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Abstract: α-Haloketones play an essential role in the synthesis of complex N-, S-, O-heterocycles;
of which some exhibit a remarkable biological activity. Research further illustrated that α-bromo-,
α-chloro-, and α-iodoketones are key precursors for blockbuster pharmacological compounds. Over
the past twenty years, substantial advances have been made in the synthesis of these industrially
relevant building blocks. Efforts have focused on rendering the synthetic protocols greener, more
effective and versatile. In this survey, we summarised and thoroughly evaluated the progress of the
field, established in the past two decades, in terms of generality, efficacy and sustainability.
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1. Introduction

Over the past few decades, the versatility and synthetic value of α-haloketones in or-
ganic synthesis have been amply showcased in the literature. The existence of two adjacent
electrophilic centres, namely the α-halocarbon and the carbonyl group, transforms these
reactive carbonyl compounds into highly valuable building blocks for the construction
of more complex structures. In that context, a wide variety of N, S, and O-heterocycles
have been accessed using protocols involving α-haloketones [1–11]. These compounds
have also proven to be important intermediates in the synthesis of various organometal-
lic species. [12–14]. Other applications have demonstrated their utility as key synthetic
intermediates for pharmaceutical blockbuster compounds (Figure 1) [15–27].
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Figure 1. α-Haloketones as versatile building blocks in organic synthesis.

In recent years, a significant body of work has been dedicated to the design and
development of new synthetic protocols to access α-haloketones. Even though these
processes have been reviewed in the literature, a thorough and comprehensive survey
is still lacking. For example, recent reviews have dealt with the α-bromination [28,29]
and α-iodination [30] of carbonyl compounds; however, these were very specific and only
involved pathways towards a very limited range of α-haloketones. In 2018, Verkariya and
co-workers reviewed the synthetic access to α-iodocarbonyl compounds [31]. Although
a broad range of iodinated products were considered, the work was restricted to direct
iodination routes. In 2003, Erian and co-workers reported a survey involving the synthetic
access to and application of α-haloketones [32]. Here, again, synthetic protocols yielding the
desired ketones were only briefly discussed and the authors relied on the work published
by De Kimpe and Verhé [33]. An up-to-date review of the synthetic access to α-haloketones
is clearly needed. Therefore, the present contribution aims to describe and evaluate the
diverse protocols leading to α-haloketones that have been published over the past two
decades. Since the number of reports in the literature is quite significant, this review will
be limited to methods generating carbonyl compounds carrying one halogen atom at their
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α-position, and will mainly focus on aromatic α-haloketones compounds, as these appear
to have the highest synthetic value [34–36].

2. Direct α-Halogenation of Aryl Ketones

α-Haloketones are most commonly obtained from their corresponding carbonyl ana-
logues through direct halogenation. Over the years, a variety of direct halogenation routes
have been developed with apparent advantages and disadvantages. The readily available
starting material for these reactions and the overall reaction efficacy have rendered these
processes highly useful for synthetic chemists. At the same time, these direct halogenation
reactions exhibited certain drawbacks, such as moderate conversions, long reaction times,
cumbersome procedures and the use of hazardous and toxic reagents and solvents. In addi-
tion to the desired α-haloketone, some protocols also yielded the α,α-dihalogenated and/or
aromatic ring halogenated by-products (Scheme 1). This moderate selectivity consequently
complicates the purification process.
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Scheme 1. Moderate selectivity depicted by some direct halogenation protocols.

2.1. Electrophilic Halogenation
2.1.1. Br2 as Halogenation Agent

The most straightforward route to α-haloketones involves the reaction of enolizable
aromatic ketones with electrophilic X2, under acidic (or basic) conditions; these conditions
are typically needed to generate the nucleophilic enol (Scheme 2).
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Scheme 2. Acid-promoted bromination mechanism.

The procedure developed by Li, Xiang and co-workers in 2014 enables the bromination
of aryl ketones under acidic conditions [37]. A small excess of Br2 (1.1 equiv.) was added to
a solution of ketone in glacial HOAc and subsequently irradiated for 5 h in a microwave
(MW). Figure 2 presents the bromination scope with respective isolated yields. The main
drawback of this procedure is the use of HOAc as a solvent, which substantially limited
the substrate scope; acid-sensitive functional groups (e.g., -OH, -NHx) cannot tolerate these
reaction conditions.
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Using a similar strategy, Nieuwland developed a continuous flow procedure for the
α-bromination of acetophenone [38]. 2-Bromo-1-phenylethanone was isolated in 99% yield
upon treatment of the substrate with HBr and bromine in 1,4-dioxane (Scheme 3). The
authors claimed that ring brominated or dibrominated products could not be observed,
which highlights the excellent selectivity of the process. This work showcased a highly
effective α-bromination protocol which could be applicable on an industrial scale. However,
the large-scale use of toxic and corrosive HBr and Br2 reagents would require important
safety measures to avoid leakage or contact of the reagents with the environment/operators,
which remains a significant drawback.
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Attempts to substitute the Bronsted acid activation with a Lewis acid activation have
shown promising results, via the in situ formation of ZnBr2 from Zn dust and bromine
(Scheme 4) [39]. The aqueous procedure was well tolerated by substituents (i.e., ortho) close
to the carbonyl centre. However, the use of toxic metallic Zn and Br2 counteracted the
progress made in terms of a greener approach [40,41].
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Another attempt to alleviate the acid sensitivity of substrates/products was developed
by Ryu and co-workers, using a phase-vanishing protocol (Scheme 5) [42]. The reaction
mixture consisted of four separate phases: (i) an aqueous phase, to trap HBr, (ii) an
organic (CH3Cl) phase (Galden HT135), containing the substrate, (iii) a fluorous phase, and
(iv) the bromine phase. The fluorous phase acted as a membrane to separate the Br2 and
the substrate-containing phase. Upon stirring, the fluorous phase enables the former to mix
with the latter phase. During the reaction, HBr migrates to the aqueous layer, and at the
end of the reaction, the bromine phase vanishes. This procedure thus prevented possible
product decomposition induced by HBr, as the substrate and the acid were contained in
different phases. This quadruple phase method simplified the purification of the desired
α-bromoketones. In total, five α-bromoketones were isolated in good to excellent yields
in this manner. It should be noted that dibrominated products were observed in trace
amounts, which could complicate purification.
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Scheme 5. Phase-vanishing α-bromination.

Chen et al. improved the reaction by successfully performing the α-bromination of a
very broad substrate scope (21) in good to excellent yields (84–99%) without any additional
activator (Scheme 6) [43]. The presence of both electron-withdrawing (e.g., Cl, Br, CF3) and
-donating (e.g., OMe, t-Bu, OH) groups was well tolerated. Moreover, this route’s efficacy
was not significantly affected by the presence of steric bulk at the ortho-position.
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Scheme 6. Acid-free α-bromination of aromatic carbonyls by Chen et al.

In 2014, Krupadanam and co-workers published an acid-free, Br2-mediated halogena-
tion [44]. One equivalent of bromine was added dropwise to an ice-cold solution of the
substrate in diethyl ether, after which the solution was stirred for 2 h at room tempera-
ture. Eight 2-bromoacetophenones were isolated in moderate to good yields (Table 1). In
addition, the procedure generated hetero-aromatic bromoketones, i.e., 2-bromo-1-(pyridin-
3-yl)ethenone and 2-bromo-1-(thiophen-2-yl)ethanone, in moderate yields (70 and 76%,
respectively). However, for the former, the bromination only proceeded upon addition of
an acidic promotor (HBr or HOAc).

Table 1. The bromination scope reported by Krupadanam.

R R′ R′ ′ Yield (%)

H H H 85
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In 2018, Portilla described the bromination of four aromatic ketones mediated by
bromine [45]. The corresponding α-bromoketones were isolated in good to excellent
yields (Scheme 7). Krupadanam’s and Portilla’s routes stand out from other Br2-mediated
halogenation reactions, as they demonstrated that the reaction can proceed without any
promotor or catalyst. Additionally, the acid-free routes allowed a significant improvement
in the halogenation yield.
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Scheme 7. Acid-free α-bromination of aromatic carbonyls by Portilla and co-workers.

All the above Br2-mediated methods are characterised by the same intrinsic drawbacks.
These routes depict a moderate atom economy, since only one of the two available Br-atoms
is incorporated into the final product. The “excess” bromine atom will interact with the
α-H atom of the substrate, leading to corrosive and toxic HBr formation, inducing possible
product decomposition. Furthermore, the toxic, irritating, and corrosive nature of bromine
limits the applicability of a Br2-mediated route [46,47].

2.1.2. I2 as Halogenation Agent

In the direct iodination of ketones, Stavber and co-workers established an effective iodi-
nation route consisting of I2 (0.5 equiv.) and 30% aqueous H2O2 (0.6 equiv.) in methanol [48].
This system was only effective in the presence of an acid catalyst. The authors compared
the efficacy of two catalytic systems; H2SO4 (cat A; 0.1 equiv.) and H4SiO4·12WO3·26H2O
(POM) (cat B; 0.06 equiv.). Using both methods, three aromatic α-iodoketones were ob-
tained in good to excellent yields (Scheme 8). The excellent iodine atom economy of this
route should be stressed, as every I-atom is incorporated in the substrate. This method
prevented the long-term persistence of harmful HI in the reaction mixture.
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Scheme 8. Scope of the I2, H2O2- and H2SO4/POM-mediated iodination.

In 2007, Stavber updated the procedure by substituting the aqueous H2O2 with the
solid urea–H2O2 (UHP) complex. This yielded a solvent-free direct iodination, though an
increase in the I2 content from 0.5 to 1 equivalent was required [49]. The excellent iodine
atom economy was thus not maintained. Furthermore, the iodination yields (22–58%)
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dropped significantly compared to those obtained from the previous route. Subsequently,
it was demonstrated that both the I2/H2O2- and I2/UHP-mediated iodination could be
performed in an ionic liquid (IL), thus easing the purification process [50]. The reaction was
performed in both water-miscible and water-immiscible Ils, respectively, 1-butyl-3-methyl
imidazolium tetrafluoroborate ([bmim]BF4) and 1-butyl-3-methyl imidazolium hexafluoro-
phosphate ([bmim]PF6) (Scheme 9). Experimental data demonstrated that the substrates
were less effectively iodinated in both Ils, compared to the solvent-free [49] and MeOH
iodination protocols [48].
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Scheme 9. I2/H2O2- and I2/UHP-mediated iodination in Ils.

Additionally, Stavber reported a sodium nitrite-catalysed procedure (Scheme 10,
method A) [51]. NaNO2 is activated via treatment with silica-supported sulfuric acid.
After activation, HNO2 is obtained, which is then oxidised by air to NO2. Since only
0.5 equiv. of I2 is used, after depletion of all I2 molecules, the obtained HI will then react
with NO2 to reform I2 and NO; the latter is then again oxidised to NO2 by air. In this
manner, 100% of iodine atom economy was achieved as only 0.5 equivalent of iodine was
required for the reaction to proceed to completion. The sustainability of this route was
further demonstrated, as air was used as the stoichiometric oxidant. Compared to other
iodination routes, the purification was more straightforward as it only required separation
from the inorganic salts. Due to the inherent health hazards linked to SiO2 [52–54], this
procedure was later modified (Scheme 10, method B) [55]. The iodination was carried out
in an aqueous sodium dodecyl sulphate (SDS) solution and promoted by H2SO4. The SDS
micelles acted as an ideal promotor of the α-iodination of aryl ketones. This route displayed
excellent selectivity as side chain functionalisation was exclusively obtained. This could be
shifted towards aromatic ring iodination by changing the reaction medium to acetonitrile.
The 100% iodine atom economy and the use of an aqueous reaction medium showcased the
promising potential of the SDS-promoted route. From an economic point of view, this route
is particularly interesting as it employed cheap and abundant reagents. Nonetheless, the
presence of H2SO4 in the reaction medium still limited the substrate scope, as acid-sensitive
functional groups (e.g., OH) are not compatible with these experimental conditions.

In 2014, an alternative method was developed using NH4NO3 (0.1–0.25 equiv.), I2
(0.5 equiv.), H2SO4 (0.05–0.125 equiv.) and air in CH3CN (Scheme 11) [56]. Under these
conditions, several ketones were iodinated in moderate to excellent yields (58–90%). In
addition, OH-substituted aromatic ketones were successfully transformed into their iod-
inated analogues. However, for di- and tri-methoxy-substituted ketones, selective ring
iodination instead of α-iodination occurred; these by-products account for a required and
more tedious purification process.
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Scheme 11. NH4NO3 and I2-based direct halogenation protocol.

Alternatively to O2 and H2O2, Zhdankin and co-workers demonstrated that the
hypervalent m-iodosylbenzoic acid could also act as a suitable oxidation agent [57]. With
the reaction conditions shown in Scheme 12, a variety of aromatic and aliphatic ketones
and β-dicarbonyls were iodinated. At the end of the reaction, the reduced form of the
hypervalent iodine oxidant, m-iodobenzoic acid, could be easily removed by passing
the reaction mixture through an anionic exchange resin (Amberlite IRA 900 HCO3

−).
Afterwards, recovery of the m-iodobenzoic acid was achieved by treating the resin with
HCl. With similar drawbacks to earlier strategies, this method still allowed for 100% I-atom
economy while also carrying the benefits of recycling the oxidizing reagent.
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Scheme 12. m-Iodosylbenzoic acid- and I2-mediated iodination.

Over the past two decades, numerous acid-free direct iodination protocols have been
developed. These methods tolerated acid-sensitive functional groups, such as amines or
alcohols. A remarkable iodination system was developed by Rao and co-workers, which
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only required the addition of iodine (4 equiv.) to the methyl ketone in dimethylether at
90 ◦C (Scheme 13) [58]. Several aromatic α-iodoketones were obtained in moderate yields
(62–94%). In this reaction, the dual role of I2 was highlighted as it acts as both a Lewis
acid and a direct iodine source. The acid-free conditions and short reaction times were this
route’s main advantages. However, the use of a highly volatile solvent, the excess of I2
and the inevitable generation of HI negatively impacted this direct iodination route. The
corrosive nature of HI involves extra hazards and might lead to product decomposition.
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Scheme 13. Iodination system developed by Rao and co-workers.

Using neutral conditions, Yin and co-workers reported a metal-mediated iodination
of ketones through the addition of CuO (1 equiv.) and I2 (1 equiv.) to the substrate in
MeOH (Scheme 14) [59]. The presence of electron-donating (e.g., OMe, Me) and electron-
withdrawing substituents (e.g., Cl, Br) on the aryl ketones was well tolerated. The corre-
sponding α-iodoketones were obtained in 83–99% yield. For nitro-substituted aryl ketones,
the yield decreased significantly to 53% and formation of the dimethyl ketal product oc-
curred. This protocol stands out due to the use of inexpensive reagents and its excellent
iodination yields. Nonetheless, a significant amount of harmful HI was generated.
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An iodine- and trimethylorthoformate-mediated iodination was reported in 2008
(Scheme 15), yielding several aromatic ketones with a wide range of substituents (i.e., para-
OH, -Me, -F and common protecting groups such as -OBn, -OTBS and -OAc) in good yields
(64–78%) [60]. The authors claimed that the work-up drastically altered the outcome of the
reaction, since the true reaction mixture contained primarily the α-iodinated dimethoxy
ketal product. Upon reaction completion, when the reaction was directly treated with an
aqueous Na2S2O3 solution followed by extraction, the α-iodoketal product was mainly
obtained (Scheme 15, right). However, if the reaction mixture was first stirred in water,
then treated with the Na2S2O3 solution, α-iodoketones were obtained as the main products
(Scheme 15, left).

In 2010, Lee and co-workers illustrated the halogenation of ketones using another
iodine activator, the hypervalent [hydroxyl(tosyloxy)iodo]benzene (HTIB), in an IL, i.e.,
[bmim][BF4] (Scheme 16) [61]. Two different iodination agents, iodine (1.2 equiv.) and
methyl iodide (3 equiv.), were compared for a set of ketones. Although both generated the
corresponding α-iodoketones in similar yields, they required different reaction conditions.
The I2-mediated direct halogenation was carried out at 60 ◦C for 3–4 h. With methyl iodide,
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the reaction time increased to 20 h and the temperature decreased to room temperature.
The protocol yielded five α-iodinated aryl ketones in moderate to excellent yields (61–96%).
This route emerged as a relatively mild and green direct halogenation route linked to HTIB,
a neutral, highly stable, and relatively safe oxidant. The use of an IL also contributed to
simplifying the work-up process by allowing the product to be simply extracted without
any further purification needed.
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Scheme 16. The halogenation of ketones by Lee and co-workers.

Goswami reported the selective α-iodination route mediated by iodine (0.5 equiv.) and
Oxone® (2KHSO5·KHSO4·K2SO4) (0.1 equiv.) [62]. The reaction proceeded by grinding
the reagents and the ketone in a mortar with a pestle. A diverse set of 1,3-dicarbonyls and
ketones were halogenated in excellent yields. However, only a limited number of aromatic
ketones were tested under these conditions to afford the desired products in excellent yields
(91%), after grinding for 3 min. The procedure stands out from other direct iodination
routes due to its solvent-free approach, involving a more straightforward work-up. So far,
the very limited scope of aryl ketones can be considered as its major weakness.

In 2018, Gong and co-workers designed a graphene oxide (GO)-catalysed iodination
of arenes and ketones in nitromethane (Scheme 17) [63]. Upon the addition of I2 (1.1 equiv.),
several aryl ketones were efficiently iodinated when stirred for 5 min (min) at 120 ◦C.
Substrates bearing electron-donating groups (i.e., OMe and Me) performed well under
these conditions (96% for both). In comparison, substrates with electron-withdrawing
substituents (i.e., F and CN) gave somewhat lower yields (74% and 68%, respectively).
The reaction proceeded via a radical pathway, with an iodine radical being formed under
the influence of the unpaired electrons of the GO; single electron transfer (SET) from the
iodinated substrate back to the GO regenerated the GO catalyst and allowed its re-entry
into the catalytic cycle. The authors were able to scale up the reaction to the gram scale in air,
thus adding a major benefit to this approach. Despite the efficiency and high applicability
of this protocol, the generation of stoichiometric amounts of HI and the high temperature
needed are considered major drawbacks.
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Scheme 17. GO-catalysed iodination of ketones.

Overall, direct halogenation methods, employing Br2 or I2, possess similar intrinsic
weaknesses. Bromine is a toxic, corrosive and irritating halogenation agent [46,47]. Al-
though less harmful than bromine, the use of iodine also poses serious safety and health
issues [64,65]. Hence, the next sections will focus on halogen sources that are generally less
harmful to human health and to the environment.

2.1.3. NXS as Halogenation Agents

The user friendliness, availability, and low cost of N-halosuccinimides (NXS) has
enabled its widespread use as a halogenation reagent (Figure 3). NXS can be recycled after
the reagent is consumed in the halogenation reaction, demonstrating its sustainable nature.
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Figure 3. Structure of N-halosuccinimide.

In 2017, Lim and co-workers reported a direct bromination and chlorination route op-
timised for aromatic ketones [66]. The procedure involved the addition of NBS (1.05 equiv.)
and TMSOTf (0.05 equiv.) to the starting material and stirring the obtained solution in
MeCN for three days at room temperature. Five α-bromoketones (i.e., p-H, -F, -Cl, -CN
and -NO2) were isolated in moderate to good yields (60–77%). Despite the straightforward
work-up procedure, the extremely long reaction times have limited the widespread use
of this protocol. Chlorination was also established via the addition of NCS (1 equiv.) and
para-toluenesulfonic acid-monohydrate (pTsOH·H2O) (1.5 equiv.) to the ketone. After
stirring for 7 h at 80 ◦C, eight α-chloroketones were obtained (Figure 4). The excess of
pTsOH·H2O used renders the protocol incompatible with acid-sensitive groups.
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Figure 4. Chlorination scope by Lim and co-workers.

Similar pTsOH-based chlorination and bromination were also described by Lee and
co-workers (Scheme 18) [67]. In these reactions, 1.5 equiv. of the acid and 1 equiv. of NXS
yielded three α-bromo (90–92%) and three α-chloroketones (74–82%) with three different



Molecules 2022, 27, 3583 12 of 53

substituents on the aromatic ring (i.e., p-OMe, -Cl, -NO2). Here, again, the very limited
scope puts the general nature of the method into serious doubt.
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Scheme 18. pTsOH-based chlorination and bromination by Lee and co-workers.

A more general pTsOH-catalysed bromination protocol was developed by Huang and
co-workers using MW irradiation [68]. A solution of the ketone, NBS (1 equiv.) and pTsOH
(0.1 equiv.) in dichloromethane (DCM) was irradiated for 30 min at 80 ◦C. This procedure
yielded 11 aromatic α-bromoketones in good to excellent yields (85–95%). The presence
of electron-withdrawing, -donating or acid-sensitive substituents (i.e., OH) on the aryl
ketones was well tolerated. The position of these substituents on the aromatic ring did not
influence the bromination efficiency. The versatility of this route was further highlighted
by the bromination of heteroaromatic ketones with high efficacy (93–95%).

KH2PO4 could also promote the direct bromination of aryl ketones as reported by
Reddy and co-workers (Scheme 19) [69]. Under mild acidic conditions using 0.1 equiv.
of KH2PO4 and 1.1 equiv. of NBS, a wide variety of brominated products were isolated
in moderate to excellent yields (46–94%). Nitro- and cyano-substituted aromatic ketones
were less efficiently brominated. For substrates bearing OH and NH2 substituents, ring
bromination was exclusively observed.
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Scheme 19. Direct bromination of aryl ketones as reported by Reddy and co-workers.

Moving away from Brønsted acid-based conditions, the same group highlighted silica
as another efficient promoter for the bromination of aryl ketones [70]. Using the conditions
depicted in Scheme 20, a wide variety of aryl ketones was successfully brominated. Sub-
strates bearing highly electron-donating (i.e., p-OMe) and electron-withdrawing (i.e., NO2,
CN) groups did not fare well in this protocol, as their corresponding α-bromoketones were
obtained in yields of 64%, 42% and 45%, respectively. For some substrates, dibromination
also occurred, highlighting the procedure’s modest selectivity. The short reaction times,
however, can be considered as the main feature of this route.
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It should be mentioned that SiO2-catalysed α-bromination is not a new concept. Paul
and co-workers had previously reported the NBS- and HClO4·SiO2-mediated halogenation
affording 11 aromatic α-bromoketones in good to excellent yields (77–93%) [71]. Using this
process, heteroaromatic (i.e., pyridinyl, thienyl, furyl) ketone substrates were efficiently
α-brominated, albeit with longer reaction times (16–18 h) compared to their aromatic
counterparts (8–12 h). Similarly to the aforementioned routes, the protocol demonstrated
a rather moderate selectivity as the α,α-dibrominated products were observed in some
cases. Other protocols involving the use of modified SiO2, such as NaHSO4·SiO2 and
HSO3·SiO2, have also demonstrated good catalytic activity in the direct halogenation
reaction. Both yielded 2-bromo-1-phenylethanone in 72% and 87% yield, respectively. The
authors claimed that HSO3·SiO2 could even be recycled and reused for three consecutive
runs without significant loss in catalytic activity. Additionally, Salama reported that SiCl4
efficiently catalysed the direct halogenation of aromatic ketones [72]. In this procedure,
SiCl4 (2 equiv.) and NXS (2 equiv.) were added to the aryl ketone in CH3CN. The protocol
yielded several α-chloro-, α-bromo- and α-iodoketones in moderate to excellent yields.

Other Lewis-acid-based protocols involved the use of transition metals to efficiently
perform the direct halogenation of aryl ketones [73]. Sudalai and co-workers described a
Cu(OTf)2-catalysed bromination reaction that afforded α-bromoketones in 65–89% yield
(Scheme 21). Next to the mono-brominated product, α,α-dibromoketones were also ob-
served as a minor product, making this route less attractive compared to existing and more
selective α-bromination procedures.
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Scheme 21. Cu(OTf)2- and NH4OAc-catalysed bromination.

Waghmode and Ramaswamy designed a photochemical α-bromination of cyclic and
acylic ketones. This route generated seven aromatic bromoketones upon the addition of
NBS (1.05 equiv.) to the substrates and subsequent UV-VIS irradiation in diethylether [74].
Thorough assessment of this route’s efficiency is not possible, as bromination yields were
not reported. The authors mentioned that α,α-bromination occurred for most of the
substrates, which highlights the modest selectivity of the developed procedure.

In 2019, Jangid and co-workers developed a TiO2 nanoparticle (NP)-catalysed bromi-
nation and chlorination of aromatic ketones [75]. With the corresponding NXS and t-butyl
hydrogen peroxide (TBHP), 12 α-haloketones were obtained in good to excellent yields
(Scheme 22). The short reaction times and excellent halogenation yields can be considered
as the main advantages of this route.
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Scheme 22. Jangdid’s NXS-mediated direct bromination and chlorination.

The use of volatile and hazardous organic solvents counteracted the progress that some
NXS-based methods accomplished in terms of sustainability. Thus, Togo and co-workers at-
tempted to provide a greener bromination approach [76]. A set of ketones was halogenated
upon addition of NBS (1.2 equiv.) and pTsOH·H2O (0.2 equiv.) in two different ILs, i.e.,
[bmim][PF6] and N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imidate
([bmpy][NTf2]) (Figure 5, left). The use of an IL not only facilitated the work-up, but also
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allowed the reaction medium to be reused up to seven times without significant loss in
bromination efficiency. Both ILs appeared to be effective halogenation reaction media, as
eight aromatic α-haloketones were obtained in good to excellent yields (74–96%).
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Figure 5. Ionic liquids as halogenation solvents.

Lee and Park designed an alternative procedure for the α-bromination in an IL, i.e.,
[bmim]BF4 (Scheme 23) [77]. The UHP (2 equiv.)- and NXS (2 equiv.)-mediated reaction
yielded four α-chloro and four α-bromoketones (p-H, -Me, -Cl and -NO2) in moderate to
good yields (68–78% and 74–86%, respectively).
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Scheme 23. UHP/NXS α-bromination in [bmim]BF4.

Another NXS-mediated halogenation in an IL, i.e., 1-methyl-3-(4-sulfobutyl)imidazolium
triflate ([bmim(SO3H)][OTf]), was also developed by Stavber (Figure 5, right) [78]. Remarkably,
the selectivity of the procedure was highly dependent on the type of halogenation carried out.
In general, α-iodination of aromatic ketones was exclusively obtained, while a mixture of α-
and α,α-dihalogenated product was observed for the bromination, with the former species as
the major product. Upon increasing the reaction time, this ratio could be shifted to selectively
obtain the latter product. The chlorination exclusively yielded the dihalogenated aryl ketones.
The authors claim that [bmim(SO3H)][OTf] could be recycled and reused for up to eight
consecutive runs without any observable loss in halogenation efficiency. The sustainable
character of this route and its versatility make it stand out from other halogenation routes.

Achieving a good reaction performance under solvent-free conditions is an important
step forward for any reaction and is good practice for future advancement in sustainable
chemistry. Stavber reported the solvent-free halogenation of acetophenone derivatives,
mediated by sub-stoichiometric amounts of pTsOH (Scheme 24) [79,80]. The reagents
were ground in a mortar with a pestle, yielding α-bromo, α-chloro and α-iodoketones in
satisfactory yields. This procedure could be applied to the bromination, chlorination, and
iodination of ketones. In the case of the chlorination, dichlorination of the substrates was
a serious issue. Note that thus far, this dichlorination issue has been mentioned several
times. Furthermore, trimethoxy-substituted ketones generated exclusive ring bromination.
Interestingly, performing the bromination reactions in an aqueous solvent shifted the
selectivity of this route toward ring bromination.
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In 2003, Lee and co-workers published a solvent-free iodination of aromatic ketones
mediated by NIS (1.2 equiv.) and pTsOH (1.2 equiv.) [81]. Five α-iodoketones were obtained
within 1–1.2 min in good to excellent yields (75–90%) after irradiation of the reaction
mixture in a microwave at 700 W. The system stood out from other direct iodination routes
mainly due to its short reaction times and excellent performance.

In 2015, Patel and co-workers reported catalyst-free bromination in neat conditions [82].
Under these conditions, the ketone and NBS (1.1 equiv.) were ground in a mortar in order
to obtain a homogenous solid mixture, which was subsequently irradiated in the MW at
300 W for 1–4 min. Ten α-bromoketones were obtained in good to excellent yields (82–93%).
This protocol tolerated the presence of electron-donating and -withdrawing substituents on
the aromatic ring. However, a significant decrease in bromination yield was observed for
dimethoxy- and nitro-substituted aryl ketones. The recycling strategy of NBS, developed by
Patel, the solvent- and catalyst-free nature as well as the short reaction times, highlighted
the sustainable character of this methodology.

2.1.4. Halides (X−) as X2 Sources

Methods using halide anions (X−) are among the most promising methodologies as
they offer a cheaper and safer alternative for direct electrophilic halogenation of ketones,
especially when combined with environmentally benign oxidants, such as H2O2, molecular
oxygen or even an electrochemical cell setup. Typically, these methods involve the use of
MX, HX or NR3X in combination with an oxidant to generate in situ the active halogenation
reagent, X2. An example using H2O2 in acidic media is shown in Scheme 25.
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Metal Halides (MX)

Similarly to their NaNO2-I2 system (Scheme 25), Stavber and co-workers designed a
NaNO2-KI-based procedure for the α-iodination of aromatic ketones, which yielded nine α-
iodoketones in moderate to excellent yields (Scheme 26) [83]. KI exhibited similar iodination
efficiency to molecular iodine when compared to the NaNO2-I2-mediated reaction [55].
Nonetheless, potassium iodide remains a much better choice than I2 as an iodination agent,
as it is cheaper and safer to handle. It should be noted that a similar effect of the bromination
solvent on the regioselectivity was observed, as described for the I2 reaction. When carried
out in aqueous ethanol, selective α-bromination occurred. When the iodination was
performed in dry acetonitrile, the aromatic ring was exclusively halogenated.
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Scheme 26. NaNO2-catalysed iodination of aromatic ketones.

Another MX-based procedure was developed by Zhang and co-workers using NaCl
and K2SO8 to perform the chlorination of arenes in acetonitrile [84]. The selectivity of the
method was altered to exclusively lead to the α-chlorination when phenylethanone was
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used. Since the scope only consisted of one aryl ketone, broader screening is required for a
better assessment of this route’s efficacy. A similar sodium chloride-based halogenation
was reported in 2004 (Scheme 27) [85], with a broad range of alkanes, arenes and ketones
being converted into their chlorinated derivatives. However, the method only showed
moderate chlorination efficiency with aryl ketones.

Molecules 2022, 27, x FOR PEER REVIEW 17 of 56 
 

Metal Halides (MX) 

Similarly to their NaNO2-I2 system (Scheme 25), Stavber and co-workers designed a 

NaNO2-KI-based procedure for the α-iodination of aromatic ketones, which yielded nine 

α-iodoketones in moderate to excellent yields (Scheme 26) [83]. KI exhibited similar io-

dination efficiency to molecular iodine when compared to the NaNO2-I2-mediated reac-

tion [55]. Nonetheless, potassium iodide remains a much better choice than I2 as an io-

dination agent, as it is cheaper and safer to handle. It should be noted that a similar effect 

of the bromination solvent on the regioselectivity was observed, as described for the I2 

reaction. When carried out in aqueous ethanol, selective α-bromination occurred. When 

the iodination was performed in dry acetonitrile, the aromatic ring was exclusively halo-

genated. 

 

Scheme 26. NaNO2-catalysed iodination of aromatic ketones. 

Another MX-based procedure was developed by Zhang and co-workers using NaCl 

and K2SO8 to perform the chlorination of arenes in acetonitrile [84]. The selectivity of the 

method was altered to exclusively lead to the α-chlorination when phenylethanone was 

used. Since the scope only consisted of one aryl ketone, broader screening is required for 

a better assessment of this route’s efficacy. A similar sodium chloride-based halogenation 

was reported in 2004 (Scheme 27) [85], with a broad range of alkanes, arenes and ketones 

being converted into their chlorinated derivatives. However, the method only showed 

moderate chlorination efficiency with aryl ketones.  

 

Scheme 27. NaIO4-NaCl α-chlorination of aryl ketones. 

In 2005, Gupta and co-workers reported the synthesis of α-bromoketones mediated 

by the combination of UHP and NaBr with acetic acid-functionalised silica. After micro-

wave irradiation at 300 W, 12 α-bromoaryl ketones could be isolated in good yields 

(Scheme 28) [86,87]. The presence of electron-withdrawing, -donating and acid-sensitive 

groups on the phenyl ring was well tolerated. This route’s main features are its solvent-

free conditions and the extremely short reaction times.  

 

Scheme 28. Gupta’s solvent-free NaBr-mediated halogenation. 

  

R = H, OMe, Cl, NO2

R

I

O

R

O

EtOH/H2O, 60 °C, 3-10 h

65-93%

NaNO2 (0.12 eq.)
KI (1.05 eq.)

H2SO4 (1 eq.), air

OO

Cl

R R

R = H; 55%
R = Cl; 57%

H2SO4, CH3CN/H2O, 70-80 °C, 6 h

NaCl (1.2 eq.)
NaIO4 (0.2 eq.)

R

Br

O

R

O

HOAc·SiO2, MW, 20-120 s

70-80%R = H, OH, OMe, NH2, Ph,
R = Me, Cl, Br, NO2

NaBr (1.1 eq.)
UHP (11 eq.)

Scheme 27. NaIO4-NaCl α-chlorination of aryl ketones.

In 2005, Gupta and co-workers reported the synthesis of α-bromoketones mediated
by the combination of UHP and NaBr with acetic acid-functionalised silica. After mi-
crowave irradiation at 300 W, 12 α-bromoaryl ketones could be isolated in good yields
(Scheme 28) [86,87]. The presence of electron-withdrawing, -donating and acid-sensitive
groups on the phenyl ring was well tolerated. This route’s main features are its solvent-free
conditions and the extremely short reaction times.
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Scheme 28. Gupta’s solvent-free NaBr-mediated halogenation.

Quaternary Ammonium Halides (NH4X)

Over the past two decades, a significant amount of work has been dedicated to the
development of NH4X- and Oxone®-mediated halogenation reactions. The high stability,
water solubility and non-toxic nature make Oxone® an attractive oxidation agent. In 2012,
Narender and Zhou independently described the chlorination of aromatic ketones in MeOH
using a NH4Cl and Oxone® system (Scheme 29) [88]. The mechanism follows a similar
path to MX-based oxidation approaches, generating in situ the X2 active reagents. Both
protocols established a broad substrate scope although Narender’s method showed the
best chlorination efficiency. The two procedures reported a similar trend, i.e., electron-poor
aryl ketones were less efficiently chlorinated. No polychlorination or ring chlorination was
observed for either route, stressing their excellent selectivity.
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Scheme 29. NH4Cl- and Oxone®-mediated halogenation.

Using the same system, Narender and co-workers reported the α-bromination of
21 aromatic ketones in low to excellent yields (24–97%) (Scheme 30) [89]. Electron-deficient
substrates (i.e., bearing CN and NO2 groups) appeared to be deactivated under these
conditions, as they were isolated in only 21 and 35% yield. Furthermore, this route showed
a rather moderate selectivity for these substrates, since α-bromo-dimethylketals were
obtained as the major products. Additionally, some substrates showed signs of ring
halogenation, adding to the system’s selectivity issues.
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Scheme 30. The Oxone-based bromination of aromatic ketones by Narender and co-workers.

Narender and co-workers went on to develop another procedure for the α-iodination
of ketones, generating a wide variety of α-iodoketones (Scheme 31) [90,91]. Again, a
similar trend was observed; aryl ketones bearing electron-withdrawing groups were less
efficiently iodinated. This route yielded a significant amount of either the ring iodinated
or the α,α-diiodinated product for substrates carrying OH- and OMe-substituents. The
iodination thus appeared to be less selective than the chlorination, which ultimately hinders
its applicability.
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Scheme 31. Oxone-based iodination of aromatic ketones by Narender and co-workers.

One of the most interesting approaches employing ammonium halide salts is its
combination with electrochemical oxidation conditions [92]. In an electrochemical cell
equipped with a Pt/Pt electrodes, aryl ketones were efficiently brominated (Scheme 32).
Under these conditions, Br− was oxidised to Br2, which then reacted with water to generate
the HOBr active species. The broad substrate scope highlighted the versatile nature of
this protocol, and despite the acidic conditions, acid-sensitive groups (i.e., OH) were
well tolerated.
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Scheme 32. Electrochemical α-bromination of ketones.

Makrandi and co-workers developed a solvent-free NH4Br-mediated α-bromination
of alkanones [93]. After grinding a mixture of the starting material, NH4Br (2 equiv.) and
(NH4)2S2O8 (2.5 equiv.) for 15 min at room temperature, 10 (hetero)aromatic ketones were
isolated in good to excellent yields (83–92%). The procedure tolerated the presence of
electron-withdrawing (i.e., Cl, NO2), -donating (i.e., OMe, Me) and acid-sensitive (i.e., OH)
substituents on the aryl ketones. It should be noted that trace amounts of water were
required to ensure complete homogenisation of the solid reaction mixture.

Hydrogen Halides (HX)

At first sight, HX might seem a valuable halogenation alternative to bromine, as it will
ensure a high halide atom economy. However, the highly corrosive and toxic nature of this
reagent still limits its applicability [94]. Nonetheless, a significant body of work has been
reported on this topic and several noteworthy advances have been made.
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Akamanchi and co-workers developed an aqueous HBr-based halogenation system
for aromatic ketones [95]. In this system, the combination of NaNO2 and KI acted as the
bromination catalyst (Scheme 33). The versatility of this route was demonstrated through
the bromination of a broad range of aromatic ketones, bearing electron-withdrawing or
-donating substituents.
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Scheme 33. Aqueous HBr-mediated bromination by Akamanchi and co-workers.

Stavber and co-workers demonstrated the versatility of an NH4NO3- and I2-based
system in air [96]. The procedure yielded seven α-chloroketones in moderate to good yields
(Scheme 34). This protocol stands out due to its excellent selectivity, as no ring chlorination
or dichlorination was observed.
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Scheme 34. Stavber’s NH4NO3- and I2-catalysed chlorination.

Zhang and co-workers developed an HBr, NaNO2 and O2-mediated ring bromination,
yielding a diverse set of halogenated arenes (Scheme 35) [97]. When using aryl ketones,
α-bromination occurred instead, generating five α-bromoketones in moderate to excellent
yields (68–92%). The NO2-substituted aryl ketones underwent a less efficient bromination,
which aligns well with previous observations on the deactivation of electron-poor substrates.
The use of molecular oxygen as co-oxidant should also be highlighted.
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Scheme 35. NaNO2- and O2-mediated bromination by Zhang and co-workers.

The use of a more environmentally friendly oxidant system, such as H2O2, has also
been reported in combination with HBr, by Stavber and co-workers (Scheme 36) [98]. Inter-
estingly, the bromination was carried out in water, further highlighting the sustainability
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of this system. 1,3-Diketones, β-ketoesters, and cyclic ketones were brominated in good
to excellent yields. However, the scope only consisted of one aromatic ketone, again not
making it possible to perform an evaluation of the strength of the protocol. 2-Bromo-1-
phenylethanone was isolated in 78% yield. This method exhibited moderate selectivity,
since for some of the substrates, unwanted dibromination was a serious issue.
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Scheme 36. H2O2/HBr system by Stavber and co-workers.

Wakharkar and co-workers performed a comparative study between a H2O2 and a
TBHP system with HBr as the bromine source [99]. A set of substrates, bearing electron-
withdrawing (i.e., NO2, Cl) and -donating (i.e., OH) groups, were brominated in good
to excellent yields (75–95%). Based on the experimental data, both TBHP and H2O2 had
similar bromination efficiency. Ring bromination instead of α-bromination exclusively
occurred for OH-substituted ketones, highlighting this routes’ selectivity issues.

DMSO was also shown to be an effective oxidant in the HBr-mediated bromination
of ketones (Scheme 37) [100]. However, the substrate scope was again limited, making it
difficult to evaluate the system’s efficacy and overall applicability.

Molecules 2022, 27, x FOR PEER REVIEW 21 of 56 
 

similar bromination efficiency. Ring bromination instead of α-bromination exclusively oc-

curred for OH-substituted ketones, highlighting this routes’ selectivity issues. 

DMSO was also shown to be an effective oxidant in the HBr-mediated bromination 

of ketones (Scheme 37) [100]. However, the substrate scope was again limited, making it 

difficult to evaluate the system’s efficacy and overall applicability. 

 

Scheme 37. DMSO- and HBr-mediated bromination of acetophenone. 

An alternative HBr-based bromination was reported by Li and co-workers [101], 

which made use of Cu(NO3)2 (0.5 equiv.) and molecular oxygen to mediate the halogena-

tion. Although the scope is not very broad, the bromination yields were quite good (83–

94%). In most cases, dibromination of the substrate was observed, which again compli-

cates purification. 

The electrochemical α-bromination of aryl ketones was also reported by Kulandaina-

than and co-workers [102]. HBr was added to the ketone in acetonitrile in an undivided 

electrolytic cell containing two Pt electrodes (Scheme 38). A variety of aryl ketones were 

brominated in good to excellent yields. This method’s fine control over the experimental 

conditions through its set-up is quite intriguing. Despite the acidic conditions, the pres-

ence of acid-sensitive functional groups (i.e., OH) was well tolerated. In addition, this 

route showed excellent selectivity, as only monobrominated products were observed. 

 

Scheme 38. Electrochemical HBr-mediated direct bromination. 

In 2008, a photocatalytic flavin-based method was developed for the chlorination of 

arenes and aromatic ketones [103]. Halogenases, enzymes catalysing the chlorination of 

aromatic compounds, provided the inspiration for this catalytic system. Stirring a solution 

of riboflavin tetraacetate (RFT), methoxy benzyl alcohol (MBA) and HCl in acetonitrile 

under visible light irradiation, afforded a range of chlorinated arenes. α-chlorination oc-

curred when phenylethanone was used, generating the desired α-bromoketone (Scheme 

39). The authors claimed that, under these conditions, the peroxide concentration was kept 

consistently low, preventing undesired polychlorination of the substrates. Despite the 

moderate chlorination yields, this route stands out as it is the only catalytic direct halo-

genation route to date, that mimics an enzymatic process.  

 

Scheme 39. Photocatalysed direct halogenation of acetophenone. 

ILs are generally considered better alternatives to typical organic solvents as reaction 

media [104], mainly due to their recyclability and the subsequent ease in product isolation, 

Br

OO

ethyl acetate, 60°C, 2 h

73%

HBr (1.2 eq.)
DMSO (1.2 eq.)

R

Br

O

R

O

CH3CN, Pt/Pt, 10 °C,

74-91%R = H, OH, OMe, F, Cl
R = Br, NO2

HBr

Cl

OO

air, CH3CN, 445 nm, 45°C, 2.5 h

63%

RFT ( 0.1 eq.), HCl (10 eq.)
HOAc (10 eq.), MBA (6 eq.)

Scheme 37. DMSO- and HBr-mediated bromination of acetophenone.

An alternative HBr-based bromination was reported by Li and co-workers [101],
which made use of Cu(NO3)2 (0.5 equiv.) and molecular oxygen to mediate the halogena-
tion. Although the scope is not very broad, the bromination yields were quite good
(83–94%). In most cases, dibromination of the substrate was observed, which again
complicates purification.

The electrochemical α-bromination of aryl ketones was also reported by Kulandainathan
and co-workers [102]. HBr was added to the ketone in acetonitrile in an undivided electrolytic
cell containing two Pt electrodes (Scheme 38). A variety of aryl ketones were brominated in
good to excellent yields. This method’s fine control over the experimental conditions through
its set-up is quite intriguing. Despite the acidic conditions, the presence of acid-sensitive
functional groups (i.e., OH) was well tolerated. In addition, this route showed excellent
selectivity, as only monobrominated products were observed.
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Scheme 38. Electrochemical HBr-mediated direct bromination.

In 2008, a photocatalytic flavin-based method was developed for the chlorination of
arenes and aromatic ketones [103]. Halogenases, enzymes catalysing the chlorination of
aromatic compounds, provided the inspiration for this catalytic system. Stirring a solution
of riboflavin tetraacetate (RFT), methoxy benzyl alcohol (MBA) and HCl in acetonitrile un-
der visible light irradiation, afforded a range of chlorinated arenes. α-chlorination occurred
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when phenylethanone was used, generating the desired α-bromoketone (Scheme 39). The
authors claimed that, under these conditions, the peroxide concentration was kept consis-
tently low, preventing undesired polychlorination of the substrates. Despite the moderate
chlorination yields, this route stands out as it is the only catalytic direct halogenation route
to date, that mimics an enzymatic process.
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Scheme 39. Photocatalysed direct halogenation of acetophenone.

ILs are generally considered better alternatives to typical organic solvents as reaction
media [104], mainly due to their recyclability and the subsequent ease in product isolation,
as biphasic systems can be readily designed. In 2013, Stavber and Laali developed an ethy-
lammonium nitrate ([EtNH3

+][NO3
−])- and HX-mediated bromination and chlorination,

yielding a variety of ring halogenated arenes. Under these conditions, the α-bromoketone
was exclusively obtained in 90% yield upon addition of HBr and [EtNH3

+][NO3
−] to

1-phentylethanone (Scheme 40). However, the recurring problem of ring bromination was
observed for the p-OMe substituted phenylethanone.
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Scheme 40. [EtNH3
+][NO3

−]/HX-mediated bromination of 1-phentylethanone.

Another ring halogenation carried out in an IL was reported by Chiappe and co-
workers [105]. Herein, the role of 3-methylimidazolium nitrate ([Hmim][NO3]) was shown
to be twofold; it acts as a co-solvent and promotor of the halogenation (Figure 6). At this
point, it is widely believed that the use of ILs in these reactions will always involve some
sort of IL-based activation role. Under these conditions, aryl ketones showed exclusive
α-chlorination. 2-Bromo-1-phenylethanone was isolated in 90% yield when the IL (2 equiv.)
and an aqueous HCl solution (1 equiv.) were added to the corresponding ketone. Recycling
experiments demonstrated that the IL could be reused in four successive runs without a
significant loss in activity. The scope was limited to one aryl ketone, which again makes it
difficult to assess this route’s applicability.
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Figure 6. [Hmim][NO3], as co-solvent and promotor of the direct halogenation.

2.1.5. Polymeric Halogenation Agents

Poly(4-vinyl-N,N-dichlorobenzenesulfonamide) was first used for the halogenation of
one aryl ketone, yielding 2-chloro-1-phenylethanone in a moderate 40% yield (Figure 7) [106].
The straightforward reaction conditions and recyclability of the chlorination agent are the
main advantages of the protocol. However, prior to halogenation, the ketone deprotonation
had to be performed separately using NaH.
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Figure 7. Poly(4-vinyl-N,N-dichlorobenzenesulfonamide) as an effective chlorination agent.

In 2019, a simple and green bromination method was developed by Han and co-
workers [107], whereby poly(vinylphenyltrimethylammonium tribromide) (PVBMATB)
was synthesised by treating the Amberlite 717 resin with HBr and KBrO3 (Scheme 41). The
resin proved to be an effective brominating agent as it accommodated the halogenation of
eleven aryl ketones in moderate to excellent yields (60–96%). Ortho-substituted ketones
were less efficiently brominated, highlighting this route’s limitations with sterically hin-
dered substrates. PVBMATB provided a visual feedback system for the reaction progress,
as its colour changed from red to gold when the reaction is completed. The authors claimed
that the resin could be recycled and reused up to three consecutive runs with no significant
loss in activity. This route is highly valuable from both economic and environmental points
of view, associated with the low cost and recyclability of PVBMATB.
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Scheme 41. Synthesis of the PVBMATB resin.

Weiss and others showed that a resin, obtained upon treatment of diphenylphosphine-
functionalised polystyrene with CH3Br and Br2, exhibited an excellent bromination activity
(Figure 8) [108]. The bromination of a variety of alkenes, alkynes and ketones was carried
out in DCM, a swelling solvent for the polymeric agent. Only one aromatic ketone was
halogenated via this protocol, as 2-bromo-1-phenylethanone was obtained in 98% yield.
The α,α-dibromination was always observed, regardless of the nature of the substrate. For
comparison, the authors designed a homogenous methyl-triphenylphosphonium bromide-
catalysed halogenation in DCM which yielded 2-bromo-1-phenylethanone in 80% yield,
which is lower than the heterogeneous conditions used above. This route’s main features
are its simple work-up and product isolation, in conjunction with the recyclability of the
bromination agent.
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Liu and co-workers reported a polymer-supported halogenation agent which mediated
the selective α-iodination of four aromatic ketones in excellent yields (Scheme 42) [109]. The
polystyrene-bound selenium bromide was regenerated upon treatment with Br2. However,
lithium diisopropylamide (LDA) had to be employed prior to halogenation to generate the
nucleophilic enolate, which is not ideal, especially when other straightforward one-step
options are available.
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Scheme 42. Liu’s polymer-supported iodination.

2.1.6. Ionic Liquids as Halogenation Agent

IL-based halogenation agents are gaining traction in the literature nowadays, mainly
due to their contribution to the good practice ethos in terms of recyclability and reusability.
In 2015, α-bromination and α-chlorination procedures mediated by, respectively, bis(2-
N-methylimidazoliumethyl)-ether dibromochlorate and dichloroiodate, were reported
(Figure 9) [110]. Eight α-bromoaryl ketones were isolated in excellent yields (88–95%),
upon the addition of bis(2-N-methylimidazoliumethyl)-ether dibromochlorate (0.5 equiv.)
to the corresponding ketones under reflux for 8–24 h. Similarly, the reaction with the
dichloroiodate analogue generated eight α-chloroketones in 88–93% isolated yield. This
procedure tolerated the presence of electron-withdrawing (i.e., Br, Cl, NO2), -donating
(i.e., Me, OMe) and acid-sensitive (i.e., OH) groups on the substrates, highlighting its wide
applicability. The authors claimed that the ILs can be regenerated and reused; however, no
experimental details were provided to support this claim.
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Figure 9. Effective IL-based halogenation agents.

Veisi and Sedrpoushan illustrated that 1,4-bis(3-methylimidazolium-1-yl)butane ditri-
bromide was an effective bromination agent for arenes and aryl ketones (Figure 10, left) [111].
Upon addition of the IL (0.5 equiv.) in CH3CN, α-bromination of aryl ketones was achieved,
yielding three α-bromoketones (i.e., p-H, -Me, -OMe) in excellent yields (92–96%). The
authors demonstrated that the IL could be regenerated and reused for five successive
cycles without a significant loss in activity. The straightforward isolation of the brominated
products further highlighted this route’s sustainable character (i.e., adding water to the
reaction mixture).
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Figure 10. Bis(imidazolium)-based (left) and Fe2O3-supported (right) ditribromide ILs as effective
halogenation agents.

Another IL-based brominating agent, immobilised on Fe2O3 support, was successfully
utilised for the bromination of a variety of alkenes, alkynes, arenes and aryl ketones
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(Figure 10, right) [112]. The bromination agent was easily separated from the reaction
mixture by using an external magnet. When recovered, the authors claimed that the reagent
could be reused up to six consecutive runs without any significant loss in activity. Four
α-brominated aromatic ketones were isolated in good to excellent yields (80–90%). The
presence of electron-donating substituents decreased the reaction time from eight (for
phenylethanone) to six hours (for the p-OMe substituted analogue). Aryl ketones bearing
electron-withdrawing groups (i.e., p-Cl and o-NO2) showed a similar trend.

An efficient IL-mediated bromination protocol was also developed by Coa and Hu [113].
[Bmim][Br3] mediated the bromination of six aromatic ketones in good to excellent yields
(Scheme 43). The procedure tolerated the presence of both electron-donating and -withdrawing
substituents on the phenyl ring. The authors stated that the IL could be recycled several
times without any loss in bromination efficacy; however, no experimental data were pro-
vided in support of this claim. The short reaction times were an important feature of this
IL-based halogenation.
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Scheme 43. Coa and Hu’s α-bromination procedure.

In 2007, Ranu and co-workers designed an acetylmethylimidazolium halide ([Acmim]X)
(X = Cl−, Br−) and ceric ammonium nitrate-based α-chlorination and α-bromination of
ketones (Figure 11, left) [114,115]. Addition of the IL (1.2 equiv.) and ceric ammonium nitrate
(CAN) (2 equiv.) to an aryl ketone, yielded three α-chloro and three α-bromoketones (i.e., p-H,
-Me and -OMe substituted) in good yields (80–82% and 80–85%, respectively). The authors
mentioned that the selective α-halogenation of this protocol is linked to its radical nature.
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Figure 11. [Acmim]X (left) and pentylpyridinium tribromide (right).

Alternatively, a solvent-free protocol mediated by pentyl-pyridinium tribromide was
designed and reported by Dorta and Salazar (Figure 11, right) [116]. Only one aryl ketone
was tested, as only 2-bromo-1-phenylethanone was isolated in 85% yield. Furthermore, the
neat conditions were offset by using ether for extraction purposes during the work-up. The
authors stated that the tribromide reagent could easily be regenerated from the reaction
mixture using Br2.

Patel and co-workers designed another recyclable bromination agent, i.e., hexametho-
nium bis(tribromide) (HMBTB) (Figure 12, left) [117]. The procedure involved grinding
a solid mixture of HMBTB (0.5 equiv.) and ketones in a mortar for 20–60 min at room
temperature. The method demonstrated a broad substrate scope, with aromatic ketones
showing exclusive α-bromination. Similarly, the solvent-free α-bromination was also medi-
ated by 1,2-dipyridiniumditri-bromide-ethane (DPTBE) (Figure 12, middle) [118]. DPTBE
(0.5 equiv.) was added to the aromatic ketone, and subsequent grinding of the solids in a
mortar at room temperature for 1–1.5 h yielded the desired product. This route tolerated
the presence of electron-withdrawing (i.e., Cl, NO2) and electron-donating groups (i.e.,
OMe, OCH2Ph). Five para-substituted α-bromoketones were isolated in good to excellent
yields (82–89%). Other tribromides, such as pyridinium hydrotribromide (PHTB), also
showed excellent bromination activity (Figure 12, right). PHTB mediated the bromination
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of several para- and meta-substituted aromatic ketones (i.e., -OMe, Cl, NO2, Br) in good to
excellent yields (70–98%) [119].
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Figure 12. Other tribromide-based halogenation agents.

2.1.7. Miscellaneous Halogenation Agents

Other halogenation strategies include the use of transition metal halides. Sun demon-
strated the halogenation activity of copper halides in the direct halogenation of ketones [120].
Addition of Ti-Al binary oxides (0.02 equiv.) and CuX2 (2 equiv.) to phenylethanone, yielded
the corresponding α-bromo and α-chloroketones in 42 and 56% isolated yield, respectively.
The bromination reaction was carried out in acetonitrile, while the chlorination required
formic acid as solvent. For both, the α,α-dihalogenated species were observed as an impor-
tant side product (isolated in 20% and 10% yield, respectively), highlighting this route’s
moderate selectivity.

In contrast to Sun’s route, a broader scope of α-bromoketones were reported by Cai,
Peng and An [121,122]. Eleven ketones were brominated upon the addition of 1.5 equiv.
of CuBr2 (Scheme 44). At first sight, the mechanism seemed to indicate that at least
2 equiv. of CuBr2 are needed to achieve full conversion; however, the first step involving
the formation of the copper enolate could occur with CuBr instead. Additionally, CuBr
in the presence of HBr can disproportionate back to CuBr2, thus regenerating the active
species. The procedure tolerated the presence of electron-donating and -withdrawing
groups on the aryl substrates. NO2-substituted aromatic ketones underwent a less efficient
halogenation compared to the unsubstituted aryl ketone. Nevertheless, other electron-poor
substrates (i.e., bearing Cl, Br, I substituents) did not exhibit such a decrease in bromination
efficiency. An inherent drawback of these CuX2-mediated reactions is the moderate halogen
atom economy.
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Scheme 44. Straightforward CuBr2-based halogenation.

Another transition metal-based protocol for the halogenation of ketones was re-
ported by Zhang and co-workers using FeCl3·6H2O and phenyliodinium diacetate in
HOAc [123]. Addition of iron chloride (2 equiv.) and oxidant (1.2 equiv.) to the substrate,
yielded 25 α-chlorinated aryl ketones in moderate to good yields. The acidic reaction con-
ditions limited the substrate scope, as it decreased this route’s functional group tolerance
(e.g., NHx, OH).
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Tian and Sun developed a DMSO and oxalyl bromide ((COBr)2)-based bromination
method for a diverse set of alkenes, alkynes and ketones (Scheme 45) [124]. The procedure
leads to moderate selectivity, as the α-brominated and α,α-dibrominated products were
obtained in a 1:1 ratio. Despite the relatively mild reaction conditions and short reaction
times, this route does require further optimisation for more selective α-bromination.
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Both Tajbakhsh and Heravi illustrated that 1,4-diazabicyclo[2,2,2]octane (DABCO)
can be employed as a halogenation agent (Scheme 46) [125,126]. Heravi and co-workers
used tetrameric DABCO-bromine (TBD) supported on silica or alumina to efficiently
mediate the α-bromination of four aromatic ketones in good yields. The non-hygroscopic
supported solid performed the bromination under mild reaction conditions with an easy
work-up (simple filtration). Tajbakhsh and co-workers, on the other hand, employed
DABCO as a chlorination agent after treatment with chlorine gas, affording 1,4-dichloro-1,4-
diazabicyclo[2,2,2]octane (DCDABCO) (Scheme 46). A set of alkenes, alkynes and ketones
were chlorinated via this method, among which stands one, aryl ketone. The authors
claim that DCDABCO can be reused for four consecutive reactions without significant loss
in activity.
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SiCl4 was also shown to be an excellent chlorinating reagent. In 2010, El-Ahl illustrated
that a SiCl4 and UHP/iodosylbenzene-based system mediated the chlorination of a broad
range of ketones in good to excellent yields (Scheme 47, Figure 13) [127]. Aryl ketones
underwent exclusive α-bromination, highlighting the excellent regioselectivity of this route.
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An alternative versatile α-halogenation method was reported by Prakash and Mathew
in 2011 [128]. An effective halogenation agent was obtained upon the coupling of bromo-
or chlorotrimethylsilane with KNO3. The procedure yielded eight α-chloroketones and
five α-bromoketones (Scheme 47). Dihalogenation was a burdensome issue in this Si-
mediated reaction. The α,α-dihalogenated products were obtained for each substrate,
complicating purification.

Zou demonstrated that in the α-chlorination of aromatic ketones, 1,3-dichloro-5,5-
dimethyl-hydantoin (DCDMH) acts as an inexpensive chlorination agent (Figure 14) [129].
A silica gel-supported route and a pTsOH-catalysed method were therefore developed. The
former converted the aromatic ketones with a significantly higher efficiency than the latter.
Together with the shorter reaction times (1 h vs. 8 h, respectively), the SiO2-supported route
seemed to be superior. However, this route was not as selective as the pTsOH promoted
version. The chlorination of nitro-substituted aromatic ketones yielded a mixture of the
α-chlorinated ketone and the ketal. Furthermore, for methoxy-substituted substrates, ring
chlorination was exclusively observed.
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Figure 14. Alternative halogenation agents.

Alumina-supported α-bromination and α-iodination protocols have been developed [130].
Gupta described a solvent-free hexamethylenetetramine-bromine (HMTAB)-mediated halo-
genation. Eleven aromatic α-bromoketones were obtained in good yields (70–80%) upon
grinding HMTAB (1.6 equiv.), basic alumina and the substrate in a mortar. The homogenous
solid mixture was subsequently irradiated in a MW for 5–10 min. Electron-withdrawing and
-donating groups were well tolerated, as well as acid-sensitive ones (e.g., OH, NHx). The main
advantages of this procedure are its short reaction times and the solvent-free conditions.

CAN demonstrated excellent catalytic activity in the α-chlorination of (a)cylic ke-
tones [131,132]. This route employed the rather unconventional acetyl chloride as the
chlorine source, yielding one α-chloroarylketone (i.e., 2-chloro-1-phenylethanone) in 87%.
The authors claimed that α-chlorination was exclusively observed.

In 2019, Matsubara and co-workers designed a bis(1,3-dimethyl-2-imidazolidinone)hydrot-
ribromide (DITB)-mediated halogenation [133]. The α-bromination of a set of ketones was
established upon the addition of DTIB (1.1 equiv.). Seven α-bromoketones could be isolated
among which five aromatic examples could be isolated in moderate to good yields (Scheme 48).
Methoxy-substituted aryl ketones were obtained in significantly lower yields, which was
ascribed to dibromination of that substrate.

2.2. Nucleophilic Halogenation

The nucleophilic halogenation approach to generate α-halogenated ketones is much
less attractive than its electrophilic counterpart, mainly due to the need for an intermediary
step to install a leaving group on the carbon atom of the enolate. This in turn generates
unnecessary waste. Nonetheless, in this section, we would like to mention a few reports to
better clarify this approach.
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A clear example of this strategy can be found in the report by Lee and co-workers
describing the solvent-free MgX2 and HTIB-based halogenation (Scheme 49) [134]. The
generality of this route was demonstrated by the bromination, chlorination and iodination
of a set of aryl ketones under the same reaction conditions. Phenylethanone derivatives
were brominated, chlorinated, and iodinated in good to excellent yields (82–91%, 80–90%
and 65–75%, respectively). The procedure was thus very effective for both the bromination
and chlorination; however, a slight decrease in efficiency was observed for the iodination.
This route tolerated the presence of both electron-withdrawing (i.e., Br, NO2) and -donating
groups (i.e., OMe) on the substrates. The reaction is performed in two steps; the first one
using HTIB installs an OT leaving group on the α-carbon atom, and the following step
consists of Br− nucleophilic substitution on the same carbon to afford the corresponding
α-halogenated ketone.
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In an attempt to circumvent the need for stoichiometric amounts of a leaving group,
Lal and co-workers designed and reported a dioxidevanadium(V)-catalysed bromination
(Scheme 50) [135]. Five ketones were brominated in good to excellent yields. Remarkably,
the procedure tolerated acid-sensitive substituents (i.e., OH) on the aromatic ring. However,
large amounts of H2O2 as oxidant were needed. The authors gave a plausible mechanism,
involving the initial formation of vanadium C-enolate via C-H activation of the ketone,
followed by a Br− nucleophilic attack on the same carbon, which liberates the vanadium
complex and generates the α-bromoketone, thus closing the catalytic cycle. However, in
our opinion, an electrophilic halogenation mechanism could not be excluded, since the
protocol operates under harsh oxidative conditions; H2O2 or even the vanadium catalyst
can readily oxidise Br− into Br2 (or HOBr after reaction with water), which would then be
capable of reacting directly with the ketone.
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3. Oxyhalogenation of Hydrocarbons

In the last two decades, alternative protocols have been developed that have targeted
the numerous issues raised by the direct halogenation approach. A vast amount of work
has been dedicated to the oxyhalogenation of alkenes, alkynes, and secondary alcohols.
Nonetheless, these routes either only partially tackled the problems associated with the
direct halogenation (e.g., oxidation often required an acidic promotor), or present moderate
efficacy and/or selectivity. Herein, we showcase some of the most attractive strategies.

3.1. Alkenes as Substrates

Styrene derivatives have proven to be excellent oxyhalogenation substrates. In 2020,
Zhu and co-workers developed a FeX3-catalysed oxyhalogenation mediated by KX in
methyl tert-butyl ether (MTBE) (Scheme 51) [136]. Fourteen α-bromo and fourteen α-
chloroketones were isolated in moderate to good yields. Electron-poor, -rich and sterically
hindered substrates were efficiently functionalised by the developed procedure. However,
the protocol failed in the oxyhalogenation of p-OH substituted alkenes, attributed to the use
of TsOH. The reaction proceeds via a radical mechanism, where the Br radical is trapped by
the styrene derivative. This radical intermediate is then captured by O2 and FeBr2, affording
a peroxide intermediate which upon water elimination yielded the corresponding halo-
genated ketone. Additionally, the oxyhalogenation presents a substrate specific character,
as the oxychlorination yields were significantly lower than the oxybromination relatives.
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Another metal-catalysed oxybromination of olefins was established using a molybdenum-
(VI)-based complex (Scheme 52) [137]. 2-Bromo-1-phenylethanone was obtained in 73% yield
upon addition of 0.2 mol% of a cis-dioxomolybdenum(VI) complex to a mixture of H2O2, KBr,
HClO4 and styrene. The bromohydrin and epoxide were isolated as important side products
(in 15 and 11%, respectively), highlighting the moderate catalyst selectivity.
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Scheme 52. Molybdenum(VI)-catalysed oxybromination of olefins.

Guo and co-workers reported the oxybromination of 11 styrene derivatives upon the
addition of KBr (2 equiv.), K2S2O8 (2.5 equiv.) in H2O (Scheme 53) [138]. After stirring for
12 h at 60 ◦C, the corresponding aryl bromoketones were isolated in low to excellent yields
(24–90%). The method tolerated substrates bearing electron-donating (e.g., Me, t-Bu) or
-withdrawing (e.g., F, Cl, Br) substituents on the aromatic ring. A significant decrease in
hydration efficiency (i.e., 24%) was observed for the OMe-substituted styrene derivative.
Furthermore, this route was not compatible with heteroaromatic substrates. Despite its
shortcomings, the developed procedure did benefit from readily available starting materials
and a safe halogen source. The mechanism involves the initial K2S2O8-mediated oxidation
of Br− to Br2, which leads to the formation of HOBr in the presence of water. Addition
of HOBr onto the alkene affords the bromohydrin intermediate. Upon oxidation of the
latter, the corresponding bromoketone is obtained. In 2019, the authors slightly altered
their oxyhalogenation procedure [139]. A KI- and TBHP-based system transformed styrene
into the corresponding α-iodoketone in 97% yield.
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Scheme 53. Oxybromination of styrene derivatives by Guo and co-workers.

Adimurthy and Iskra independently established an aqueous H2O2-based oxyhalo-
genation method [140,141]. Both authors reported the use of HBr as a bromination agent,
which generated the corresponding α-bromoketone and the bromohydrin (Table 2). Iskra
and co-workers demonstrated that using NBS instead of HBr considerably shifted the
selectivity towards the α-haloketone. Despite enhanced selectivity, the hydrin intermediate
was still observed in 19% yield. Furthermore, the reported substrate scope consisted of only
styrene. The α-haloketone selectivity appeared to be less problematic in the Adimurthy
route (Table 2), and a broader scope was established; eight aromatic α-bromoketones were
isolated in low to excellent yields (20–94%). Although electron-donating aromatic sub-
stituents (e.g., Me, t-Bu) were well tolerated, electron-withdrawing substituents (e.g., Cl, Br,
NO2) were not. Moreover, the presence of steric bulk close to the alkene centre appeared to
have a detrimental effect on the system’s efficiency.
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Table 2. Aqueous H2O2-based oxyhalogenation methods.
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Reaction Conditions α-Bromoketone (%) Bromohydrin (%) Ref.

HBr (2 equiv.), H2O2 (1 equiv.), H2O, r.t. 12 53 [141]
NBS (2 equiv.), H2O, r.t. 19 81 [141]

30% aq. HBr (1.7 equiv.), H2O2
(3 equiv.), H2O, r.t. 94 4 [140]

Adimurthy and Ranu discussed the use of HOBr in the oxybromination of alkenes
(Scheme 54) [142]. Their procedure involved the addition of two equivalents of HOBr
to various olefins in 1,4-dioxane. Several α-bromoketones were obtained in moderate
to excellent yields (40–87%). Regardless of the electronic properties of the substrate, the
bromohydrin analogue was consistently observed in significant amounts.
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Scheme 54. The use of HOBr in the oxybromination of alkenes.

Moorthy and co-workers designed a NXS oxyhalogenation of olefins in DMSO, which
employed 2-iodoxybenzoic acid (IBX) as the oxidant [143]. More recent work involved
the in situ generation of an IBX derivative via Oxone® (Scheme 55) [144]. This versatile
method generated a set of para- and ortho-substituted α-bromoketones in good to excellent
yields (79–94%). Electron-withdrawing and -donating groups on the substrates were well
tolerated by the NBS and Oxone® system. Meanwhile, Mal and co-workers demonstrated
the solvent-free oxyhalogenation of a variety of alkenes using a NXS (1.1 equiv.) and IBX
(2 equiv.) system [145]. The procedure generated 2-bromo- and 2-iodo-1-phenyl-ethanone
in, respectively, 86% and 89% yield. The authors claimed that the obtained ketones did
not require chromatographic purification, facilitating product isolation significantly. They
further stated that the oxidant could be recycled via its waste product 2-iodosobenzoic
acid. However, product loss was observed and attributed to the high volatility of the
halogenated products.
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Phukan and co-workers designed an effective N,N-dibromo-p-toluenesulfonamide
(TsNBr2)-mediated transformation of alkenes into their corresponding α-bromoketones [146].
Both electron-poor and -rich styrene derivatives were efficiently converted when adding
TsNBr2 (2.2 equiv.) to the starting material in an acetone/H2O mixture at room temperature.
The resulting products were isolated in good to excellent yields (80–87%). This route stood
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out due to its mild reaction conditions and good efficiency, although it should be noted that
TsNBr2 is not readily accessed [147,148]. In 2017, Loginova et al. reported a ClO2-mediated
oxidative chlorination of styrene [149]. This route displayed poor selectivity issues as next
to the desired α-chloroketone, five side-products were obtained, significantly complicating
the product isolation process (Scheme 56). Furthermore, chlorine dioxide is an extremely
toxic and dangerous reagent; its use thus requires strict safety precautions.
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Scheme 56. Selectivity issues of the ClO2-mediated oxychlorination.

Chen and co-workers designed an electrochemical Mn-catalysed oxychlorination proce-
dure, using a reticulated vitreous carbon (RVC)-based anode and cathode (Scheme 57) [150].
Fourteen electron-poor and -rich α-chloroketones were isolated in low to excellent yields.
The developed route was not compatible with sterically hindered substrates, as the ortho-
substituted product was obtained in only 37% yield. As the FeBr3-based protocol, the role of a
peroxide intermediate was noted.
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Scheme 57. Chen’s electrochemical oxychlorination.

Itoh and co-workers developed an aerobic photo-oxidative protocol yieldingα-haloketones
from their styrene derivatives [151]. The reaction conditions and scope are depicted in Table 3.

Table 3. Photo-oxidative synthesis of phenylacylhalides.

X Reaction Conditions Scope (Yield) Aromatic Substituents

I I2 (0.6 equiv.), hv, H2O/EtOAc 7 α-iodoketones
(43–88%) H, t-Bu, Me, OMe, Cl, Ph

Br 48% aq. HBr (1.1 equiv.), hv,
H2O/EtOAc

7 α-bromoketones
(trace–86%) H, t-Bu, Me, OMe, Cl, Ph

In 2007, Itoh described the synthesis of α-iodoketones upon irradiation with a fluores-
cent lamp of a mixture of I2 (1 equiv.), O2 and FSM-16 (mesoporous silica) in EtOAc; with
FSM-16 acting as a heterogeneous catalyst (Scheme 58) [152]. Several α-iodoketones were
obtained from their styrene derivatives in moderate to good yields (38–77%). The experi-
mental data showed that the system coped well with the presence of electron-withdrawing
(e.g., Cl, NO2) and -donating (e.g., Me, t-Bu) substituents on the aromatic ring. However,
this route was incompatible with sterically hindered alkenes.
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R

I

O

R

I2 (1 eq.), O2, FSM-16

38-77%R = H, Me, t-Bu, Ph, Cl, NO2

EtOAc, h 10 h

Scheme 58. Itoh’s procedure using irradiation.

Zhang and co-workers utilised 1,3-dibromo-5,5-dimethylhydantoin (DBH) for the
oxybromination of styrene derivatives in H2O [153]. The role of DBH (2 equiv.) was
twofold, since it acted as an oxidant and as halogenation agent. This protocol yielded
11 aromatic α-bromoketones bearing a diverse set of aromatic substituents (34–85%). This
route was not compatible with sterically hindered alkene centres, as the o-NO2 substituted
ketone was isolated in only 34% yield. In 2020, Wang and Zhang reported an elaborate
scope (18 examples) of α-iodoketones, obtained in good to excellent yields (73–96%),
from corresponding olefins [154]. The reaction was catalysed by visible light under mild
experimental conditions (Scheme 59).

R

I

O

R

PhI(OAc)2 (0.5 eq.)

73-96%

sunlight, 1,4-dioxane, r.t., 6 h

Scheme 59. Zhang’s versatile oxyiodination.

3.2. Alkynes as Substrates

Similarly to the alkene systems mentioned above, I2- and IBX-based oxyiodination of
aromatics was also applied to alkynes in water (Scheme 60) [155]. The protocol showed
good tolerance towards electron-donating and electron-withdrawing substitutions on
the aromatic alkynes. The role of IBX is to facilitate the initial addition step of I+ and
water to alkyne, most likely to generate the I+ active species from I2. Afterwards, the
formed iodo-enol compound would tautomerise to the iodoketone form, affording the
target compound.
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Scheme 60. I2- and IBX-based oxyiodination of alkynes.

Ahmed and co-workers described an alternative I2-based oxyhalogenation protocol
which generated 11 α-chloroketones in good yields (69–79%) upon the addition of HCl
to the corresponding phenylacetylene derivatives in DMSO [156]. The protocol tolerated
the presence of electron-withdrawing (i.e., F, Br, Cl, CF3) and -donating (i.e., Me, n-Bu)
aromatic substituents. Interestingly, the presence of steric bulk near the alkyne centre
(ortho-substitution of the aromatic ring) did not affect its efficacy. Acid-sensitive substrates
were not tolerated under these conditions, thus limiting the reaction scope.

Phukan and co-workers reported the oxybromination of aromatic alkynes mediated by
a TsNBr2 and Na2SO3 system (Table 4) [147]. A broad scope of substrates were efficiently
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transformed into the desired products, with exclusive formation of the α-bromoketone
observed. Nonetheless, the long reaction times and the use of the non-commercially
available TsNBr2 could be a major hindrance for its widespread application. He and
co-workers investigated the same reaction using a commercially available halogenating
reagent, 1,3-dibromo-5,5-dimethyldantoin (DBDMH) (Table 4) [157]. The authors illustrated
this route’s versatility as it yielded α-bromo-, α-chloro- and α-iodoketones without the need
to alter the reaction conditions (this was achieved simply by changing the halogenating
reagent, 1,3-dihalo-5,5-dimethyldantoin).

Table 4. Phukan and He’s oxyhalogenation procedures.

Reaction Conditions Scope (Yield) Aromatic Substituents Refs.

TsNBr2 (2 equiv.), Na2SO3 (8 equiv.),
EtOAc/acetone/H2O, r.t, 24 h

17 α-bromoketones
(75–80%) H, Me, t-Bu, n-Pr, F, Br, Cl [147]

DBDMH (1.2 equiv.), ethylene thiourea
(0.15 equiv.), acetone/H2O, 45 ◦C

17 α-bromoketones
(77–91%)

1 α-chloroketone (78%)
1 α-iodoketones (69%)

H, Me, OMe, OBn, SMe, F, Cl, Br, I, CF3 [157]

Pitchumani and others established a route involving the addition of Br2 to phenylacety-
lene in cyclodextrin (CD) [158]. An alkyne-CD complex was formed upon the interaction
of the substrate in the cavity of the cyclodextrin molecule. The experimental data showed
that formation of 2-bromo-1-phenylethanone is enhanced with increased cavity size. In
α-CD (6 glucose units), only 13% of the ketone was observed, whereas in γ-CD (8 glucose
units), the GC yield of the ketone increased to 46%. This route stands out as it is the first to
demonstrate such a complexation effect on the selectivity of oxyhalogenation reaction.

A gold-based oxidative halogenation method was designed by Xiang and Zhang using
[Au(NTf2)(IPr)] as a catalyst, 8-methylquinoline N-oxide as the oxidant and methanesul-
fonic acid (MsOH) [159]. One α-chloroketone and two α-bromoketones were obtained
via the halide abstraction of the solvent (i.e., dichloro- or dibromoethane). The results,
illustrated in Scheme 61, show the poor catalytic activity of the selected AuI complex in
this transformation.
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Scheme 61. [Au(NTf2)(IPr)] catalysed oxyhalogenation.

In 2017, Xing and co-workers demonstrated a AuIII system accommodating the oxy-
halogenation of terminal alkynes (Scheme 62) [160]. This route yielded aromatic, aliphatic
and heteroaromatic α-bromoketones (15 in total) in good to excellent yields (73–91%). The
versatility of this route was further highlighted as it also generated five α-chloroketones
in good to excellent yields (75–90%) and two α-iodoketones in good yields (81–85%). Al-
though this route seemed to be promising, it brings a number of limitations as the use of
silver salts imposed several drawbacks; their limited air- and light-stability, as well as the
known interference of Ag in the AuI catalysis [161]. The proposed mechanism involved
the formation of the ketone first, followed by the halogenation when NXS is added. The
authors proposed that the formation of the ketone is initially driven by the Au-catalysed
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addition of MeOH to the alkyne; however, in our opinion, this would be improbable. The
more plausible route would be the Au-catalysed hydration of the alkyne, most likely using
residual water present in the solvents used.
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Scheme 62. AuIII-catalysed oxyhalogenation of terminal alkynes.

4. Oxidative Halogenation of Secondary Alcohols

Closely related to the typical oxyhalogenation route, this method relies on the prerequi-
site setup of a secondary alcohol group and offers straightforward access to α-haloketones.
Terent’ev and co-workers developed a H2O2/HBr system which converted three sec-
ondary benzylic alcohols into their corresponding α-bromoketones in moderate to good
yields (52–85%) (Scheme 63) [162]. The system was not compatible with ortho-substituted
1-phenylethanol derivatives, as the reaction yield dropped significantly (52%). The devel-
oped method showed outstanding selectivity, as exclusive formation of the α-haloketone
was observed. The authors claimed that the role of the ratio HBr/H2O2 (1.2:10) is crucial
to obtain these results. H2O2 is most likely responsible for oxidizing the corresponding
alcohol to generate the carbonyl moiety and for oxidizing Br− to Br2 (or HOBr), the active
bromination agent.
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Scheme 63. H2O2/HBr system for the oxidation of secondary benzylic alcohols.

The dual role of a urea-choline chloride-based deep eutectic solvent (DES) in the
oxidative bromination of secondary alcohols was demonstrated by Azizi and co-workers
(Scheme 64) [163]. 2-Bromo-1-phenylethanone was obtained in 68% yield when adding
three equivalents of NBS to the corresponding alcohol in the DES. Remarkably, the DES
both acted as a catalyst system and solvent in this transformation. Recent studies illustrated
the superiority of DES in comparison to ILs, linked to their non-toxic nature, easy and low-
cost synthesis [164]. Although the mechanism was not fully disclosed, NBS was most likely
responsible for both the bromination and oxidation, with DES activating the N-Br bond.
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Scheme 64. Urea-choline chloride-based deep eutectic solvent (DES) in the oxidative bromination of
secondary alcohols.

Narender and co-workers established an aqueous, green and efficient way to generate
α-iodoketones from secondary alcohols via addition of NH4I and Oxone® (Scheme 65) [165].
The procedure generated a yield of 72% of 2-iodo-1-phenylethanone, but the yield dropped
significantly for alcohols bearing substituted aromatic rings (i.e., p-Me, p-Br, p-NO2, m-OMe).
The developed method proved inefficient for substituted 1-phenylethanol derivatives. In
2017, the authors updated the procedure in order to access α-bromoketones via their
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corresponding alcohols upon the addition of NH4Br (2 equiv.) and Oxone® (3 equiv.) [166].
This altered procedure yielded 10 α-bromoketones in low to excellent yields (38–94%).
Nitro-substituted benzylalcohols appeared to be deactivated in the developed system.
Furthermore, undesired ring bromination exclusively occurred for methoxy substituted
1-phenylethanol derivatives. Despite the progress made in terms of sustainability, this
route still shows a rather moderate oxyhalogenation efficiency and selectivity.
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Scheme 65. Synthesis of iodomethyl ketones from secondary alcohols.

In 2014, a method for the oxychlorination of 1-phenyl-ethanol was reported by Studer
and co-workers (Scheme 66) [167]. Ten α-chloroketones were isolated in good to excellent
yields (70–87%) by stirring the alcohol substrates with a mixture of trichloroisocyanuric
acid (1 equiv.), TEMPO (0.1 equiv.) and MeOH (2 equiv.) in DCM for 5 h. The presence
of electron-donating and -withdrawing groups on the substrates was well tolerated. The
protocol stands out as it employs a commonly used bleaching and disinfectant agent (i.e.,
trichloroisocyanuric acid) in a chemical process.
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5. Oxidation of Functionalised Hydrocarbons

A different approach to circumvent the problems associated with the direct halogena-
tion route involved using functionalised hydrocarbons as synthons for α-haloketones. In
these cases, the halogen is already affixed to the substrate, thus simplifying the process.
However, in some of these cases, the substrates could be found as intermediates in the
above-mentioned processes (i.e., direct halogenation and oxyhalogenation). Additionally,
overall, the fixation of the halogens on the substrates employed in this section could also
be burdensome and in some cases limited.

5.1. Haloalkanes as Substrates

Mohammadi and co-workers described the synthesis of 2-bromo-1-phenylethanone from
its corresponding bromoalkane in 85% yield [168]. The unconventional 1,4-bis(triphenyl
phosphonium)butane peroxodisulfate was employed as the oxidant (Scheme 67). The reaction
time was quite short; however, only one example was shown.

Similarly, Jiang and co-workers established a photocatalytic oxidation procedure for
the oxidation of a broad range of benzylic alkanes [169]. The corresponding carbonyl
compounds were obtained upon the addition of a dicyanopyrazine-derived chromophore
(5 mol%), N-hydroxyimide (0.2 equiv.) and FeC2O4·2H2O (0.1 equiv.), with subsequent
irradiation of the obtained mixture using a 3 W blue LED light. The authors showed only
two examples of α-bromoketones, i.e., 2-bromo-1-phenyl-ethanone and its para-chloro-
substituted derivative, in 83% and 55% yields, respectively. The extremely long reaction
times (63–66 h) were also quite limiting.
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Scheme 67. Oxidation of (2-bromoethyl)benzene into the corresponding bromoketone.

5.2. Haloalkenes as Substrates

Synthesis of 2-chloro- and 2-bromo-1-phenylethanone in, respectively, 78 and 76% yield
using molecular oxygen as oxidant was described by He and co-workers (Scheme 68) [170].
The developed method involved stirring a mixture of n-octyl phenylphosphinate (3 equiv.)
and the haloalkene at 130 ◦C for 15 h in the presence of a O2 balloon. This route generated
only one side product, i.e., water, highlighting its sustainability.
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Jiang and co-workers developed a photocatalytic oxidation of vinyl halides [171]. Five
α-bromoketones and five α-chloroketones were obtained in moderate to excellent yields
(Scheme 69). The presence of electron-withdrawing (e.g., F, NO2) and -donating (e.g., Me)
substituents on the aromatic ring was well tolerated by the catalytic system. The mechanism
involved a Fe(III)-Fe(II)-Fe(III) catalytic cycle for the O2-assisted radical oxidation of the
vinylic substrates followed by the halogen rearrangement of the terminal position.
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Scheme 69. Photocatalytic oxidation of vinyl halides.

An alternative FeIII catalytic oxidation protocol was designed by Xiao [172]. Two
different methods were reported as illustrated in Table 5. Method 1 exclusively generated
the desired α-bromoketone, while the second method yielded de-halogenated ketones as
important side products for some substrates. The ligand’s properties thus seemed to have a
considerable effect on the protocol selectivity. Nonetheless, a detailed comparison between
both methods is difficult due to the limited scope of method 1.
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Table 5. FeIII-catalysed oxidation of haloalkenes.

Method Reaction Conditions Scope (Yield) Aromatic Substituents

1 Fe(OTf)3 (1.15 mol%), L4 (1.15 mol%), DCE,
75 ◦C, 8 h 2 α-Bromoketones (91–92%) H, Cl

2 Fe(OTf)3 (1.15 mol%), L1 (1.15 mol%), O2 (1 atm),
DCE/DBE 75 ◦C, 8 h

4 α-Bromoketones (65–99%)
2 α-Chloroketone (50–70%)

1 α-Iodoketones (70%)
H, Me, OMe, F, Cl, Br
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5.3. Haloalcohols as Substrates

Haloalcohols or halohydrins were also intermediates in the oxyhalogenation reactions
discussed above. Therefore, it is important to note the close relationship between the
two sections and that protocols discussed in this section could also help to advance the
oxyhalogenation strategies.

Wang and Dong independently developed a micellar catalytic oxidation of alco-
hols [173,174]. Both authors reported the successful conversion of 2-bromo-1-phenylethanol
into its corresponding ketone (Table 6). Wang and co-workers enhanced the substrate’s
water solubility upon addition of CTAB, a commercially available cationic surfactant, to
the reaction medium. Similarly, Dong and co-workers ensured the sufficient solubility of
the substrate by adding GMPGS-2000, a non-ionic surfactant. Both procedures exploited
the concept of micellar catalysis, which truly distinguished them from the state-of-the-art.
However, one major flaw of these micellar catalytic systems concerns the often tedious
work-up, attributed to the difficult separation of the organic and aqueous phase [175].

Table 6. Micellar catalytic oxidation of 2-bromo-1-phenylethanol.

Reaction Conditions Scope (Yield) Refs.

2-iodosylbenzoic acid (0.01 equiv.), Oxone® (0.525 equiv.), CTAB (3 wt%), H2O, r.t., 2 h 2-bromo-1-phenylethanone (95%) [173]
IBX (1.2 equiv.), GMPGS-2000 (2 wt%), H2O, r.t., 24 h 2-bromo-1-phenylethanone (64%) [174]

A copper-catalysed oxidation of secondary alcohols was designed by Liu and co-
workers [176]. 2-Bromo-1-phenylethanone was isolated in 95% yield upon addition of
Cu(OTf) (0.05 equiv.), TEMPO (0.05 equiv.), (S)-5-(pyrrolidin-2-yl)-1H-tetrazole (0.05 equiv.)
and KOtBu (1 equiv.) to the corresponding alcohol in dimethylformamide (DMF) at
room temperature. However, no reaction/substrate scope was disclosed. Another limited
protocol was developed by Nguyen and co-workers using AlMe3-catalysed Oppenauer
oxidation (Scheme 70) [177]. The scope again consisted of one α-haloketone, i.e., 2-bromo-
1-phenylethanone, making it difficult to assess the method’s efficiency.
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Scheme 70. AlMe3-catalysed Oppenauer oxidation.

He and co-workers described the bis(methoxypropyl)ether (bMPE)-promoted oxida-
tion of benzylic alcohols [178]. The procedure yielded one α-bromo- and one α-chloroketone
in good yields (Scheme 71). Although again the scope was limited, the main advantage of
this protocol is its solvent-free conditions.
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In 2014, Gotor published a T. versicolor Lacasse and TEMPO system, which converted
haloalcohols into their corresponding ketones [179]. T. versicolor Lacasse is an extracellular
enzyme excreted by white and brown fungi. A broad scope of α,α-dihalogenated aryl
ketones were obtained in good to excellent yields. The chemoenzymatic procedure also
yielded one α-halocarbonyl compound, i.e., 2-chloro-1-phenylethanone, at a yield of 62%.
Despite the mild reaction conditions, the long reaction times (24 h) and the moderate yield
still limited the method’s applicability.

6. Hydration of 1-Haloalkynes

The hydration of haloalkynes is a less commonly described approach to access α-
haloketones. Despite the plethora of work that involved the hydration of (terminal)
alkynes [180–188], this strategy has only scarcely been employed in the synthesis of α-
haloketones. The hydration is an excellent example of ideal atom economy. Furthermore,
this transformation often only requires the presence of one reagent, i.e., H2O, highlight-
ing its green character. This route thus offers immense value from both economic and
environmental perspectives.

6.1. Metal-Catalysed Hydrations

Similarly to the hydration of alkynes [187,188], gold complexes have exhibited an
excellent catalytic activity in the hydration of 1-haloalkynes [189]. Cai and co-workers
described the hydration of 1-haloalkynes catalysed by a gold catalyst immobilised on
mesoporous MCM-41 resin [190]. The versatility of this heterogeneous catalytic route
was demonstrated by its broad substrate scope. Sixteen α-bromo, four α-chloro and four
α-iodoketones were obtained in excellent yields (Scheme 72). The authors claimed that the
catalyst can be recycled and reused for eight consecutive runs without significant loss of
catalytic activity. Additionally, they stated that after these eight runs, gold leaching did not
occur. The excellent atom economy, mild reaction conditions, the generality and catalyst
recyclability elevated the importance of this protocol compared to the state-of-the-art. In
2019, the same group reported an updated procedure relying on the in situ activation
of MCM-41-[Au(Cl)(PPh3)] (2 mol%) by AgNTf2 [191]. Despite the decreased catalyst
loading, this route’s scope was very limited, as only 2-bromo-1-phenyl-ethanone (92%)
was obtained.
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Scheme 72. The AuI hydration reaction by Cai and co-workers.

Another gold-catalysed protocol using [Au(NTf2)(XPhos)] to perform the hydration
of 1-bromo and 1-chloroalkynes was designed by He and Xiang [192]. Ten aromatic α-
bromoketones and two aromatic α-chloroketones were isolated in low to excellent yields
(up to 97% and 91%, respectively), upon of addition of 3 mol% of the catalyst and water
(3 equiv.) to the 1-haloalkyne in dichloroethane. The presence of electron-donating (i.e.,
Me, t-Bu, OMe) and -withdrawing (i.e., F, Br) groups on the substrates was well toler-
ated. However, the hydration efficacy of the system decreased significantly for sterically
hindered substrates. The hydration of the ortho-substituted 1-haloalkynes yielded the corre-
sponding ketones in trace amounts. Furthermore, the protocol demonstrated a substrate
specific nature, as it did not accommodate the hydration of 1-iodoalkynes. More recently,
Cazin and co-workers developed an efficient catalytic protocol for the Au(I)-catalysed
hydration of 1-iodoalkynes (Scheme 73) [193]. The use of Au(I)-NHC catalysts enabled the
straightforward synthesis of several aromatic α-iodomethyl ketones in good to excellent
yields. The utility of this simple method was further highlighted by showcasing iodina-
tion/hydration and hydration/oxidation sequential protocols leading to the construction
of molecular complexity.
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A broad scope of α-haloketones was also obtained via the Cu(OAc)2·H2O and triflu-
oroacetic acid (TFA) promoted hydration system developed by He (Table 7) [194]. This
route coped well with substrates bearing electron-withdrawing and -donating groups. The
authors claimed that the catalyst can be recycled and reused for five consecutive runs
without loss in hydration activity. In 2014, Lui and co-workers reported the remarkable
catalytic activity of the AgF/TFA system in the hydration of alkynes (Table 7) [195]. This
system tolerated a wide variety of functional groups attached to the phenyl ring (i.e., CF3,
Br, Me, NO2, OMe, etc.). The procedure showed a substrate specific character as it did
not mediate the hydration of 1-iodoalkynes. The use of the strongly acidic TFA is a major
drawback, and negatively impacts the functional group tolerance of both routes.

Table 7. CuII- and AgI-catalysed hydrations.

Route Catalyst (mol%) Reaction Conditions Scope (Yield)

He (2016) [194] Cu(OAc)2·H2O (10) H2O (1 equiv.) in TFA
at 70 ◦C for 6 h

15 α-bromoketones (77–96%)
3 α-chloroketones (91–92%)
4 α-iodoketones (90–96%)

Liu (2014) [195] AgF (5) H2O (1 equiv.) in TFA
at 40 ◦C for 6–16 h

15 α-bromoketones (61–95%)
3 α-chloroketones (81–90%)
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Lee and Lixin independently described an FeClx·yH2O-catalysed hydration [196,197].
Their systems required the presence of methanesulfonic acid (MsOH) in order to transform
1-haloalkynes in sufficiently high yields (Scheme 74). The substrate scope was rather limited,
as Lee’s procedure generated one α-bromoketone and Lixin’s reported only three aromatic
α-chloroketones. The acidic nature of these protocols further narrowed the hydration scope,
as acid-sensitive functional groups (e.g., OH, NHx) did not tolerate these conditions.

Molecules 2022, 27, x FOR PEER REVIEW 42 of 56 
 

mediate the hydration of 1-iodoalkynes. The use of the strongly acidic TFA is a major 

drawback, and negatively impacts the functional group tolerance of both routes. 

Table 7. CuII- and AgI-catalysed hydrations. 

Route Catalyst (mol%) Reaction Conditions Scope (Yield) 

He (2016) [194] Cu(OAc)2·H2O (10) 
H2O (1 equiv.) in TFA 

at 70 °C for 6 h 

15 α-bromoketones (77–96%) 

3 α-chloroketones (91–92%) 

4 α-iodoketones (90–96%) 

Liu (2014) [195] AgF (5) 
H2O (1 equiv.) in TFA 

at 40 °C for 6–16 h 

15 α-bromoketones (61–95%) 

3 α-chloroketones (81–90%) 

Lee and Lixin independently described an FeClx·yH2O-catalysed hydration [196,197]. 

Their systems required the presence of methanesulfonic acid (MsOH) in order to trans-

form 1-haloalkynes in sufficiently high yields (Scheme 74). The substrate scope was rather 

limited, as Lee’s procedure generated one α-bromoketone and Lixin’s reported only three 

aromatic α-chloroketones. The acidic nature of these protocols further narrowed the hy-

dration scope, as acid-sensitive functional groups (e.g., OH, NHx) did not tolerate these 

conditions. 

 

Scheme 74. Iron chloride-catalysed hydration of 1-bromo and 1-chloroalkynes. 

Xiao and co-workers designed an In(OTf)3 (10 mol%)-catalysed hydration optimised 

for 1-bromoalkynes (Scheme 75) [198]. The hydration reaction was only effective if carried 

out in an acidic solvent, i.e., HOAc. Together with the high reaction temperature, this 

route requires harsh hydration conditions, which limits its applicability. Nevertheless, 16 

α-bromo, 3 α-chloro and 3 α-iodoketones were obtained in good to excellent yields (78–

93%). Despite the acidic solvent, the system mediated the hydration of an OH-substituted 

1-bromoalkyne, affording the corresponding ketone in 82% yield. 

 

Scheme 75. In(OTf)3-catalysed hydration of 1-bromoalkynes by Xiao and co-workers. 

Recently, Xiang and co-workers designed a highly versatile Ce(SO4)2-catalysed hy-

dration [199]. The addition of sulfuric acid to the 1-haloalkyne with 5 mol% of Ce(SO4)2 in 

DCM, generated 30 α-haloketones in moderate to excellent yields (Scheme 76). Despite 

the acidic nature of the protocol, acid-sensitive groups (i.e., OH and NHTs) were well 

tolerated. The presence of steric bulk close to the triple bond appeared to have a consid-

erable effect on the hydration efficiency. 

R

X

R

X

O
Lee: FeCl2·4H2O (5 mol%) 
MsOH (2 eq.), DCE, 60 °C, 1 h

Lixin: FeCl3·6H2O (5 mol%)
MsOH (0.2 eq.), H2O (3 eq.)
DCE, 80 °C, 3 h Lee,   X = Br; 83%

Lixin, X = Cl; 90-95%

In(OTf)3 (3 mol%), H2O (3 eq.)

R

X

R

X

O

R = H, Me, OMe, Ph, F, Cl, 
R = Br, CF3, NO2

X = Br;  78-93%
X = Cl;  79-90%
X = I;ii   77-88%

HOAc, 100 °C

Scheme 74. Iron chloride-catalysed hydration of 1-bromo and 1-chloroalkynes.

Xiao and co-workers designed an In(OTf)3 (10 mol%)-catalysed hydration optimised
for 1-bromoalkynes (Scheme 75) [198]. The hydration reaction was only effective if car-
ried out in an acidic solvent, i.e., HOAc. Together with the high reaction temperature,
this route requires harsh hydration conditions, which limits its applicability. Neverthe-
less, 16 α-bromo, 3 α-chloro and 3 α-iodoketones were obtained in good to excellent
yields (78–93%). Despite the acidic solvent, the system mediated the hydration of an
OH-substituted 1-bromoalkyne, affording the corresponding ketone in 82% yield.
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Scheme 75. In(OTf)3-catalysed hydration of 1-bromoalkynes by Xiao and co-workers.

Recently, Xiang and co-workers designed a highly versatile Ce(SO4)2-catalysed hydra-
tion [199]. The addition of sulfuric acid to the 1-haloalkyne with 5 mol% of Ce(SO4)2 in
DCM, generated 30 α-haloketones in moderate to excellent yields (Scheme 76). Despite the
acidic nature of the protocol, acid-sensitive groups (i.e., OH and NHTs) were well tolerated.
The presence of steric bulk close to the triple bond appeared to have a considerable effect
on the hydration efficiency.
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Scheme 76. Ce(SO4)2-catalysed hydration of 1-bromoalkynes by Xiao and co-workers.

6.2. Non-Metal-Catalysed Hydrations

In 2016, a metal-free hydration of 1-haloalkynes in 2,2,2-trifluoroethanol was described
by Wang and co-workers (Scheme 77) [200]. Thirteen α-bromo, seven α-chloro and eight
α-iodoketones were obtained in good to excellent yields. Nonetheless, ortho-substituted
1-haloalkynes were less efficiently hydrated due to the presence of steric bulk close to the
alkyne centre.
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Scheme 77. HBF4-catalysed hydration of 1-bromoalkynes by Wang and co-workers.

7. Miscellaneous Routes
7.1. α-Functionalised Ketones as Substrates

In 2018, Baire published the selective monodehalogenation of α,α-dihaloketones [201].
2-Iodo-1-phenylethanone was isolated in 64% yield upon stirring the α,α-diiodo-product
for 10 h in a CH3CN/H2O mixture. The procedure yielded an inseparable mixture of
the α-haloketone and α,α-dihaloketone for 2-bromo-1-phenylethanone. Alternatively,
Ranu et al. established an IL-mediated selective debromination method in which 1-methyl-
3-pentylimidazolium tetra-fluoroborate ([pmIm]BF4) acted as both catalyst and reaction
medium [202]. Two aromatic α-bromoketones (R = H, Me) and one α-chloroketone (R = Me)
were generated in good yields (Scheme 78). This route exhibited short reaction times,
excellent efficacy and selectivity, and the use of a recyclable and readily available catalyst.
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Scheme 78. Selective debromination of α,α-dihaloketones.

In the last decade, Sayyahi and co-workers dedicated considerable effort towards
the development of an effective SN2 substitution protocol yielding α-functionalised ke-
tones from their corresponding α-bromoketones [203–206]. Their most recent work in-
volved an imidazolium poly(ionic liquid)-based substitution (Scheme 79). Four aromatic
α-iodoketones were obtained in excellent yields (87–91%) upon the addition of the IL and
NaI to the substrate in H2O at 60 ◦C. The authors claimed that the IL can be recycled and
reused in up to five consecutive runs without significant loss in activity. This route has some
promising features, i.e., catalyst recycling, aqueous solvent and mild reaction conditions;
however, it still suffers from the need to synthesise the α-bromoketone substrate.
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Scheme 79. Access to α-iodoketones using a poly(ionicliquid)/NaI system.

An alternative substitution procedure, developed by Zhang and co-workers, generated
14 α-chloroketones in quantitative yields from α-bromoketones (Scheme 80) [207]. This
route tolerated the presence of electron-donating and -withdrawing aromatic substituents.
Additionally, sterically hindered substrates were tolerated. This procedure afforded quanti-
tative yields, thus avoiding chromatographic purification of the products.
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Scheme 80. PhSO2Cl-mediated substitution of α-bromoketones.

Wang and co-workers designed a synthetic protocol converting α-diazoketones in
α-halo-ketones (Scheme 81) [208]. The protocol yielded ten α-chloroaryl ketones in 56–82%
when stirring a mixture of FeCl3 (0.5 equiv.), silica gel (100 mg) and the diazo compound
in DCM for 10 min. Furthermore, seven α-bromoaryl ketones were obtained in mod-
erate to excellent yields (55–95%) by changing the Lewis acid to FeBr3. This route’s
versatility was demonstrated through its tolerance towards electron-donating (e.g., Me,
OMe) and -withdrawing (e.g., I, Cl, NO2) aromatic substituents, as well as sterically
hindered substrates.
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Scheme 81. Halogenation of α-diazoketones by Wang and co-workers.

Kappe and Gutmann developed a continuous process for the synthesis ofα-chloroketones
from their acetyl chloride derivatives (Scheme 82) [209,210]. The protocol involved mixing a
N-methyl-N-nitroso-p-toluenesulfonamide (diazald) solution in DMF and a KOH solution in
MeOH/H2O with the starting material to afford the α-diazoketone intermediate. Subsequent
addition of HCl allowed the isolation of four aromatic α-chloroketones in excellent yields
(88–90%). The on-demand generation and direct consumption of diazomethane or its precur-
sor certainly eliminate human exposure to the reagent, thus reducing the risk of explosive
decomposition.
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Scheme 82. Continuous process for the synthesis of α-chloroketones.

Jordan and co-workers aimed to establish a sustainable procedure for the Appel
halogenation, which converts alcohols in alkyl halides [211]. Although a broad scope of
halides was obtained, the procedure only yielded two aryl α-haloketones (Scheme 83). The
authors claimed that O=PPh3 was a recyclable organocatalyst; however, tedious procedures
are required to completely remove the oxide from the reaction mixture [212]. Lai and co-
workers described an alternative procedure which also accessed 2-choro-1-phenylethanone
from its α-hydroxy ketone [213]. Stirring a cooled mixture of the ketol, tosyl chloride
(1.1 equiv.), triethylamine (2 equiv.) and 4-dimethylaminopyridine (2 mol%) in DCM
yielded the α-chloroketone in 83% yield. This procedure seemed to exhibit a higher efficacy
than the previous one; however, its scope was still limited and did not permit a thorough
comparison with other routes.
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Scheme 83. Appel halogenation of α-hydroxy ketone.

Zhang and Tang designed an SN2 substitution method yielding α-haloketones from
α-hydroxy-benzotriazole functionalised ketones (Scheme 84) [214]. Their method is quite
practical; however, it relies on the prior placement of an hydroxybenzotriazole group on the
starting substrate which is not entirely straightforward, thus limiting the scope significantly.
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Scheme 84. α-Haloketones accessed via α-hydroxybenzotriazole functionalised ketones.

An alternative procedure describes the synthesis of 2-chloro-1-phenylethanone from
the phenyl Weinreb amide (Scheme 85) [215]. The harsh reaction conditions and the use of
unstable reagents (i.e., ICH2Cl) limit the protocol’s application considerably.
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Scheme 85. ICH2Cl- and MeLi-mediated synthesis of 2-chloro-1-phenylethanone.

7.2. Alternative Substrates

Yingpeng, Yulai and co-workers demonstrated that silyl enol ethers are suitable syn-
thons for aromatic α-haloketones (Scheme 86) [216]. One α-bromo- and 12 α-chloroketones
were generated upon the addition of (diacetoxyiodo)benzene (1.5 equiv.) and trimethylsilyl
halide (2 equiv.) to the silyl enol ether in acetonitrile. 2-Bromo-1-phenylethanone was
isolated in 64% yield and a set of α-chloroketones were obtained in moderate to excel-
lent yields (55–90%). The procedure tolerated the presence of electron-donating (e.g., Me,
OMe, NMe2) and -withdrawing (e.g., Cl, Br) substituents on its aromatic substrates. The
mechanism as described in Scheme 86 highlighted the initial formation of a ketone inter-
mediate bearing an iodo-leaving group, followed by nucleophilic substitution with the
corresponding halide to afford the desired compound.

Patil, Adimurthy and Ranu established the synthesis of α-bromoketones from their
corresponding vic-1,2-dibromides [217]. As shown in Scheme 87, six haloketones were
isolated in moderate to excellent yields. Selectivity issues occurred for the OMe-substituted
dibromides, as the brominated arylhydrin was obtained as an important side product. This
problem and the relatively long reaction times are this route’s main disadvantages.

α-Chloroketones were also accessed via the chloroacetylation of arenes (Scheme 88) [218].
This FeIII-catalysed procedure exhibits a low efficacy; however, when highly sterically hin-
dered arenes were used, a remarkable increase in yield was observed.
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Scheme 88. Chloroacetylation of substituted arenes.

Ram and Manoj designed the CuI promoted synthesis of α-haloketones from trichloro-
methyl carbinols [219]. Fifteen carbinols were efficiently converted upon addition of two
equivalents of CuCl and bipyridine in dichloroethane. Subsequent stirring for 3 h under
reflux yielded the corresponding α-chloroketones in 82–96%. This route coped well with
the presence of electron-withdrawing (e.g., Cl, Br, NO2) and -donating (e.g., Me, OMe)
groups on substrates.
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In 2007, Yoshimatsu et al. reported an HCl/EtOH-based system yielding 15 (het-
ero)aromatic α-chloroketones from their enol ethers in 18–100% (Scheme 89) [220], though it
should be noted that harsh reaction conditions are required to access the enol ether compounds.
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Scheme 89. Yoshimatsu’s oxidation protocol for enolethers.

Enolacetates have also proven to be suitable synthons for α-haloketones [221]. Electron-
poor, electron-rich and sterically hindered enolacetates were efficiently transformed upon
the addition of N-iodosaccharin (Figure 15). Despite the broad scope, only one aromatic
α-iodoketone (i.e., 2-iodo-1-phenylethanone) was isolated in 56% yield.
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8. Conclusions and Outlook

Overall, this review analysed several methodologies to access aromatic α-haloketones.
In the last two decades, a plethora of halogenation agents have been developed, though X2
remains the most abundantly used. Alternative and more sustainable halogen sources are
beginning to have a significant impact in the literature, as demonstrated by the overview
given herein. N-halosuccinimides, HX and MX strategies appear to be the most promising,
as they showcase a better balance between reactivity and associated hazards. Ionic liquid-
based halogenation agents could also be a step forward in the right direction, though it
is still too early to properly assess these protocols, since their use is still limited due to
their cost and restricted (commercial) availability. It is our hope that the combination
of the current knowledge, collated in this review, will undoubtedly lead to improved
strategies soon.

The community has strived to tackle the direct halogenation issues. Several oxyhalo-
genation methods for alkenes, alkynes and secondary alcohols have been described in the
last 20 years. However, these only partially addressed the creation of a general and useful
method, as some methods require the presence of an acidic promotor or have demonstrated
efficacy and/or selectivity limitations. On the other hand, research showed that the ox-
idation of functionalised hydrocarbons could very well yield the synthetically valuable
α-haloketones. This route’s value in organic synthesis is still limited due its moderate
activity, selectivity and/or versatility. Additionally, the use of non-readily (commercially)
available starting materials further hinders their applicability.

In comparison to most protocols dedicated to the direct halogenation of ketones, the
hydration of 1-haloalkynes has only scarcely been explored in the last two decades. The
latter route can be considered as the best alternative for the direct halogenation, especially
considering its high atom efficiency and the use of only water as reagent.

The current field still possesses a remarkable growth potential, and we therefore hope
to see more advances soon that directly address the numerous problems highlighted in
this review.
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