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Abstract

Detecting signals of selection from genomic data is a central problem in population genetics. Coupling the rich infor-
mation in the ancestral recombination graph (ARG) with a powerful and scalable deep-learning framework, we devel-
oped a novel method to detect and quantify positive selection: Selection Inference using the Ancestral recombination
graph (SIA). Built on a Long Short-Term Memory (LSTM) architecture, a particular type of a Recurrent Neural Network
(RNN), SIA can be trained to explicitly infer a full range of selection coefficients, as well as the allele frequency trajectory
and time of selection onset. We benchmarked SIA extensively on simulations under a European human demographic
model, and found that it performs as well or better as some of the best available methods, including state-of-the-art
machine-learning and ARG-based methods. In addition, we used SIA to estimate selection coefficients at several loci
associated with human phenotypes of interest. SIA detected novel signals of selection particular to the European (CEU)
population at the MC1R and ABCC11 loci. In addition, it recapitulated signals of selection at the LCT locus and several
pigmentation-related genes. Finally, we reanalyzed polymorphism data of a collection of recently radiated southern
capuchino seedeater taxa in the genus Sporophila to quantify the strength of selection and improved the power of our
previous methods to detect partial soft sweeps. Overall, SIA uses deep learning to leverage the ARG and thereby provides
new insight into how selective sweeps shape genomic diversity.
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Introduction (reviewed in Sabeti et al. [2006]; Kelley and Swanson [2008];
Fu and Akey [2013]; Hejase, Dukler, et al. [2020]).
Population genetic methods predominantly identify posi-
tive selection through the detection of selective sweeps. As
the frequency of an advantageous allele increases, linked var-
iants in the vicinity can “hitchhike” to high frequency, leading
to local reductions in genetic diversity. Previous approaches
to detecting selective sweeps (such as traditional summary
statistics [Tajima 1989], approximate likelihood and
Approximate Bayesian Computation [ABC] methods [Peter
et al. 2012], or supervised machine-learning [ML] methods
[Schrider and Kern 2016; Kern and Schrider 2018]) exploit the

The ability to accurately detect and quantify the influence of
selection from genomic sequence data enables a wide variety
of insights, ranging from understanding historical evolution-
ary events to characterizing the functional and disease rele-
vance of observed or potential genetic variants. Adaptive
evolution is driven by increases in frequency of alleles that
enhance reproductive fitness. In addition, alleles experiencing
such positive selection often provide insights into the func-
tional or mechanistic basis of phenotypes of interest.
Examples of genetic determinants of important phenotypic
traits under selection in human populations include a family

of mutations in the hemoglobin-f cluster, which confer re- effect of genetic hitchhiking on the spatial haplotype struc-
sistance to malaria and are at high frequencies in many pop- ture and site frequency spectrum (SFS). Summary statistics
ulations (Currat et al. 2002; Ohashi et al. 2004), loci controlling have the advantage of being fast and easy to compute, but
growth factor signaling pathways that contribute to short may confound the effects of selection on genetic diversity
stature in Western Central African hunter-gatherer popula- with the effects of complex demographic histories including
tions (Jarvis et al. 2012; Lachance et al. 2012), as well as bottlenecks, population expansions, and structured popula-
mutations in several genes involved in immunity, hair follicle tions. Besides, they cannot easily be used to estimate the value
development, and skin pigmentation (Sabeti et al. 2007) of the selection coefficient. Approximate likelihood and ABC
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methods, on the other hand, can provide an estimate of the
strength of selection by aggregating multiple summary statis-
tics (Peter et al. 2012), but can be prohibitively computation-
ally expensive when applied at a large scale. ML methods for
inferring selection can be more scalable and can capture
complex nonlinear relationships among features. With the
exception of a handful of recently developed methods that
operate on the multiple sequence alignment itself (Flagel et al.
2019; Torada et al. 2019), however, the majority of ML
approaches to selection inference solely make use of tradi-
tional summary statistics as features for prediction. In short,
previous methods (including ABC and most ML methods)
predominantly rely on low-dimensional summary statistics,
which, even in combination, capture only a small portion of
the information in the sequence data.

Recently, a new generation of inference methods have
made it possible to go beyond summary statistics and esti-
mate or sample a full ancestral recombination graph (ARG)
(Hudson 1990; Griffiths and Marjoram 1996; Wiuf and Hein
1999) for a collection of sequences of interest. The ARG is a
complex data structure that summarizes the shared evolu-
tionary history and recombination events that have occurred
in a collection of DNA sequences, and therefore contains
highly informative features that can potentially be leveraged
to make accurate inferences about selection. The ARG rep-
resentation is interchangeable with a sequence of local gene-
alogies along the genome and the recombination events that
transform each genealogy to the next. The influence of selec-
tion on each allele can be characterized from the ARG, based
on departures from the patterns of coalescence and recom-
bination expected under neutrality as reflected in the local
genealogies. Traditional ARG inference methods (Hein 1993;
Song and Hein 2005; Minichiello and Durbin 2006; Kuhner
2006; O’Fallon 2013) were restricted in accuracy and scalabil-
ity, limiting the practical application of ARGs. Recent advan-
ces (Rasmussen et al. 2014), however, have enabled scalable
yet statistically rigorous genome-wide ARG inference with
dozens of genomes. Moreover, methods such as Relate
(Speidel et al. 2019) and tsinfer (Kelleher et al. 2019) have
further dramatically improved the scalability of ARG infer-
ence to accommodate thousands or even hundreds of thou-
sands of genomes. The latest progress in genealogical
inference has paved the way for ARG-based methods to ad-
dress many different questions in population genetics
(Arenas 2013; Rasmussen et al. 2014; Kelleher et al. 2019;
Speidel et al. 2019).

One natural way to exploit the richness of the ARG rep-
resentation in inference of selection would be to extract
features from inferred ARGs and feed them into a modern
supervised ML framework. Deep-learning methods, in partic-
ular, have recently achieved unprecedented success on a va-
riety of challenging problems, including image recognition,
machine translation, and game-play (LeCun et al. 2015).
Deep learning is also highly flexible, providing many oppor-
tunities for the design of novel model architectures motivated
by biological knowledge. An ARG-guided deep-learning
model could potentially provide new insight into how natural
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selection impacts the human genome, human diseases and
other phenotypes, and human evolution.

With these goals in mind, we developed a new method,
called SIA (Selection Inference using the Ancestral recombi-
nation graph), that uses a Recurrent Neural Network (RNN)
(Hochreiter and Schmidhuber 1997; Maas et al. 2011) to infer
the selection coefficient and allele frequency (AF) trajectory of
a variant that maps to a gene tree embedded in an ARG.
Rather than relying on traditional sequence-based summary
statistics, SIA makes use of features based on the local gene-
alogies extracted from the ARG. Based on these local topo-
logical features, SIA learns to infer the selection coefficient
and AF trajectory of a beneficial variant (see fig. 1). As de-
scribed below, SIA performs well on benchmarks and is rea-
sonably robust to model mis-specification. Applying SIA to
data from the 1000 Genomes Northern and Western
European (CEU) population, we identified new and known
loci under positive selection that are associated with a variety
of phenotypes and estimated selection coefficients at these
loci. In addition, using SIA, we built on our previous work
(Hejase, Salman-Minkov, et al. 2020) on a bird species-
complex in the genus Sporophila by elucidating the strength
and targets of selection at specific loci tied to a collection of
rapid speciation events. Overall, SIA is the first method that
couples ARG-based features with an ML approach for popu-
lation genetic inference.

Results

Methodological Overview

SIA is based on an RNN that is trained to predict selection at a
genomic site from genealogical features at that site of interest
and nearby sites (see Materials and Methods for detailed
descriptions; see fig. 1 for a conceptual overview of SIA; and
supplementary fig. S1, Supplementary Material online for an
illustration of ARG features and the RNN architecture). Based
on the demography of a particular population of interest,
training data including genomic regions under various
strengths of selection are simulated. The ARG is then inferred
from each simulated data set. ARG-level statistics are
extracted at the site under selection (or a neutral site) as
features to be used as input to the deep-learning model.
Specifically, we use lineage counts at a set of discrete time
points as a fixed-dimension encoding of a genealogy. The
encoding of the genealogy at the focal site as well as similar
encodings of flanking genealogies constitute the feature vec-
tor for that site. SIA uses a Long Short-Term Memory (LSTM)
architecture, designed specifically to handle the temporal na-
ture of the feature set. The LSTM unrolls temporally such that
the lineage counts at each time point are fed to the network
iteratively. Finally, the model trained on simulations is applied
to ARGs inferred from empirical data to identify sweeps, infer
selection coefficients, and AF trajectories.

Classification of Sweeps

We first compared SIA with several existing methods, includ-
ing the Tajima’s D (Tajima 1989) and H1 (Garud et al. 2015)
summary statistics, iHS (Voight et al. 2006), a genealogy-based
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Fic. 1. A high-level framework for automating the detection of selective sweeps. We first estimate the demographic history for the population of
interest, then based on the estimated demographic history, we simulate neutral regions and sweeps using the discoal simulator (Kern and Schrider
2016). We proceed with ARG inference and then extract ARG-level statistics from each simulated region. The ARG-level statistics are used as
features for a deep-learning RNN model. Finally, the trained model is applied to the empirical data to infer sweeps, selection coefficients, and AF

trajectories.

statistic (Speidel et al. 2019), and a summary-statistic-based
ML method (Schrider and Kern 2016; Kern and Schrider 2018)
(see Materials and Methods), in the classification task of dis-
tinguishing hard sweeps from neutrally evolving regions. Our
performance comparison was conducted across 16 combina-
tions of selection coefficients and segregating allele frequen-
cies such that the beneficial site was subjected to selection
ranging from weak to strong, resulting in low to high derived
allele frequencies (DAFs). Because a priori we expected sweep
sites with lower selection coefficients and lower DAFs to be
harder to detect, we performed a stratified analysis of SIA’s
performance by selection coefficient and DAF. Figure 2
reports the receiver-operating characteristic (ROC) curves us-
ing simulations based on the CEU demographic model
(Tennessen et al. 2012) where inferred genealogies were
used as input to SIA to account for gene tree uncertainty.
As expected, all methods tended to perform better in a re-
gime with higher selection coefficients and DAFs, as indicated
by increasing values of the area under the ROC curve
(AUROC) statistic from left to right (increasing selection)
and from top to bottom (increasing DAF). SIA outperformed
the other methods across model conditions, with a more
pronounced performance advantage for sites under weaker
selection and segregating at lower DAFs (fig. 2). For each given
selection coefficient, the AUROC of the Relate tree statistic
(shown in red in fig. 2), which measures how unlikely it is that
the observed expansion of the derived lineages is purely due
to genetic drift, did not substantially improve as the DAF
increased. Alleles at higher frequency tend to be older and
subjected to drift over longer periods, which may lead to

reduced power for Relate to distinguish lineage expansion
under selection from the neutral expectation.
Consequently, although the ARG-based methods SIA and
Relate both outperformed other methods at low DAFs, SIA
was alone in maintaining this advantage at higher DAFs.

In addition, we validated the ability of SIA to classify ge-
nomic regions with additional test sets simulated under a
demographic model for southern capuchinos, a group of
songbirds in which we previously identified and characterized
many examples of sweeps (Hejase, Salman-Minkov, et al.
2020), finding a predominance of “soft” rather than “hard”
sweeps (meaning that they tend to be based on standing
genetic variation rather than new mutations; see Materials
and Methods). Supplementary figure S2, Supplementary
Material online reports the ROC curves for the task of dis-
tinguishing partial soft sweeps from neutral regions. Despite
soft sweeps being harder to detect, the classifier achieved
good performance in the moderate-to-strong selection
regimes (s = 0.005 and s = 0.0075) where the accuracy ranged
between 82% and 96%, a substantial improvement over the
previous accuracy of 56% (Hejase, Salman-Minkov, et al.
2020). SIA performed particularly well in identifying partial
soft sweeps when the site under selection was at a high seg-
regating frequency. For example, at segregating frequencies of
0.75 and 0.9, the performance of SIA ranged between 80% and
96% across a variety of selection regimes (s = 0.0025, 0.005,
and 0.0075). The performance of SIA degraded somewhat for
weak selection (s = 0.001) with an accuracy ranging between
63% and 74%.
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Fic. 2. Classification performance of SIA and other methods on simulated data. Sequence data were simulated under a variety of selection regimes
(s, shown horizontally) and DAFs for the beneficial mutation under selection (f, shown vertically) (see Materials and Methods for more details). The
prediction task distinguished neutral regions and sweeps. The methods were tested on a set of 200 regions per panel (100 per class), and the ROC
curve records the true positive rate (TPR) as a function of the false positive rate (FPR). The curve is obtained by varying the prediction threshold
from 0 to 1 and recording for each threshold the number of regions correctly assigned (TPs) or misassigned (FPs) as positives (with prediction
probability above the threshold). The performance of each method was evaluated based on the area under its ROC curve, or AUROC (shown in
parenthesis in figure legend). Note that inferred genealogies were used as input to SIA.

Selection Coefficient Inference Using True Gene Trees ARG inference step from other sources of error (see
We assessed the performance of SIA in correctly predicting Discussion). We found that SIA identified regions under neu-
the selection coefficient and compared it with CLUES (Stern trality with approximately no bias (median inferred
et al. 2019). Like SIA, CLUES uses local genealogies based on s = 7.5e—05; fig. 3). Similarly, SIA correctly inferred the selec-
the ARG to infer a selection coefficient. However, CLUES tion coefficient for regions under moderate to strong selec-
calculates the likelihood of the genealogy analytically using tion (s € {0.0025, 0.005, 0.0075, 0.01}) with the median
a hidden Markov model (HMM), and does not rely on sim- inferred s deviated from the true s by at most 3%. On the
ulated training data. In addition, CLUES uses a single geneal- other hand, SIA somewhat underestimated the selection co-
ogy at the focal site, whereas SIA additionally considers efficient (median inferred s = 0.00037) for the weak selection
flanking trees. regime (true s =0.001), likely owing to limits in the training

We began by supplying both methods with true genealo- set within that selection regime (see Discussion). We further
gies, in order to later disentangle the error deriving from the binned the results by segregating frequency and selection
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Fic. 3. Predictions of selection coefficients on simulated regions using SIA and CLUES based on true genealogies. (A) The distribution of inferred
selection coefficients for each method under each model condition are reported using a box plot. The box plot for each method reports these five
statistics (from bottom to top): minimum, first quartile, median, third quartile, and maximum. The y-axis shows the inferred selection coefficient,
whereas the x-axis shows the true selection coefficient. The dashed-black line indicates the true selection coefficient for each model condition. The
simulations are based on the CEU demographic model and true genealogies were used as input to both methods. Each model condition (i.e., box
plot) represents a set of 400 independent simulations. The mean ranks and variances of the distributions of inferred s were compared using the
Wilcoxon signed-rank test (py) and the Brown—Forsythe test (pgg), respectively. (B) The root mean square error (RMSE) for each method under

each model condition evaluated on 400 independent simulations.

coefficient and found that, in general, the variance in esti-
mates of s for SIA (as well as CLUES) tended to decrease as the
segregating frequency of the beneficial allele increased (sup-
plementary fig. S3, Supplementary Material online).

CLUES performed roughly similarly to SIA in this experi-
ment, but tended to slightly overestimate s for the neutral
regions (i.e, true s = 0) and underestimate s for the moderate
to high selection regimes (i.e, true s = 0.005, 0.0075, and 0.01).
Under these conditions, SIA’s median predictions of s were
noticeably closer to the true values (fig. 3A). At the same time,
CLUES performed slightly better than SIA in weak selection
regimes (i.e, true s=0.001 and 0.0025) (fig. 3). Overall, SIA
(RMSE = 9.52e—4) achieved a lower error in estimating s
than CLUES (RMSE = 1.44e—3), when true genealogies
were used as input to both methods (Wilcoxon signed-rank
test for difference in mean of squared error, P = 1.25e—42).
This finding potentially reflects the benefit of linkage infor-
mation utilized by SIA through the additional flanking gene-
alogies (see Discussion).

Selection Coefficient Inference Using Inferred Gene
Trees

To account for gene-tree uncertainty, we next used ARGs
inferred with Relate, which is scalable to the size of the train-
ing data set for SIA (see Materials and Methods), as input to
SIA and CLUES and compared their performance on CEU
simulations. Using a reduced sample size of 32 haplotypes,
we additionally compared SIA with CLUES supplied with ge-
nealogies sampled using ARGweaver. Furthermore, we com-
pared both methods with a supervised ML method, ImaGene

(see supplementary fig. 23, Supplementary Material online),
that operates directly on an image of the alignment itself.
ImaGene does not require gene trees as input and instead
uses a convolutional neural network (CNN) to perform di-
mensionality reduction of the sequence alignment, allowing
for accurate and efficient classification and regression.
Overall, we found that SIA and ImaGene outperformed
CLUES in these experiments (fig. 4). CLUES tended to under-
estimate selection coefficients for the moderate-to-strong se-
lection regimes, to a greater extent compared with the case
where true genealogies were used for inference (figs. 3A and
4A). This decrease in performance of CLUES evidently derives
from error at the ARG reconstruction step. SIA, on the other
hand, appeared to be more robust to the same ARG recon-
struction error, and maintained an advantage even when
CLUES was provided posterior samples of genealogies from
ARGweaver (supplementary fig. S5, Supplementary Material
online). ImaGene performed remarkably similarly to SIA,
given that it relies solely on the sequence alignment. SIA
exhibited lower error at neutral sites and sites with low-to-
moderate values of s, whereas ImaGene prevailed at sites
under strong selection (fig. 4B). Nevertheless, SIA showed a
slightly smaller overall RMSE (2.75e—3) compared with
ImaGene  (291e—3)  (Wilcoxon  signed-rank  test,
P=6.18e—38), and in particular, SIA produces estimates of
s much closer to 0 for neutral loci. Notably, in this case both
SIA and ImaGene were trained with simulations under the
same uniform distribution of s values (see Materials and
Methods). A different choice of training distribution could
impact their performance across selection regimes (see
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Discussion). Furthermore, we binned the results of these
methods by both the segregating frequency and the selection
coefficient (see supplementary fig. S4, Supplementary
Material online) and again found that in general they exhibit
higher variance under low segregating frequency of the ben-
eficial allele. As before, we also tested our regression frame-
work on true and inferred gene trees of test sets simulated
under the Sporophila hypoxantha demographic model (see
supplementary fig. S6, Supplementary Material online). We
found that SIA was approximately unbiased for the moderate
(s=0.005) and high (s=0.01) selection regimes but
appeared to overestimate the selection coefficient for regions
under weak selection (s = 0.001 and 0.0025), when both true
and inferred genealogies were used as input. Furthermore, SIA
appeared to overestimate the selection coefficient for neutral
regions when inferred gene trees were used as input, whereas
it was approximately unbiased for true gene trees.

Performance on Selection Coefficient Prediction with
Different Sample Sizes

To explore the tradeoffs associated with the use of larger data
sets, we examined the performance of SIA under different
sample sizes, assuming a constant-sized demographic model
(Ne = 10,000). Supplementary figure S7, Supplementary
Material online shows the error in selection coefficient infer-
ence on a held-out test set, stratified by the age of the allele
(supplementary fig. S7A and B, Supplementary Material on-
line) and present-day derived AF (supplementary fig. S7C and
D, Supplementary Material online) at the site of interest. We
observed that sites with low frequency (AF < 0.33) and more
recent (onset < 0.2 X 2 N, generations) alleles experience the
most significant reduction in error as sample size increases.
Notably, the performance of SIA on more ancient alleles
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(onset > 0.2 x 2N, generations) had little to no improve-
ment as the sample size increased from 32 to 254. These
observations are in line with the expectation that having
more samples improves the chance of capturing low-
frequency alleles, but provides limited information about
more ancient events. The reason for this age-dependency is
that, looking backwards in time, most lineages coalesce rap-
idly and only a few survive to more ancient epochs, in a
manner that depends only weakly on the sample size. It
may be useful to consider these observations when choosing
the sample size for use in studying selection in a particular
context (see Discussion).

Inference of AF Trajectory

We further adapted the deep-learning architecture of SIA to
model the AF trajectory at a site by retaining the output of
the LSTM at each time point (supplementary fig. S1,
Supplementary Material online; see Materials and
Methods). We then evaluated the performance of SIA in
the inference of the AF trajectory using simulations under
the CEU demography across a range of selection coefficients
and current DAFs. SIA was largely able to capture the
expected trend of more rapidly increasing AF under stronger
selection (supplementary figs. S8 and S11, Supplementary
Material online). In addition, AF estimates by SIA using
both true and inferred genealogies were generally unbiased,
although AF at more recent time points tended to be slightly
underestimated when data was simulated under weaker se-
lection. AF estimates also appeared to be more accurate in
terms of variance for alleles under stronger selection (supple-
mentary figs. S9 and S12, Supplementary Material online). As
expected, the variance of AF estimates tended to increase
going further back in time (supplementary figs. S9 and S12,
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Supplementary Material online). We also observed that over-
all SIA tended to produce more accurate AF estimates than
CLUES (supplementary figs. S9 and S10, Supplementary
Material online).

Model Performance on Simulations with Mis-specified
Demographic Models

To evaluate the robustness of SIA to mismatches between the
demographic parameters used for simulating training data
and the true underlying demography of real data, we tested
the method on the selection-coefficient inference task with
data sets simulated under a range of alternative parameters.
Each aspect of this model mis-specification was assessed in-
dependently of the others. In particular, the mis-specified
data sets contained simulations under 1) combinations of
population mutation (8) and recombination (p) rates sam-
pled beyond the range used for the training data (supplemen-
tary figs. S13 and S16, Supplementary Material online); 2)
various alternative demographic scenarios (supplementary
figs. S14, S17, and S19, Supplementary Material online); and
3) various effective population sizes (supplementary figs. S15
and S18, Supplementary Material online). We compared the
performance of SIA on these mis-specified data sets with that
of CLUES (Stern et al. 2019), supplying both methods with the
true genealogies. We consider CLUES the “silver standard”
when it comes to robustness because it is unsupervised and
therefore should not be susceptible to mis-specified training
data compared with supervised learning methods such as SIA.
Overall, we found that both CLUES and SIA were reasonably
robust to model mis-specification (supplementary figs. S13—
S$15, Supplementary Material online), although the perfor-
mance of both methods inevitably declined when tested on
severely mis-specified data (supplementary fig. S15,
Supplementary Material online). Interestingly, SIA tended to
overestimate selection coefficient when the true N, was
much smaller than that used for training, and underestimate
it when the true N, was much larger, whereas CLUES did the
opposite (supplementary fig. S15, Supplementary Material
online). Because the CLUES likelihood model of AF transition
is parameterized by the population-scaled selection coeffi-
cient (x=2Ns), a larger N, likely appears to CLUES as

equivalent to a higher s. On the other hand, features used
by SIA capture broad information of coalescence and linkage
in the ARG, and therefore can be distorted by mis-specified N,
in more subtle ways (see Discussion). Using the same mis-
specified data set, we also ran SIA with Relate-inferred gene-
alogies and compared its performance with that of the
genotyped-based deep-learning model ImaGene (Flagel
et al. 2019; Torada et al. 2019). In general, SIA appeared to
be more robust to model mis-specifications, achieving an
overall RMSE of 0.00362, 0.00318, and 0.00374 in the mis-
specified 0/p, demography, and N, experiments, respectively,
compared with ImaGene, whose RMSE was 0.00416, 0.00330,
and 0.00462 in the corresponding experiments (supplemen-
tary figs. $S16-518, Supplementary Material online). The ad-
vantage of SIA was particularly noticeable in cases of mis-
specified demographic parameters (supplementary figs. S17
and S18, Supplementary Material online). Notably, SIA exhib-
ited reduced bias when working with inferred genealogies
compared with true genealogies, under conditions of ex-
tremely mismatched N, (compare supplementary figs. S15
and S18, Supplementary Material online).

Model Prediction at Genomic Loci of Interest in CEU
Population

We then applied the SIA model to identify selective sweeps
and infer selection coefficients at selected genomic loci in the
1000 Genomes CEU population. These loci included the ca-
nonical example of selection at the MCM6 gene, which reg-
ulates the neighboring LCT gene and contributes to the
lactase persistence trait (Bersaglieri et al. 2004), the ABCC11
gene regulating earwax production, several pigmentation-
related genes, as well as genes associated with obesity, diabe-
tes and addiction (table 1).

For LCT, SIA detected a strong signal of selection at the
nearby SNP that has been associated with the lactase persis-
tence trait (rs4988235). At this SNP, SIA inferred a sweep
probability close to 1 and a selection coefficient >0.01, mak-
ing this one of the strongest signals of selection in the human
genome. A close examination of the local genealogy at this
site reveals a clear pattern indicative of a selective sweep—-a
burst of recent coalescence among the derived lineages

Table 1. List of Genomic Loci of Interest Along with Their Derived Allele Frequencies, Sweep Probabilities, and Selection Coefficients Inferred by

SIA in the 1000 Genomes CEU Population.

Gene SNP ID Chr Position? Derivedf P (sweep) Selection Coefficient (95% Cl)
LCT (Bersaglieri et al. 2004) rs4988235 2 136608646 0.74 0.999 [0.01019, 0.01056]
OCA2 (Han et al. 2008; Sturm et al. 2008) rs12913832 15 28365618 0.77 0.750 [0.00539, 0.00575]
MCI1R (Sulem et al. 2007; Han et al. 2008) rs1805007 16 89986117 0.12 0.949 [0.00362, 0.00384]
ABCC11 (Yoshiura et al. 2006) rs17822931 16 48258198 0.13 0.620 [0.00034, 0.00036]
ASIP (Eriksson et al. 2010) rs619865 20 33867697 0.12 0.777 [0.00172, 0.00197]
TYR (Sulem et al. 2007; Eriksson et al. 2010) rs1393350 1 89011046 0.24 0.616 [0.00085, 0.00135]
KITLG (Sulem et al. 2007) rs12821256 12 89328335 0.13 0.869 [0.00183, 0.002]
TYRP1 (Kenny et al. 2012) rs13289810 9 12396731 0.37 0.144 [0.00004, 0.00006]
TTC3 (Liu et al. 2010) rs1003719 21 38491095 0.62 0.011 [0, 0]

OCA2 rs7495174 15 28344238 0.94 0.013 [0, 0.00005]
TCF7L2 (Lyssenko et al. 2007) rs7903146 10 114758349 0.69 0.035 [0, 0]
ANKKT1 (Spellicy et al. 2014) rs1800497 1 113270828 0.80 0.045 [0, 0]

FTO (Frayling et al. 2007) rs9939609 16 53820527 0.56 0.011 [0, 0]

?Genomic coordinates in GRCh37 (hg19) assembly.
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(orange taxa are the lineages carrying the derived allele) is
clearly visible from the tree (fig. 5).

At a number of pigmentation genes (Sulem et al. 2007;
Han et al. 2008; Sturm et al. 2008; Liu et al. 2010; Kenny et al.
2012), SIA detected signals of moderate selection, including
MCIR (rs1805007, P(sweep) = 095, s=0.0037), KITLG
(rs12821256, P(sweep) = 0.87, s~ 0.0019), ASIP (rs619865,
P(sweep) = 0.78, s~ 0.0019), OCA2 (rs12913832, P(sweep)
= 0.75, s~ 0.0056), and TYR (rs1393350, P(sweep) = 0.62,
s=20.0011). In addition, SIA identified a weak signal of selec-
tion at a SNP in the ABCC11 gene (rs17822931), which influ-
ences earwax and sweat production (Yoshiura et al. 2006),
with a selection coefficient of around 0.00035. There are few
other estimates for these genes available for comparison, but,
notably, our estimate for LCT of s = 0.01 is consistent with a
previous estimate on the order of 0.01-0.1 (Bersaglieri et al.
2004), and with recent studies of ancient DNA samples
(Mathieson and Mathieson 2018; Mathieson 2020) suggesting
a value closer to 0.01. Our estimates suggest that selection at
the pigmentation loci is considerably weaker than at LCT, in
contrast to previous estimates for these loci, which covered a
wide range but were generally considerably larger (ranging
from 0.02 to 0.1) (Wilde et al. 2014). Interestingly, CLUES
estimated s at the OCA2 locus to be on the order of 0.001
(roughly similar to SIA’s estimate of 0.0056), but s at the
KITLG, ASIP, TYR loci to be >0.01 (in comparison to SIA’s
considerably smaller estimates of 0.0019, 0.0019, and 0.0011)
(Stern et al. 2019). The apparent discrepancy between the
estimates may be partially due to the fact that the two meth-
ods used samples from two different populations (CEU for
SIA and GBR/British for CLUES).

On the other hand, SIA did not detect significant evidence
of positive selection at several disease-associated loci
(rs7903146/TCF7L2, rs1800497/ANKK1, and rs9939609/FTO)
or at several other pigmentation loci (rs13289810/TYRP1,
rs1003719/TTC3, and rs7495174/0CA2) (table 1). Notably, al-
lele frequencies at these six loci tend to be similar in African
and European populations (Marcus and Novembre 2017),
suggesting that they are not likely to be under strong
environment-dependent positive selection, although it is pos-
sible that they have experienced very recent selective pressure
that SIA lacks the power to detect (see Discussion). Notably,
TYRP1 and TTC3 also lacked signals of selection in the CLUES
analysis. Compared with the genealogies at sweep sites (fig. 5),
the trees at these putatively neutral loci lack the distinctive
signature of recent bursts of coalescence among derived lin-
eages (fig. 6).

Southern Capuchino Species Analysis

Our previous study of southern capuchino seedeaters made
use of the full ARG and ML to detect and characterize selec-
tive sweeps, and suggested that soft sweeps are the dominant
mode of adaptation in these species (see Materials and
Methods for more details). To further characterize the targets
and strengths of positive selection in these species, we applied
SIA to polymorphism data (Turbek et al. 2021) for S. hypo-
xantha, and adopted a conservative approach by reporting
only sites with DAF > 0.5, SIA-inferred s > 0.0025, and SIA-
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inferred sweep probability >0.99 (see Materials and
Methods). In addition to loci near top Fst peaks and known
pigmentation-related genes (table 2), we identified many
more sites under positive selection located outside the pre-
viously scanned Fst peaks, amounting to a total of 15,551
putative partial soft sweep sites across the 333 scanned scaf-
folds for S. hypoxantha. These sites can be prioritized for fur-
ther evaluation and downstream analysis. Notably, SIA
enabled us to distinguish between selection at regulatory
and coding sequences, and we found that sweep loci near
Fst peaks and pigmentation genes fall mostly in noncoding
regions (table 2). We additionally surveyed all putative sweep
sites identified by SIA and found that they are indeed
enriched in noncoding regions (Fisher’s exact test, P = 6.80
X 10~°), particularly noticeable in the “near-coding” regions
(supplementary fig. S22, Supplementary Material online).
Consistent with the observation that the most highly differ-
entiated SNPs among taxa are noncoding (Campagna et al.
2017; Turbek et al. 2021), our finding suggests that positive
selection may act on cis-regulatory regions to drive differen-
tiation and the subsequent speciation process. Furthermore,
we examined many individual predictions in detail, consider-
ing the local trees inferred by Relate at these high-confidence
predictions (fig. 7). We found, in numerous cases, that these
sweeps had distinct genealogical features, displaying evidence
of a burst of coalescence events, corresponding to unusually
large and young clades. Prominent examples include predic-
tions near pigmentation-related genes ASIP, KITL, SLC45A2,
and TYRP1.

Discussion

The ARG is useful for addressing a wide variety of biological
questions ranging from inferring demographic parameters to
estimating allele ages. SIA exploits the particular utility of the
ARG for accurate inference of positive selection in a way that
makes use of the full data set, as opposed to traditional sum-
mary statistics, which necessarily discard substantial informa-
tion. Direct use of the ARG improves upon traditional
summary statistics in two key ways. First, it enables consider-
ation of the temporal distribution of coalescence and recom-
bination events in the history of the analyzed sequences, in
contrast to traditional summary statistics that simply average
over these coalescence and/or recombination events. In ad-
dition, ARG-based methods provide better spatial resolution
by separately examining individual genealogies and the re-
combination breakpoints between them, rather than averag-
ing across windows containing unknown numbers of
genealogies. These detailed patterns of coalescences and link-
age enable the ARG-based approaches to capture a more
localized and fine-grained picture of selection (e.g, infer se-
lection coefficient and AF trajectory) as well as to achieve a
better classification performance. This performance advan-
tage is particularly noticeable at lower DAFs and when selec-
tion is weak, a regime where previous methods for selection
inference fall short (fig. 2).

At the same time, the supervised ML approach sets SIA
apart from another ARG-based method, CLUES, which
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Fic. 5. Local genealogies at six loci inferred to be under positive selection in the 1000 Genomes CEU population. Gene name, RefSNP number,
derived AF, SIA-inferred sweep probability and SIA-inferred selection coefficient range for each locus are indicated at the top of each panel (see
table 1 for more details). Taxa carrying the ancestral and derived alleles are colored in blue and orange, respectively.

approximates a full likelihood function for ARGs in the pres- when using inferred genealogies compared with true geneal-
ence of selection using importance sampling and an HMM. ogies, reflecting the error and uncertainty at the ARG infer-
Although the accuracy of both SIA and CLUES degraded ence step, SIA appeared to be more robust to gene tree
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Fic. 6. Local genealogies at six loci lacking signal of positive selection in the 1000 Genomes CEU population. Gene name, RefSNP number, derived
AF and probability of neutrality inferred by SIA for each locus are indicated at the top of each panel (see table 1 for more details). Taxa carrying the
ancestral and derived alleles are colored in blue and orange, respectively.

uncertainty (figs. 3 and 4). One possible reason for this ob- flanking trees given the focal tree. This assumption should
servation is that CLUES effectively assumes that the selection hold in the presence of fully specified genealogies, but it may
coefficient at the focal site is conditionally independent of the make CLUES more sensitive to errors in the inferred
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Table 2. The Top 25 Fsr Peaks Identified in Hejase, Salman-Minkov, et al. (2020) Along with the Number of Partial Soft Sites in S. hypoxantha

Identified for Each Scaffold Using SIA.

Scaffold Start Position (Mb) End Position (Mb) Length (kb) No. of Partial Soft Sites®
59 5.74 5.86 120 1
118 7.16 7.22 60

252 0.40 0.54 140 3
257.1 21.24 21.78 540 26
257.2 24.40 24.84 440 43
257.3 28.66 28.96 300 10
257.4 31.30 31.38 80 8
257.5 5.78 6.20 420 25 (1)
263 0.00 0.58 580 31
308 0.04 0.20 160 0
404.1 5.04 5.84 800 115 (7)
404.2 10.76 10.96 200 30
412 3.38 3.62 240 15
430 10.98 11.10 120 24
567 2.50 2.80 300 0
637.1 6.00 6.32 320 2
637.2 6.84 6.92 80 4
762 1.65 1.73 80 30
766 1.98 2.10 120 1
791 9.90 9.98 80 15
1,717 0.92 0.98 60 7
3,622 0.96 1.36 400 8
1,635 3.71 3.75 40 4
1,954 2.8 29 100 17
579 0.1 0.16 60 0

Note.—To avoid cases with limited power, we focused on sites with segregating frequency > 0.5, SIA-inferred s > 0.0025, and SIA-inferred sweep probability > 0.99.

*The number of sweep sites in coding regions is shown in parenthesis.

genealogies. In other words, through its use of supervised
learning, SIA may be able to compensate for the effects of
genealogy inference error on its estimation of the selection
coefficient by also directly considering the flanking trees and
LD-related patterns among them. Still, the drop in accuracy
observed across methods underscores the dependency of
ARG-based approaches on the ARG inference method. For
this reason, we anticipate that SIA may benefit substantially
from further improvement in ARG inference tools (see
Hejase, Dukler, et al. [2020]).

The ARG-based feature set distinguishes SIA from other
supervised ML approaches for characterizing selective sweeps.
SIA uses local topological features of the ARG, which are more
informative than the SFS- or LD-based summary statistics
employed by ML methods such as S/HIC, SFselect, and
evolBoosting. Using simulations, we demonstrated that the
SIA classifier outperformed a deep-learning method that
aggregates these traditional summary statistics (fig. 2). We
also compared SIA with ImaGene, which represents another
flavor of supervised learning methods, inspired by the recent
rise of CNNs for image recognition. ImaGene encodes se-
quence alignments as images for powerful population genetic
inferences with CNNs and provides a state-of-the-art bench-
mark to compare against. We found that ImaGene performs
remarkably well across a wide range of simulations, but SIA
does appear to be somewhat less biased and more robust to
model mis-specification than ImaGene. The evolutionary in-
formation in the ARG is implicit in the sequence alignment
but some of this information may be difficult for a brute-force
ML model to discover directly.

We demonstrated that utilizing the ARG granted SIA con-
siderably improved performance over deep-learning models
solely employing traditional summary statistics. However, a
possible drawback of an ARG-based model is the potentially
prohibitive computational overhead incurred by ARG infer-
ence, especially as sample size grows. Picking a sample size
when running SIA involves a tradeoff between scalability
(fewer samples, faster ARG inference) and performance
(more samples, slower ARG inference). We have found that
SIA can infer selection coefficients reasonably well with as few
as 16 haplotypes. Including more samples did improve per-
formance but with a sublinear reduction in error (supplemen-
tary fig. S7, Supplementary Material online). Therefore, a
sample size from a few dozen to a few hundreds—well within
the capabilities of most modern ARG inference methods—
strikes a good balance between performance and scalability.
Moreover, we found that larger sample sizes improved pre-
diction performance primarily for alleles at lower frequencies
but had little impact on the performance for more ancient
alleles (as most lineages would have already coalesced going
further back in time) (supplementary fig. S7, Supplementary
Material online). This observation suggests that the choice of
the sample size when applying SIA should be guided by the
biological question of interest——ancient selection can be
studied with just a handful of samples, whereas a larger sam-
ple size is better suited to detect more recent sweeps.
Notably, the addition of ancient DNA samples could poten-
tially enable selection to be inferred over much longer time
scales. It should be possible to accommodate them with a
relatively straightforward extension of the method.

1
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Fic. 7. Local genealogies at six loci inferred to be under positive selection in S. hypoxantha. Contig name, position of SNP, derived AF, SIA-inferred
selection coefficient range, and the pigmentation gene closest to the locus in question are indicated at the top of each panel. Haploid genomes
carrying the ancestral and derived alleles are colored in blue and orange, respectively.

Like other supervised learning methods, SIA relies on sim-
ulations to generate training data. In order to apply SIA in a
particular population, a fresh set of training data tailored to

that population needs to be simulated. Although it takes on
the order of 100 CPU hours to simulate the training data
compared with ten CPU hours to train the model (see
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Materials and Methods), simulations can be easily distributed
across multiple machines as each of them runs indepen-
dently. Another potential drawback common to supervised
methods is that they could be biased by subjective choices of
simulation parameters. For example, SIA and ImaGene can-
not make accurate predictions of selection coefficients out-
side the range represented in the training data
(supplementary fig. S20, Supplementary Material online),
whereas unsupervised methods such as CLUES are not lim-
ited to a predefined range (supplementary fig S21,
Supplementary Material online). This problem could be cir-
cumvented by training on an extended range of s. Similarly,
the tendency of SIA to underestimate the selection coefficient
for sites under weak selection (figs. 3 and 4) could be miti-
gated by augmenting the training set with simulations
densely sampled from the weak selection regime. A more
subtle issue, however, arises when the underlying generative
process of the real data does not match the assumptions
made for the simulations of the training data, potentially
compromising the accuracy of the method when applied
to real data. Thus, we tested SIA on simulations with param-
eters mismatching those used in the training procedure. In
general, we found that SIA was fairly robust to alternative
parameter values, although, as expected, performance did
degrade somewhat under severely mis-specified models.
Notably, SIA achieved a similar level of robustness to model
parameter mis-specification as the unsupervised (i.e, not re-
lying on training data) likelihood method CLUES, yet out-
performed the supervised deep-learning method ImaGene.
Applying SIA to the CEU panel from the 1000 Genomes
Project yielded several noteworthy findings at loci with
known ties to phenotypes of interest. In addition to confirm-
ing the canonical signal of selective sweep at the LCT locus,
SIA detected a novel signal of selection at a GWAS SNP in the
MCIR gene associated with red hair color, contrasting a pre-
vious study that could not find evidence of selection at MCTR
in the European population (Harding et al. 2000). The derived
allele at this locus segregates at around 10% in the CEU pop-
ulation but is nearly absent in non-European populations
(Marcus and Novembre 2017). In addition, at the MCTR locus
the Relate test statistic for selection (Speidel et al. 2019),
which tends to perform particularly well at low segregating
frequencies (fig. 2), falls slightly below the significance thresh-
old of 0.05, supporting the evidence of positive selection at
this locus. SIA also detected evidence of selection at a SNP in
the ABCC11 gene reported to be the determinant of wet
versus dry earwax as well as sweat production, mirroring
the signal of selection previously found in the East Asian
population (Ohashi et al. 2011), although selection in the
CEU population appeared to be much weaker. In addition,
SIA identified selection at a few other pigmentation-related
loci, yet determined previously identified SNPs in the TYRP1
and TTC3 genes to be largely free from selection (table 1).
These results were consistent with a previous study (Stern
et al. 2019), which reported similar results for these
pigmentation-related loci, albeit in a slightly different popu-
lation (GBR). SIA notably did not detect positive selection at
GWAS loci in the TCF7L2 gene associated with type-2

diabetes, the ANKKT gene implicated in addictive behaviors,
and the FTO gene associated with obesity. Overall, this em-
pirical study with the 1000 Genomes CEU population has
illustrated how SIA can be applied to assess natural selection
at the resolution of individual sites, suggesting that it may be
useful in prioritizing GWAS variants for further scrutiny.

In our previous work on southern capuchino seedeaters
(Hejase, Salman-Minkov, et al. 2020) (see Materials and
Methods), we applied newly developed statistical methods
for ARG inference and ML for the prediction of selective
sweeps. We found evidence suggesting that a substantial frac-
tion of soft sweeps is partial but had limited power to identify
them (i.e, average accuracy of 56%). SIA considerably im-
proved our characterization of positive selection in the south-
ern capuchino species in two key ways. The SIA framework
performs inference of selection directly from genealogies in-
stead of traditional summary statistics, and in doing so
achieved an accuracy of up to 96% in detecting partial soft
sweeps. Consequently, we found abundant evidence of soft
sweeps beyond the previously scanned Fst peaks, and addi-
tionally were able to estimate their selection coefficients.
Importantly, SIA also took the analysis of selection beyond
broad genomic windows containing sweeps to the identifica-
tion of specific putative causal variants. We took advantage of
this substantial improvement in genomic resolution and an-
alyzed the distribution of these sweep sites, which revealed
that positive selection on regions that likely contain cis-regu-
latory elements plays a role in driving the differentiation and
speciation of southern capuchino seedeaters.

Although we believe SIA represents an important step
forward in the use of the ARG for ML-based selection infer-
ence, there remain several possible avenues for improvement.
For example, SIA currently uses a point-estimate of the ARG,
rather than a distribution, and therefore does not explicitly
take gene-tree uncertainty into account. Instead, the uncer-
tainty of the inferred parameters is estimated with neural
network dropouts (Gal and Ghahramani 2016). The variance
of parameter inference could alternatively be assessed from
uncertainty in genealogy reconstruction by resampling coa-
lescent times with Relate (Speidel et al. 2019), and moreover
resampling trees from the posterior distribution of ARGs with
ARGweaver (Rasmussen et al. 2014). Thus, it may be enlight-
ening to compare these different approaches to analyzing
uncertainty. Likewise, SIA will greatly benefit from better algo-
rithms for ARG reconstruction that balance accuracy with
scalability and can handle thousands of genomes. In addition,
the SIA framework was applied in the context of single-locus
selective sweeps, but could be extended to study polygenic
selection, by making use of summary statistics from genome-
wide association studies (as in Stern et al. [2021]) and adapt-
ing the architecture of our neural network to account for
selection acting at multiple sites. Finally, the robustness of
SIA to model mis-specifications can be further improved by
ensuring the simulated data is generated under a distribution
that is compatible with the real target data set. We anticipate
that the continual advancement in ARG inference methods
has the potential to open up many new applications for this
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flexible and powerful model of ARG-based deep learning in
population genetics.

Materials and Methods

Simulated Data Sets Used for Training and Testing the
SIA Model

Training and testing data sets were generated using discoal
(Kern and Schrider 2016) by simulating 1,000,000 regions of
length 100 kb for each model we considered (i.e, “neutral” or
“hard sweep”). Aside from these regions, 2,000 were simulated
for validation and 5,000 were simulated for testing. The num-
ber of sampled sequences was selected to match the number
of individuals in the CEU population in the 1000 Genomes
data set. Thus, a total of 198 haploid sequences were sampled.
Simulations used a demographic model based on European
demography (Tennessen et al. 2012). In non-neutral simula-
tions, selection was applied to a single focal site located in the
middle of the simulated region. We sampled each of the main
demographic and selection parameters from a uniform dis-
tribution: 1) mutation rate y ~ U(1.25e—08, 2.5e—08); 2)
recombination rate p ~ U(1.25e—08, 2.5e—08); 3) selection
coefficient s ~ U(0.0001, 0.02); and 4) segregating frequency
of the site under selection f ~ U(0.01, 0.99). The total storage
footprint for the simulations was 1.6TB. The average cost of
one simulation was 0.53 s, amounting to a total of 148 CPU
hours to simulate the entire training set. The cost of simula-
tion was mitigated by parallelization across multiple compute
nodes.

ARG Feature Extraction
For each target variant, we extracted the corresponding gene
tree from the ARG, then overlaid it with 100 discrete time-
points. These timepoints were fixed across all trees in an
approximately log-uniform manner that resulted in finer dis-
cretization of more recent time scales (as in Rasmussen et al.
[2014]). We considered biallelic sites only and assumed no
recurrent mutations; thus, each mutation was assumed to
occur on the branch of the tree where the ancestral allele
switches to the derived. For each timepoint, we calculated the
number of active ancestral and derived lineages. Furthermore,
we computed the number of all active lineages (not distin-
guishing between ancestral and derived) at the same set of
predefined timepoints in the two left- and right-flanking gene
trees to account for linkage disequilibrium. We experimented
with alternative numbers of flanking gene trees and found
that the SIA model with two flanking gene trees (RMSE =
0.0027) outperforms a model with one (RMSE = 0.0029) or
no (RMSE = 0.0030) flanking gene tree. Generally, more gene
trees provide SIA with richer linkage information and thus
improve its ability to estimate the effect of positive selection
on a locus. The exact threshold of diminishing returns, how-
ever, can be computationally costly to establish. We therefore
opted to include two flanking gene trees while noting that the
user can control this hyperparameter when running SIA.

In the end, the ARG feature for each locus consisted of a
600-dimensional vector, which was then used as input to an
RNN. The features for each simulated sweep region were
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extracted from the sweep site (by default at the center in
all simulations) whereas the features for a simulated neutral
region were extracted from a variant site (randomly chosen)
with a predefined matched derived AF. The features for each
genomic locus of interest in the CEU population were
extracted from all variant sites at that locus having a derived
AF of >0.05.

Training an RNN to Predict Different Modes of
Selection

An RNN was applied to the simulated training data sets to
learn a classification or regression model for the task at hand.
We used a LSTM, a particular form of RNN, to accommodate
the temporal nature of our features, account for long-term
dependencies, and tackle the vanishing gradient problem ob-
served in traditional RNNs. Our model had 100 timepoints
with the final target output depending on the use of classi-
fication or regression. For the classification task, the final tar-
get output is a binary class label predicting whether a region is
under selection or neutrality. For the regression task, the final
target output is a continuous value, representing the selection
coefficient or the time of selection onset. We also took a
many-to-many approach to model the AF trajectory for the
site under selection. The Keras software was used to train and
test the model. We used a two-stacked LSTM to account for
greater model complexity where the number of units in each
stack was set to 100 and the hyperbolic tangent (tanh) was
used as an activation function. The Adam optimization
method with its default operating parameters was used to
update the network weights. For the classification task, the
Softmax activation function was applied on the final dense
layer and the binary_crossentropy was used to compute the
cross-entropy loss between true labels and predicted labels.
For the regression task, the linear activation function was
applied on the final dense layer and the mean_squared_error
loss was used. The SIA deep-learning model took on average
7-10 h to train on a single GPU node with 32 GB memory and
four threads, whereas applying the trained model for predic-
tion took less than a minute.

Estimation of Confidence Intervals

To turn our single-valued regression model into one capable
of returning a distribution of predictions of s, we reused the
dropout technique that is typically used during training.
Dropout enables a fraction of nodes to be randomly “turned
off” in a certain layer, which assists in the regularization of the
model and helps prevent overfitting. We applied dropout
during inference, enabling us to sample a “thinned” network
to generate a sample prediction. By repeatedly sampling
thinned networks, we generated a distribution of predictions
and then computed confidence intervals based on this distri-
bution (Gal and Ghahramani 2016).

ARG Inference

Relate (Speidel et al. 2019) (v1.0.17) was used for inferring
ARGs underlying simulated genomic samples as well as the
CEU population in the 1000 Genomes data set. For simula-
tions under the Tennessen et al. demography (Tennessen
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et al. 2012), Relate was run with the true simulation param-
eters (1, p, and N,) specified; whereas for genomic loci of the
CEU population, Relate was run with a mutation rate of 2.5 x
10°% base/generation (—m 2.5e—8), a constant recombina-
tion map of 125 x 10~ %/base/generation and a diploid ef-
fective population size of 188,088 (—N 376176). The choice of
mutation rate follows Stern et al. (2019) based on estimates
from Nachman and Crowell (2000). Although some more
recent estimates have been lower (Scally and Durbin 2012),
these differences in mutation rate are unlikely to have a major
effect on our selection inference because SIA appears to be
fairly robust to mis-specification of mutation rate (supple-
mentary figs. S13 and S16, Supplementary Material online).
For simulations and genomic loci of the S. hypoxantha pop-
ulation, Relate was run with ;1= p =1 x 10~ °/base/genera-
tion and a diploid N,, of 130,000. The branch lengths of Relate-
inferred genealogies were estimated iteratively with the
“EstimatePopulationSize.sh” script in the Relate package.
Specifically, population size history was inferred from the
ARG, the branch lengths are then updated for the estimated
population size history and these steps are repeated until
convergence. This was done for a default of five iterations
(-num_iter 5).

Alternative Methods for Selection Inference

To benchmark the performance of SIA for classification of
sites under neutrality versus selective sweep, we ran the fol-
lowing methods: Tajima’s D (Tajima 1989), H1 (Garud et al.
2015), iHS (Voight et al. 2006), a summary statistics-based
deep-learning model, and a tree-based statistic that is part
of the Relate (Speidel et al. 2019) program. Tajima’s D, H1, and
iHS were calculated with the scikit-allel package. Haplotypes
of the entire 100 kb simulated genomic segment were used
for Tajima’s D and H1 calculations. The unstandardized iHS
was computed at every site with minor AF >5%, with respect
to all other sites in the genomic segment (min_maf = 0.05,
include_edges = True). iHS scores of all sites were then stan-
dardized in 50 AF bins. Finally, the iHS score of a genomic
region was taken to be the mean of the iHS scores of all of its
variant sites. For the summary statistics-based deep-learning
model, we made use of the summary statistics used by S/HIC
(Schrider and Kern 2016; Kern and Schrider 2018) as features
for our deep-learning architecture. These included 11
sequence-based summary statistics (see Figure 3 in
Schrider and Kern [2018]) which were used as features for
our deep-learning model to distinguish among the two clas-
ses at hand (selective sweep vs. neutral drift). All statistics
were collected along five consecutive 20-kb windows with
the objective of identifying possible sweeps induced by a
positively selected mutation in the third (middle) window.
Some of these summary statistics corresponded to standard
measures of diversity, such as ss (the number of segregating
sites), = (Nei and Li 1979), Tajima’s D (Tajima 1989), O\
(Watterson 1975), 0, (Fay and Wu 2000), the number of
distinct haplotypes (Messer and Petrov 2013), H1, H12, H2/
H1 (Garud et al. 2015), Z,,s (Kelly 1997), and maximum value
of w (Kim and Nielsen 2004). For each of these statistics, we
computed an average value for each of the five 20 kb windows

for the simulated population. Finally, each summary statistic
was normalized by dividing the value recorded for a given
window by the sum of values across all five windows. The
Relate tree-based selection test was performed with an add-
on module (DetectSelection.sh) using the inferred genealogy
with calibrated branch lengths at a site of interest, yielding a
log;o P value for each site.

We also compared the performance of SIA for selection
coefficient inference with that of CLUES (Stern et al. 2019)
and a genotype-based CNN framework (Flagel et al. 2019;
Torada et al. 2019). Selection coefficient inference from true
genealogies was performed with clues-v0 (https://github.com/
35ajstern/clues-v0, last accessed November 28, 2021).
Transition probability matrices were built on a range of se-
lection coefficients [0, 0.05] at increments of 0.0001 and
present-day allele frequencies [0.01, 0.99] at increments of
0.01. Selection coefficient inference from Relate inferred ge-
nealogies was performed with CLUES (https://github.com/
35ajstern/clues, last accessed November 28, 2021). Branch
lengths of the genealogy at the site of interest were resampled
with Relate for 600 MCMC iterations, and CLUES was run
with the following arguments: “—tCutoff 10000 —burnin 100 —
thin 5.” For the genotype-based CNN model, each simulated
genomic segment was preprocessed by first sorting the hap-
lotypes and then converting the segment to a fixed-size ge-
notype matrix. Haplotype sorting was performed by 1)
calculating the pairwise Manhattan distances between hap-
lotypes; 2) setting the haplotype with the smallest total dis-
tance to all other haplotypes as the first haplotype; and 3)
sorting the remaining haplotypes in increasing distance to the
first haplotype. To convert the sorted haplotypes to a fixed-
size genotype matrix, centered on the middle variant of a
simulated region, up to 180 variants on each side were
retained. Variants beyond 180 were discarded and if there
were fewer than 180, the missing variants were padded
with zeros. Ancestral and derived alleles were coded with 0s
and 1s, respectively. Consequently, each simulated genomic
region was encoded as a (198 x 360) binary matrix, along
with a real-valued vector encoding the genomic positions of
the variants in the matrix. The CNN model had a branched
architecture——one branch with five 1D convolution layers
taking the genotype matrix as input and another branch
with a fully connected layer taking the vector of variant posi-
tions as input. The output of the two branches was flattened,
concatenated and fed into three fully connected layers, fol-
lowed by a linear output layer to predict selection coefficient
(supplementary fig. S23, Supplementary Material online).

Evaluation Metrics

To evaluate the performance of SIA’s classification model and
alternative methods, we computed an ROC curve for the
binary class at hand (“neutral” or “sweep”), to provide a
more complete summary of the behavior of different types
of errors. We further assessed the performance of SIA and
alternative methods in terms of correctly predicting the se-
lection coefficient numerically using mean absolute error
(mae), root mean square error (rmse), coefficient of determi-
nation (r*), and visually using a box plot that compares the
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simulated ground truth against the predictions by the
method at hand.

Robustness Study

We carried out an extensive analysis of the robustness of our
approach, considering not only alternative demographic
parameters (such as population size), but also alternative
parameters for recombination rate, mutation rate, time of
selection onset, and selection coefficients. In all cases, we
took care to test our prediction methods under parameters
well outside the range used in training.

Analysis of CEU Population in 1000 Genomes Data
We applied SIA to infer selection coefficients and AF trajec-
tories in the 1000 Genomes (Auton et al. 2015) CEU popu-
lation at 13 genomic loci with known association to
phenotypes, some of which were previously identified as likely
targets of positive selection (table 1). For each gene of interest,
the ARG was inferred with Relate from SNPs within a 2-Mb
window centered at the gene. Once the ARG was inferred,
only SNPs with valid ancestral allele (“AA” INFO field in the
vcf file) were retained for downstream analysis. Following the
aforementioned protocol (see ARG Feature Extraction), fea-
tures at all variant sites in the 2 Mb window above a derived
AF threshold of 0.05 were extracted. Lastly, the SIA model was
applied to classify neutrality versus selection, and infer selec-
tion coefficient and AF trajectory at each site.

Localizing Sweeps in Southern Capuchino Seedeaters
We recently applied a combination of ARG inference and ML
methods for identifying selective sweeps to study previously
identified “islands of differentiation” in southern capuchino
seedeaters and distinguish among possible evolutionary sce-
narios leading to their formation (Hejase, Salman-Minkov,
et al. 2020). Taking advantage of its improved power and
genomic resolution, we applied SIA to sequence data for
the species for which we have the most samples, S. hypoxan-
tha. We simulated training (250,000 neutral; 250,000 soft
sweeps), validation (1000 neutral; 1000 soft sweeps), and test-
ing (2,500 neutral; 2,500 soft sweeps) data sets for SIA under a
demographic model inferred by G-PhoCS (Campagna et al.
2015). Simulations were performed using discoal with the
following parameters: 1) mutation rate u = 1e—9; 2) recom-
bination rate p =1e—9; 3) derived N, = 130,000; 4) root
divergence time = 1,850,000 generations ago; 5) root N, =
1,450,000; 6) ancestral divergence time = 44,000 generations
ago; 7) ancestral N, = 14,380,000; 8) selection coefficient s ~
U(0.001, 0.02); 9) initial frequency at which selection starts
acting on the allele f;;. ~ U(0.01, 0.05); and 10) segregating
frequency of the site under selection f ~ U(0.25, 0.99). A total
of 56 haploid sequences were sampled from each simulation,
matching the number of S. hypoxantha individuals (28) in the
real data. The SIA model for S. hypoxantha was built, trained
and evaluated in an otherwise similar fashion to that for the
CEU population as outlined above.

Using a subset of polymorphism data from Turbek et al.
(2021) of 28 S. hypoxantha and 2 S. minuta individuals, we
applied our trained model to localize selective sweeps in
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S. hypoxantha on 19 scaffolds that contain top Fst peaks in
at least one pairwise species comparison (Campagna et al.
2017) and/or harbor known pigmentation-related genes such
as ASIP (located on scaffold 252; induces melanocytes to syn-
thesize pheomelanin instead of eumelanin), KITL (located on
scaffold 412; stimulates melanocyte proliferation), SLC45A2
(located on scaffold 404; transports substances needed for
melanin synthesis), and CAMK2D (located on scaffold 1717;
cell communication), as well as 316 scaffolds that 1) are longer
than 100kb; 2) contain more than 1,000 variants; and 3)
where more than 95% of sites have a consensus ancestral
allele, as determined by four identical haplotypes for two
individuals from the outgroup species S. minuta. The ARG
was inferred with Relate for each scaffold independently.
Once the ARG was inferred, the SIA model was applied to
sites with consensus ancestral allele for classification and se-
lection coefficient inference.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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