescue the ‘wrinkled’ seed
coat (Figure 2), reduced seed oil content (Figure 3) and other
phenotypes of wri1-1 (Figure 4). Interestingly, we noticed that
the seed fatty profile of transgenic wri1-1 expressing EgWRI1
is not completely rescued compared to wrif-1 expressing
AtWRI1 (Figure S1). Previous work also found that expression
of ZmWRI1a or ZmWRI1b in a wri1 mutant did not restore the
fatty acid profile to that of WT [11]. However, other than the
phenotype of fatty acid profiles in transgenic wri? plants, there
were no differences found between transgenic wri7-1 plants
expressing EgWRI1 or AtWRI1, in restoring wri1 mutant
phenotypes to WT (Figures 2-4). These results indicate that
despite major differences in their primary and secondary
structure, this diverged EgWRI1 functions similarly to AtWRI1
in the wri1-1 mutant.

A question that is raised by this study concerns the function
of the C-terminal regions of EQWRI1 and other WRI1 proteins,
which are likely activation domains interacting with other
factors of the transcription complex [26]. The highest sequence
similarity between EgWRI1 and AfWRI1 is located in the N-
terminus (~ 230 amino acids), which includes the crucial AP2
domains, a highly conserved feature in all AP2-type
transcription factors. EQWRI1 is 93 amino acids shorter than
AfWRI1 (Figure 1) and 92 of the amino acid ‘deletions’ are in
the C-terminal region. After the AP2 domains, EgWRI1 is 111
amino acids long, compared to 203 amino acids for AIWRI1. In
this study, we observed that fusion of an approximately 20 kDa
protein tag (TAP) at the C-terminal region of EgWRI1 resulted
in only minor restoration of the wri1-1 seed oil and wrinkled
phenotypes (Figure S2-S4). However, EgWRI1-TAP retained
some function, based on the fact that reduced germination of
wri1 was still rescued (Figure S4A). In contrast, AIWRI1-TAP
successfully complemented all phenotypes of wri1-1 that we
examined.
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Figure 6. Three predicted alternative splice forms of AtWRI1 (At3g54320.1, At3g54320.2, and At3g54320.3). A) Model of
AtWRI1 splice forms 1, 2 and 3. The notable features of these three forms are highlighted: (1) presence in splice forms 1 and 3 of a
short 9 bp exon (TTTATCTGG) that encodes amino acids “VYL”; (2) presence of an intron at the 3’ end in splice form 1 and its
absence in splice forms 2 and 3 is circled. B) Alignment of predicted protein sequence of three AtWRI1 alternative splice forms.
Exon 3 (amino acids sequence “VYL”) in AtWRI1 splice forms 1 and 3 and absence from splice form 2 are highlighted in green.
Unique amino acids “FQGLFVGSE” (form 1) and “V” (form 2 and 3) at the C-terminus of Af\WRI1 splice forms are highlighted in
yellow and red, respectively.

doi: 10.1371/journal.pone.0068887.g006

Two predicted WRI1 splice forms are likely ‘artifacts’ of splice form that can be found in developing seeds, roots,
gene prediction software flowers, and young seedlings of Arabidopsis and in developing

Alternative splicing is an important form of regulation for seeds of B. napus and castor. Alternative splice forms in some
many genes and can increase the functional diversity of cases produce protein products that lack or add functional
transcripts in eukaryotic cells. Evidence presented in this domains, expanding their ability to interact within diverse
manuscript indicates that splice form 3 of WRI1 is the only cellular processes. For example, a splice form of Arabidopsis
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IDD14B encodes a product lacking a functional DNA-binding
domain but plays a role in attenuating the activity of the full-
length IDD14a through the formation of heterodimers [18].
Similarly, Arabidopsis CCA1 also produces a shortened
alternative splice variant that results in the formation of
nonfunctional heterodimers, decreased DNA binding activity
and alters the circadian rhythm [22]. These and other
examples, together with the alternative predicted forms of
WRI1 raised the intriguing possibility that plant cells might use
a similar self-regulatory mechanism of repressing or otherwise
modifying WRI1 function through expressing alternative splice
forms. However, all of our experimental evidence and
bioinformatic searches failed to detect the presence of
predicted WRI1 splice form 2 or 3.

The presence of WRI1 splice form 1 represented by one EST
from suspension cultures treated with cycloheximide indicates
that alternative splicing of WRI1 can occur. However, since
alternative splice variants can be produced due to splice errors
induced by stress [20], it is likely that cycloheximide led to
aberrant splicing that is reflected by this one EST. Given the
fact that WRI1 splice form 1 has been observed in only this one
case and differs by only eight additional amino acids at the
WRI1 C-terminal region (Figure 6B), we consider that a specific
function of WRI1 splice form 1 under normal plant growth is
very unlikely.

Taken together, we conclude that the WRI1 splice form 1
and 2, while predicted by automated annotation at the same
confidence level as splice form 3, are unlikely to play a role in
gene regulation, in the diverse tissues we examined. The
prediction of forms 1 and 2 may be related to the fact that the
sequences at the intron/exon junctions are not ‘cannonical
which can lead to incorrect exon identification [27,28]. This
‘error’ in gene prediction is not specific to Arabidopsis because
in the Phytozome database approximately one third of
predicted protein sequences of WRI1 orthologs lack the VYL
sequence (Figure S5B).

Small exon encoded “VYL” residues are a key
component of AtWRI1 function

“VYL” is conserved in a number of WRI1 orthologs
discovered in many plant species (Figure S5). The possible
involvement of the “VYL” sequence of AfWRI1 in alternative
splicing of WRI1 was discussed by Masaki et al., (2005), but
biological or functional evidence to demonstrate a role of VYL
in plants was not provided. Krizek (2003) used yeast to test the
ability of a randomly mutagenized population of the Arabidopsis
AP2-type transcription factor, AINTEGUMENTA (ANT) to bind
to an ANT target sequence in yeast. Mutation of either “Y” or
“L” lead to a full impairment of transcription activation while
mutation of “V” lead to a reduced activation of ANT [29]. In the
present study, we show that several mutated forms of residues
“VYL” lead to failure or impaired ability to complement the low
seed oil content of wri7-1 mutant (Figure 5) thus providing
functional evidence in plants for the essential role of “VYL” for
AtWRI1 function.

"VYL" is not a unique feature of WRI1-like transcription
factors. The alignment of Arabidopsis AP2-type transcription
factors indicates that all 18 members of the AP2 transcription
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factor family have a conserved protein sequence of "VYL"
(http://planttfdb.cbi.pku.edu.cn/msa.php?sp=At&fam=AP2).
Notably, amino acid “L” is more highly conserved and
presumably most critical in AP2-type transcription factors. The
results shown in Figure 5 supports this hypothesis by
demonstrating that expression or HA-AfWRI1-%'Q in wri1-1 was
the least effective in rescue of wri7-1 oil content, compared to
HA-AtWRI1VP or HA-AfWRI1Y'%0¢ (Figure 5).

In summary, this study has provided new insights into WRI1
structure at the protein and transcript level. The EgWRI1
sequence identified from oil palm mesocarp is highly similar to
AfWRI1 over the N-terminal 230 amino acids, but surprisingly
divergent in sequence, in length and in predicted secondary
structure over the remainder of the protein’s C-terminal
domain. Nevertheless, the EgWRI1 protein is functional in
restoring oil content, germination and seedling establishment of
the Arabidopsis wri1-1 mutant, implying that the C-terminus
may have a more general role in maintaining WRI1 structure/
function, rather than, for example, interactions with specific
DNA sequences. Second, the conserved VYL small exon of
WRI1 was shown to be essential for full WRI1 function.
Mutations of all three residues caused complete loss of ability
to complement wri1-1, and single mutations at the “L” residue
were more negative than at V or Y. Finally, we have
established that splice form At3g54320.3 is the only one of the
three predicted splice forms that is expressed under normal
growth conditions of seeds, roots, flowers and seedlings of
Arabidopsis.

Materials and Methods

Plant Materials

Arabidopsis (Arabidopsis thaliana) wild-type (Columbia-2
ecotype) and wri1-1 [1] were used in this study. Plants were
grown in a growth chamber on potting mix at 22°C with a 16 h
light (100-150 pymol m2 s~ illumination)/8 h dark photoperiod
cycle. For experiments with plants grown on plates, seeds were
surface sterilized in 70% (v/v) ethanol (containing 0.05% (v/v)
Tween 20), following by rinsing in 95% (v/v) and pure ethanol.
Sterilized seeds were spread on petri dishes containing half-
strength Murashige and Skoog (MS) medium (Caisson), 2.6
mMm MES (pH 5.7; adjusted with KOH), 1% sucrose (unless
noted otherwise in the figure legends), and 0.8% agar. Seeds
were stratified at 4°C in the darkness for 2-3 d prior to use.

Plasmid Construction and Arabidopsis Transformation
The oil palm EgWRI1 gene was synthesized by GeneArt
based on cDNA sequences obtained from oil palm mesocarp
[15]. The nucleotide sequence of synthetic EgWRI1 is in Figure
S10. Site-directed mutations (AfWRI1V9OAYI00ALIOIA, ARNR]1V99D;
AWRITY10C, AAWRI1L191Q) were introduced into the AtWRI1
coding sequence (CDS) by PCR (see Table S1). The modified
genes were subcloned into binary vectors pEarleyGate 201 or
pEarleyGate 205 [30]. Constructs were introduced into wri1-1
mutants through Agrobacterium tumefaciens (GV3101 strain)-
mediated transformation by floral dipping [31]. Transgenic
seedlings were selected with 10 yg/mL Basta (Sigma-Aldrich)
on plates. Genomic DNA of transgenic seedlings was extracted

July 2013 | Volume 8 | Issue 7 | 68887


http://planttfdb.cbi.pku.edu.cn/msa.php?sp=at&fam=ap2

and gene insertion was confirmed by PCR using a 35S
promoter forward primer and a gene-specific reverse primer.
Homozygous plants were used in all experiments except T2
transgenic plants in experiments presented in Figure 5.

Scanning electron microscopy

Sample preparation followed methods previously described
[2]. Samples were examined in a JEOL 6610LV SEM (tungsten
hairpin electron emitter) scanning electron microscope (JEOL
Ltd.).

Germination and Seedling Establishment Assays

Surface-sterilized seeds were spread on half-strength MS
plates (containing 1% sucrose). Seeds were stratified for 2-3 d
prior to being transferred to a growth chamber. Germination
was scored by radicle emergence 2 d after imbibition. To
determine seedling establishment, plants were grown vertically
on half-strength MS plates (without the addition of sucrose) and
10-day-old  seedlings were evaluated for seedling
establishment. Alternatively, seeds were grown in potting mix
and two-week-old seedlings were used to count the number of
the seedlings that had established.

RT-PCR for WRI1 transcript amplification and analysis

Whole seedlings were harvested from plates, ground in liquid
nitrogen, and total RNA was isolated using the RNeasy Plant
Mini kits (Qiagen). Genomic DNA contamination was removed
using DNase | (Qiagen). First-strand cDNA was synthesized
using the Reverse Transcription System (Promega). Genomic
DNA contamination was not found in the RNA samples treated
with DNase |. PCR products were purified using the Gel and
PCR Clean-Up System (Promega).

RNASeq analysis of WRI1 transcripts from Arabidopsis

Developing seeds were collected from liquid nitrogen frozen
siliques at 7-8, 9-10, and 11-12 d after flowering. Siliques were
opened over dry ice and frozen seeds were separated from the
silique walls by filtering through a liquid nitrogen cooled sieve
into a tube on dry ice. Approximately 100 mg of developing
seeds was finely ground and RNA extracted as described [32]
and analyzed for yield and quality by capillary electrophoresis
(Agilent 2100). Libraries for sequencing were prepared from 2—
4 ug total RNA using lllumina TruSeq RNA kits and sequenced
with lllumina HiSeq2000. Reads (50 nt) were trimmed, filtered
and aligned to TAIR10 using TopHat v 1.4.1 (Parameters: --no-
novel-juncs; -G TAIR10.gff) and Bow tie v 0.12.7. Cufflinks v
2.0.2 was used to generate gene FPKM expression measures.
The results were also loaded into a genome browser for
inspection. Three different read mappings were performed to
assess WRI1 alternative splice forms. Samples were aligned to
TAIR10 using the CLC Genomics, Map Reads to Reference
Tool and Large Gap Read Mapping Tool (Parameters:
Mismatch cost 2; Insertion cost 3; Deletion cost 3; Similarity
0.9; Length fraction 0.9). 117 million RNASeq reads for roots
(SRR331219,SRR331224) and 58.4 million for flowers
(SRR388668, SRR388670, SRR013413, SRR013416) were
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downloaded from the NCBI short read archive and mapped to
TAIR10 as described above.

Fatty Acid Analysis

Arabidopsis seed oil content analysis followed the method
described previously [33], with minor modification. In brief,
twenty Arabidopsis seeds were transesterified directly in a
glass tube by addition of 1 mL freshly prepared sulfuric acid in
methanol (5% (v/v)), 25 pL of BHT solution (0.2% butylated
hydroxy toluene in methanol), 25 ug of triheptadecanoin (as
internal standard) and 300 pL of toluene. After reaction at 90°C
for 90 min the fatty acid methyl ester extracts were extracted
and analyzed by gas chromatography with a DB23 column.

Statistical Analysis

A binomial test using R programming was used to calculate
the statistical significance of conclusions on AtWRI1 splice
form abundance. The student's t-test was performed to
evaluate the statistical confidence in differences observed
between controls and samples expressing different WRI1
constructs.

Supporting Information

Figure S1. Profiles of seed fatty acid composition of WT,
wri1-1 and wri1-1 expressing HA-EgWRI1 and HA-
AtWRI1. Six independent transgenic lines overexpressing HA-
EgWRI1(#1-4, #2-3, #11-1, #13-5, #14-1, and #16-3,
respectively; from left to right) and five independent transgenic
lines overexpressing HA-AtWRI1 (#1-2, #6-5, #7-2, #8-3, and
#9-4, respectively; from left to right) are shown above. Results
are means + SE (n = 3-4).

(PDF)

Figure S2. C-terminal TAP-tagged AtWRI1 rescues the
reduced oil phenotype of wri7-1 mutant. However, C-
terminal TAP-tagged EgWRI1 fails to rescue the reduced oil of
wri1-1. Results are means + SE (n = 3-4). “*” indicates
significant difference (P<0.05, t-test) between WT and other
plants.

(PDF)

Figure S3. Profiles of seed fatty acid composition of WT,
wri1-1 and wri1-1 overexpressing EgWRI1-TAP and
AtWRI1-TAP. Four independent transgenic lines
overexpressing EgWRI1-TAP (#2-6, #4-6, #6-2, and #7-1
respectively; from left to right) and four independent transgenic
lines expressing AtWRI1-TAP (#1-3, #4-5, #6-5, and #7-2,
respectively; from left to right) are shown below. Results are
shown as means + SE (n = 3-4).

(PDF)

Figure S4. Phenotypes of wri1-1 plants expressing
EgWRI1-TAP or AtWRI1-TAP. A) C-TAP-tagged EgWRI1 and
AtWRI1 were both able to complement the reduced
germination of wri1-1 seeds. Results are shown as means +
SE (n =3-4). The seeds germination of EgWRI1-TAP
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transgenic lines compared to WT were not significantly different
(P > 0.05, t-test). B) Transgenic wri1-1 plants expressing
AtWRI1-TAP or EQWRI1-TAP. Plants were grown in medium
without the addition of sucrose.

(PDF)

Figure S5. Alignment of WRI1 orthologs. A) Alignment of
section of AP2 domain of WRI1 orthologs from B. napus, maize
and oil palm indicating the most conserved amino acids across
different WRI1s. Amino acids “VYL” (highlighted by a red box),
are highly conserved in plant WRI1s. B) Alignment of WRI1
ortholog amino acid sequences predicted from genome
sequencing information at Phytozome (http:/
www.phytozome.org/). Of the 34 predicted WRI1-like protein
sequences, amino acid sequence “VYL” (highlighted by red
box) is missing in 13. The locus IDs of predicted WRI1
orthologs are as follows. M.esculenta
(cassava4.1_029667m.g); R.communis  (30069.t000002);
L.usitatissimum  (Lus10008939.g);  P.trichocarpa  (Potri.
008G011900);  P.vulgaris  (Phvul.011G187400); G.max
(Glyma08g24420); C.sativus (Cucsa.282940); P.persica
(ppa023152m.g); M.domestica (MDP0000186581); F.vesca
(gene00377-v1.0-hybrid); A.thaliana (AT3G543200; A. lyrata
(
(

485830); C. rubella (Carubv10018845m.g); B. rapa
Bra007066); T. halophila (Thhalv10010394m.g); C. papaya
(evm. TU. supercontig_54.28); G. raimondii (Gorai.
011G225700); T. cacao (Thecc1EG044588); C. sinensis
(orange1.1g036423m.g); C. clementina (Ciclev10003896m.g);
E. grandis (Eucgr.J00316); V. vinifera (GSVIVG01020066001);
S. tuberosum (PGSC0003DMG400027502); S. lycopersicum
(Solyc01g096860.1); M. guttatus (mgv1a007319m.g); A.
coerulea (Aquca_016_00348); S. bicolor (Sb02g025080); Z.
mays (GRMZM2G141219); S. italica (Si030129m.g); P.
virgatum (Pavirv00024549m.g); O. sativa (LOC_Os11g03540);
B. distachyon (Bradi4g30617); S. moellendorffii (85823); P.
patens (Pp1s32_65V6).

(PDF)

Figure S6. Analysis of AtWRI1 splice forms by RT-
PCR. A) Two pairs of PCR primers were designed, which
cover the region of AtWRI1 exon3 and last intron, respectively.
The length of PCR product with primers set 1 (FW1+RV1) is
157bp (splice form 1 and 3) and 148bp (splice form2),
respectively. The length of PCR product with primer set 2
(FW2+RV2) is 167bp (splice form2; last intron is spliced out)
and 269bp (splice form 2 and 3; last intron is not spliced out),
respectively. AtWRI1 transcript accumulation in Arabidopsis
plants was analyzed by semi-quantitative RT-PCR, with
primers set 1 (B) and primers set 2 (C), respectively. Samples
with even numbers were grown in growth medium containing
3% sucrose. Samples with odd numbers were grown in growth
medium without the addition of sucrose. Arabidopsis seedlings
are 3- (sample 1 & 2), 4- (sample 3 & 4), 5- (sample 5 & 6), 6-
(sample 7 & 8), 7- (sample 9 & 10), 8-(sample 11 & 12), and 9-
(sample 13 & 14) day-old, respectively.
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(PDF)

Figure S7. Alignment of lllumina RNASeq reads from
mRNA of developing seeds of Arabidopsis. \We analyzed
>100 million lllumina reads from developing Arabidopsis seeds.
Of these, ~10,000 or 1% mapped to the AtWRI1 gene. 500 of
these reads mapped to the genome region that included the 9
bp exon 3. A subset of the reads is presented based on
visualization of alignment by GBrowse (http://
www.gbrowse.org). No reads were detected that lacked exon
3. Similar analysis of 3’ sequences indicated only splice form 3
was represented.

(PDF)

Figure S8. Diagnostic search sequence for exon 3. A) A
69 nucleotide sequence was designed to distinguish AtWRI1
splice form 1 and 3 from form 2. The sequence includes the
nine nucleotides that encode “VYL” (highlighted in green),
together with 30 nucleotides 5’ and 3’ flanking sequences. B)
Position of diagnostic search sequence is highlighted by red
boxes in the picture of alignment of predicted partial cDNAs of
three AtWRI1 alternative splice forms.

(PDF)

Figure S9. Diagnostic search sequence for AtWRI1 3’
end. A) The flanking sequence upstream from the last intron
which is spliced out in AtWRI1 splice form 1 was chosen as a
diagnostic search sequence for the 3’ end splice form search.
B) Position of the diagnostic search sequence for WRI1 3’ end
is highlighted by red boxes in alignment of predicted partial
cDNAs of three AtWRI1 alternative splice forms.
(PDF)

of

Figure S10. Nucleotide

EgWRI1. (PDF)

sequence synthetic

Table S1. Primers used in this study. (PDF)
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