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Abstract

Snail transcription factor is up-regulated in several cancers and associated with increased tumor migration and invasion via
induction of epithelial-to-mesenchymal transition (EMT). MAPK (ERK1/2) signaling regulates cellular processes including cell
motility, adhesion, and invasion. We investigated the regulation of ERK1/2 by Snail in breast cancer cells. ERK1/2 activity (p-
ERK) was higher in breast cancer patient tissue as compared to normal tissue. Snail and p-ERK were increased in several
breast cancer cell lines as compared to normal mammary epithelial cells. Snail knockdown in MDA-MB-231 and T47-D breast
cancer cells decreased or re-localized p-ERK from the nuclear compartment to the cytoplasm. Snail overexpression in MCF-7
breast cancer cells induced EMT, increased cell migration, decreased cell adhesion and also increased tumorigenicity. Snail
induced nuclear translocation of p-ERK, and the activation of its subcellular downstream effector, Elk-1. Inhibiting MAPK
activity with UO126 or knockdown of ERK2 isoform with siRNA in MCF-7 Snail cells reverted EMT induced by Snail as shown
by decreased Snail and vimentin expression, decreased cell migration and increased cell adhesion. Overall, our data suggest
that ERK2 isoform activation by Snail in aggressive breast cancer cells leads to EMT associated with increased cell migration
and decreased cell adhesion. This regulation is enhanced by positive feedback regulation of Snail by ERK2. Therefore,
therapeutic targeting of ERK2 isoform may be beneficial for breast cancer.
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Introduction

Breast cancer is the second most commonly diagnosed cancer,

accounting for almost 1 in 3 cancers diagnosed in US women [1].

One of the main causes of mortality from cancer is metastasis [2].

Epithelial-Mesenchymal Transition (EMT) is a process that

promotes tumor progression; Snail (snail1) transcription factor is

a C2H2 zinc finger protein that promotes EMT, which is

characterized by decreased expression of cell adhesion molecules

such as E-cadherin, VE-cadherin, Claudins, Occludin, Desmo-

plakin, Cytokeratins, and Mucin-1, and increased expression of

mesenchymal markers such as vimentin and N-cadherin [3,4].

Snail can be induced by growth factors such as transforming

growth factor beta (TGF-b) and epidermal growth factor (EGF)

[3]. Snail has been shown to increase resistance to apoptosis in

hepatocytes and Madine Darby Canine Kidney (MDCK) cells

[3,5–7]. Snail is induced by TGF-b and that upregulates pro-

inflammatory interleukins and matrix metalloproteinases (MMPs),

which help to degrade the extracellular matrix (ECM) [3]. This

activity shifts the microenvironment to a more radical and invasive

profile [6].

Modulation of Snail phosphorylation has been a hallmark of

several studies on Snail-mediated EMT [8–10]. Active Snail is

localized within the nucleus as a 264 amino acid transcriptional

repressor of target promoters, and is phosphorylated by a p21-

activated kinase 1 (PAK1) on Ser246 [11]. PAK1 phosphorylation

of Snail activates Snail protein and promotes Snail accumulation

within the nucleus to promote EMT. Snail is phosphorylated by

glycogen synthase kinase-3b (GSK-3b) at two consensus motifs

[12,13]. GSK-3b phosphorylation induces b-TRCP-mediated

ubiquitination, localization of Snail within the cytoplasm and

subsequent proteasomal degradation of Snail [13]. Additionally,

Snail phosphorylation by protein kinase D1 (PKD1) on Ser11

leads to nuclear export of Snail and EMT inhibition [14]. The zinc

finger domain of Snail serves as its nuclear localization sequence

and directs its movement into the nucleus [15]. Obtaining a better

understanding of the signaling pathways involved in breast cancer

will aid in developing more effective therapies and prevention
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strategies. Cross-communication between different pathways

allows cells to identify and respond appropriately to the

extracellular environment [16]. The receptor tyrosine kinases

(RTK) like epidermal growth factor receptor (EGFR), Ras/Raf/

MEK/ERK, and PI3K/AKT pathways are all involved in cancer

development, progression, and metastasis. Snail has been strongly

implicated in the Mitogen-activated protein kinase (MAPK)

pathway in breast cancer cells [17].

MAPK and extracellular-regulated kinases 1 and 2 (ERK1/2)

are significant signaling proteins that control several processes,

including: proliferation, survival, motility, adhesion, invasion and

survival [18]. The ERK1/2 cascade has several distinct functions

that differ depending on its subcellular localization. Nuclear

ERK1/2 activity (p-ERK) has been associated with malignant

mammary tumors and poor prognosis [19,20]. One study showed

that chemokine (C-X-C) ligand 5 (CXCL5) could activate Raf/

MEK/ERK, MSK1, Elk-1, and Snail, while E-cadherin was

down-regulated in breast cancer cell lines [17].

MAPK pathway inhibition has proven to be a promising

method of decreasing tumor growth by directly hindering cell

survival [18]. However, the use of oral MEK inhibitor CI-1040

(800 mg) to treat non-small-cell lung, breast, colon, and pancreatic

cancer has not been entirely successful [21]. Investigators reported

a dramatic increase in PI3K/Akt activity after administration of

CI-1040, indicating a shift in this pathway and potential tumor

resistance. Further studies deem hopeful, especially with a second

generation MEK inhibitor, PD 0325901 [21]. More importantly,

MAPK pathway inhibition has focused on general MAPK

inhibition without dissecting out the role of the different ERK

isoforms.

We investigated the role of Snail in regulating MAPK in breast

cancer cells and found that Snail and ERK1/2 activity was higher

in breast cancer cells as compared to normal mammary epithelial

cells. We have novel data that Snail overexpression in MCF-7

promotes nuclear ERK1/2 activation, resulting in Elk-1 activation

and EMT; Snail could be further regulated by ERK2 isoform by a

positive feedback mechanism. These findings begin to uncover

nuclear ERK2 isoform activity as a specific subcellular target of

therapy for aggressive breast cancer.

Materials and Methods

Cell Culture, Antibodies, and Reagents
The human breast cancer cells lines, T47-D, MCF-7, and

MDA-MB-231 were obtained from ATCC, Manassas, VA. The

MCF-7 cells stably transfected with empty Neo vector (MCF-7

Neo) and or constitutively active Snail (MCF-7 Snail) used for

most of these studies were kindly provided by Dr. Mien-Chie

Hung, The University of Texas MD Anderson Cancer Center,

Houston TX, and established as described previously [14]. Cells

were grown in RPMI medium supplemented with 10% fetal

bovine serum and 1% penicillin/streptomycin, at 37uC with 5%

CO2 in a humidified incubator. RPMI medium and penicillin/

streptomycin (P/S) were purchased from VWR Int., West Chester,

PA. Fetal bovine serum (FBS) and Charcoal/dextran treated FBS

(DCC-FBS) were from Hyclone, South Logan, UT. Matched

human tumor/normal breast cancer tissue lysates were purchased

from (Protein biotechnologies, Ramona, CA). Anti-human b-actin

antibody was from Sigma-Aldrich, Inc., St Louis, MO. Rat

monoclonal anti-Snail antibody, HRP-conjugated goat anti-rat

antibody, rabbit monoclonal anti-phospho-ERK antibody, rabbit

polyclonal anti-ERK antibody, rabbit polyclonal anti-phospho-

p90RSK (Thr359/Ser363), rabbit polyclonal anti-phospho-Elk-1

(Ser383), and rabbit monoclonal GAPDH (D16H11) antibodies

were from Cell Signaling Technology, Inc., Danvers, MA. Mouse

monoclonal E-cadherin, rabbit polyclonal p90RSK-1 (C-21), and

rabbit polyclonal Elk-1 (I-20), mouse monoclonal vimentin (V9),

and rabbit polyclonal topoisomerase I (H-300) antibodies were

purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).

HRP-conjugated sheep anti-mouse, sheep anti-rabbit and the

Enhanced chemiluminescence prime (ECL prime) detection

reagent were purchased from Amersham Biosciences, Buckin-

ghamshire, UK. Luminata Forte HRP chemiluminescence detec-

tion reagent was purchased from EMD Millipore (Billerica, MA).

The protease inhibitor cocktail was from Roche Molecular

Biochemicals, Indianapolis, IN. from BD Biosciences, San Jose,

CA. Rat tail collagen type I and human fibronectin were from BD

Biosciences (Bedford, MA). UO126 (MEK1/2 inhibitor) and

MG132 were purchased from EMD Calbiochem (Billerica, MA).

Ethics Statement for Use of Animals
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. All of

the animal procedures were approved and performed in accor-

dance with the Emory University Institutional IACUC guidelines.

Animal Experiments
Four-week-old female athymic nu/nu mice (National Cancer

Institute) were implanted subcutaneously with 17b-estradiol-

sustained release pellets and subsequently injected subcutaneously

with 26106 cells per mouse of Neo or Snail-overexpressing MCF-7

cells mixed 1:1 volume with matrigel (BD Biosciences). There were

6 mice in each group. The mice were sacrificed after 2 weeks by

carbon dioxide overdose followed by cervical dislocation, the

tumors excised and tumor volume measured with a caliper (tumor

volume was calculated as 3.14/66 largest diameter 6 smallest

diameter squared). The tumors were used for histology studies and

immunohistochemistry.

Ethical Statement Related to the Use of Human Breast
Tumor Samples

Breast tumors, and matched normal tissues were obtained from

the following sources- a) Protein biotechnologies, Ramona, CA; b)

US Biomax, Inc. (Catalog #BR1002, Rockville, MD). Protein

Biotechnologies Inc. provides pharmaceutical, biotechnology,

government, and academic institutions with human clinical

specimen derivatives. Tissues are obtained through a global

network of participating medical centers that employ IRB

approved protocols and strict ethical guidelines to ensure patient

confidentiality and safety. Identical procedures are used to prepare

all patient samples. Specimens are flash frozen to 2120uC within

5 min of removal to minimize autolysis, oxidation, and protein

degradation. Tissue specimens are homogenized in modified

RIPA buffer (PBS, pH 7.4, 1 mM EDTA, and protease inhibitors)

to obtain the soluble proteins, and centrifuged to clarify.

Tissue Microarray Analysis by Dual Immunofluorescence
The breast cancer and normal tissue microarray slide was

deparaffinized with xylene, dehydrated with alcohol series from

100% ethanol to 50% ethanol, antigens were retrieved at 125uC
for 30 seconds, peroxidases were blocked using 0.03% hydrogen

peroxide, and blocked using either goat or rabbit sera. Primary

antibodies (Snail anti-rat and p-ERK anti-rabbit) were added to

the slide and incubated overnight at 4uC. After washing with 16
Tris Buffered Saline-Tween (TBS-T) and 16 phosphate buffered

saline (PBS), secondary antibodies anti-rabbit Oregon green 488
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(Invitrogen, Carlsbad, CA) and anti-goat Texas red (Vector

Laboratories, Burlingame, CA) were added and incubated for

30 minutes in darkness. The slide was washed with 16 TBS-T,

counterstained with DAPI to detect nuclei, washed briefly with

double deionized water, and mounted using Fluorogel mounting

medium (Electron Microscopy Sciences, Hatfield, PA). Fluores-

cence microscopy was performed using Zeiss (Axiovision Rel 4.8)

and Apotome software.

Immunohistochemistry
Paraffin-embedded tumor tissues were sliced into 5 mm thick

sections and mounted on glass. The slides were deparaffinized and

rehydrated through a graded series of ethanols to deionized water

followed by antigen retrieval with Reveal Decloaker RTU antigen

unmasking solution (Biocare Medical, Concord, CA). The slides

were incubated with Snail primary antibody overnight at 4uC,

washed and incubated with HRP-conjugated secondary antibody

for 30 min at room temp. Slides were washed with TBS-T

365 min, 16PBS 365 min, then incubated with an avidin+biotin

solution from (Biocare Medical, Concord, CA). Slides were gently

and briefly washed with 16PBS two times; the first wash was for

5 min in a humidified chamber and the second wash was for

15 min with low agitation. Slides were incubated with 3,3-

Diaminobenzidine (DAB) for no more than 2 min at room temp.

Slides were washed with deionized water 365 min, dipped in

hematoxylin/eosin for 3 min, rinsed in tap water for 5 min, and

dehydrated in an up-graded series of ethanols. Slides were dipped

in xylene and mounted using a xylene-based mounting media.

Images of slides were taken using Zeiss microscope and Rel 4.8

software.

Immunofluorescence Using Breast Cancer Cell Lines
56103 cells were plated into 16 well chamber slides (Bio-Tek,

Nunc, Winooski, VT). For treatments, cells were either untreated,

treated with control siRNA or Snail siRNA. Fixation was

performed with methanol/ethanol 1:1 volume for 5 min, followed

by washes with 16 PBS and blocking with protein blocking

solution without serum (Dako, Camarillo, CA) for 10 min at room

temp. Subsequently, slides were incubated with primary antibody

at 1:50 or 1:100 dilutions in Dako antibody diluent solution for 1 h

at room temp. Slides were washed with 16 TBS-T (Dako,

Camarillo, CA), then incubated with secondary antibody in the

dark for 1 h at room temp. Secondary antibodies used were anti-

rabbit Oregon green 488, anti-mouse Alexa red 594 (Invitrogen,

Carlsbad, CA) or anti-goat Texas red (Vector Laboratories,

Burlingame, CA). Slides were washed with 16TBS-T and double

deionized water, prior to counterstaining with DAPI (1 mg/ml,

Santa Cruz Biotechnology, Santa Cruz, CA). Slides were mounted

using Fluorogel mounting medium (Electron Microscopy Sciences,

Hatfield, PA). Fluorescence microscopy was performed using Zeiss

microscope and Axiovision Rel 4.8 software.

Short Interfering RNA Transfection (siRNA)
Transient transfections were performed with 100 nM of non-

silencing ON-TARGET (Catalog #D-001810-10) or ON-TAR-

GETplus siRNA (Thermo Scientific - Dharmacon, Lafayette, CO)

for Snail, ERK 1 isoform and ERK 2 isoform, as per the

manufacturer’s instructions. Briefly, T47-D, MDA-MB-231,

MCF-7 Neo, and MCF-7 Snail cells were seeded overnight in 6-

well dishes then incubated with either non-silencing or siRNA

against Snail, ERK1 or ERK2 in phenol-free RPMI without FBS

or antibiotics for 5 hours; subsequently the media were replaced

with 5% DCC phenol-free RPMI for an additional 72 hours.

Lysates from whole cell, nuclear and cytoplasmic extracts were

harvested and quantitated for respective experiments.

Stable Snail Transfection in MCF-7
In order to confirm our findings from MCF-7 Neo and MCF-7

Snail cells obtained from Dr Mien-Chie Hung, we generated our

own stable cell lines as follows: Parental MCF-7 cells grown to

90% confluence in a 6 well culture dish were transfected with

either 1 mg of Snail cDNA or the empty neomycin vector (Neo),

using Lipofectamine 2000 according to manufacturer instructions.

(Invitrogen, San Diego, CA). Stable transfectants were selected by

treatment with 800 mg/ml of G418 and maintained in 400 mg/ml

G418. Selected clones were tested for Snail expression by Western

blot analysis.

Western Blot Analysis
Cells were lysed in a modified RIPA buffer (50 mM Tris

pH 8.0, 150 mM NaCl, 0.02% NaN3, 0.1% SDS, 1% NP-40,

0.5% sodium deoxycholate) containing 1.56 protease inhibitor

cocktail, 1 mM phenylmethylsufonyl fluoride (PMSF), and 1 mM

sodium orthovanadate. Whole cell lysates were freeze-thawed at 2

80uC/4uC for three cycles, then centrifuged at 13,500 rpm for

30 min at 4uC. Supernatants were collected and quantified using a

micro BCA assay (Promega, Madison, WI). 30–50 mg of cell

lysates were resolved using 10% SDS PAGE, followed by

transblotting onto nitrocellulose membrane (Bio-Rad Laborato-

ries, Hercules, CA). Membranes were blocked in 5% milk (TBS

with 0.05% Tween-20, 0.05% BSA containing 5% milk) or 3%

milk (TBS-T containing 3% milk), then washed and incubated

with primary antibody dilution buffer. After washing, the

membranes were incubated in peroxidase-conjugated sheep anti-

mouse, sheep anti-rabbit, or goat anti-rat IgG, washed, and

visualized using ECL prime reagent (GE Healthcare, Buckin-

ghamshire, UK) or Luminata Forte ECL reagent (Millipore,

Billerica, MA). The membranes were stripped using Restore

Western blot stripping buffer (Pierce Biotechnology, Inc., Rock-

ford, IL) prior to re-probing with a different antibody.

In vitro Cell Migration Assay
We utilized Costar 24-well plates containing a polycarbonate

filter insert with an 8- mm pore size, to coat with 3.67 mg/ ml rat

tail collagen I or 2.5 mg/cm2 human fibronectin on the outside for

24 h at 4uC. 56104 cells were plated in the upper chamber

containing RPMI supplemented with 0.1% fetal bovine serum

(FBS), whereas the lower chamber contained RPMI supplemented

with 10% FBS. After 5 h, cells that migrated to the bottom of the

insert were fixed, stained with 0.05% crystal violet, and counted to

obtain the relative migration.

In vitro Cell Adhesion Assay
96 well plates were coated with 3.67 mg/ ml of rat-tail collagen I

or 2.5 mg/cm2 of fibronectin overnight at 4uC. Binding sites were

blocked with 0.1% bovine serum albumin (BSA) in PBS followed

by plating of 36104 cells in complete RPMI. After incubation for

20 min, cells were treated with Percoll flotation medium and

Percoll fixative for 15 min at room temp, washed with 16 PBS

and stained with 0.05% crystal violet. The following day, each well

was solubilized with Sorenson solution, and OD read at 590 nm

using a Gen5 automated plate reader to quantify relative cell

adhesion.
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Subcellular Fractionation
Subcellular fractionations were performed per the manufactur-

er’s instructions (Thermo Scientific). Briefly, cells at 80–90%

confluence were lysed in a series of buffers containing protease

inhibitors (25X) with CERI (100 ml), CERII (5.5 ml), or NER

(50 ml). Centrifugation steps were performed to obtain a non-

nuclear fraction and an intact nuclear pellet, followed by further

lysing to isolate the nuclear fraction. 50 mg of non-nuclear and

nuclear fractions were utilized for Western blot analysis. Mouse

anti-topoisomerase I and mouse anti-GAPDH antibodies were

used to ensure the integrity of nuclear and non-nuclear fractions,

respectively.

Statistical Analysis
Data were analyzed by a paired student’s t-test or ANOVA

using GraphPad Prism software. ImageJ software was used to

quantitate densitometry. P values less than 0.05 were considered

statistically significant.

Results

p-ERK Is Increased in Patient Breast Tumor Tissues
We analyzed the expression of p-ERK and total ERK in

normal/tumor matched patient lysates using Western blot

analysis. Most of the tumor lysates expressed higher levels of p-

ERK as compared to normal tissue (Figure 1A). We analyzed the

expression of p-ERK and Snail using a human tissue microarray

containing normal and tumor tissue cores from patients. We found

that p-ERK was predominantly cytoplasmic in normal epithelial

tissue, while Snail was low (Figure 1B, Figure S1). The higher

grade tumor samples expressed a higher level of Snail and more

nuclear expression of p-ERK within epithelial cells, which co-

localized with Snail, as well as high p-ERK within the stroma

(Figure 1B, Figure S1). This confirms previous studies that p-ERK

is increased in breast cancer, while suggesting that Snail may co-

localize with p-ERK in breast cancer.

Snail Expression Is Associated with Increased p-ERK in
Breast Cancer Cells

We examined the expression of Snail transcription factor in a

panel of normal breast epithelial and breast cancer cells lines of

increasing aggressiveness by Western blot analysis. The normal

breast epithelial cells (HMEPiC) and MCF-7 breast cancer cell line

did not express detectable levels of Snail, while Snail was

detectable in breast cancer cell lines T47-D and higher in

MDA-MB-231, which displayed the highest cell migratory

potential (Figure 2A, B). p-ERK was also increased in breast

cancer cell lines as compared to normal breast epithelial cells

(Figure 2A). This demonstrates that Snail expression positively

associates with p-ERK and cell migration. To determine the

effects of Snail knockdown on p-ERK in T47-D and MDA-MB-

231 breast cancer cells, we transiently transfected these cells with

control siRNA or Snail siRNA and analyzed the expression of

Snail, p-ERK, and EMT markers (E-cadherin and vimentin) by

Western blot and immunofluorescence analyses. Snail knockdown

decreased p-ERK significantly in MDA-MB-231 and T47-D cells

(Figure 2C, D and Figure S2). Interestingly, there was also a

marked re-localization of p-ERK from the nucleus to the

cytoplasm upon Snail knockdown in T47-D cells, as seen by

immunofluorescence (Figure 2D, Figure S2). Additionally, Snail

knockdown increased levels of E-cadherin in T47-D and decreased

levels of vimentin in MDA-MB-231 cells, suggesting a partial

reversion of EMT (Figure 2C). These data demonstrate that Snail

and p-ERK increase with breast cancer progression and that Snail

may regulate ERK activity in breast cancer cells.

Snail Increases EMT In Vitro and Tumorigenicity In Vivo
Since hormone-dependent MCF-7 cells expressed barely

detectable levels of Snail, we utilized MCF-7 cells that have been

transfected with either the Neo empty vector or constitutively

active Snail cDNA for in vitro and in vivo studies. The MCF-7

Neo/MCF-7 Snail cell model has been used as an EMT

progression model for breast cancer [14]. We confirmed that

MCF-7 Neo cells maintain a more epithelial and cuboidal

morphology, which was completely transformed to a more

mesenchymal and fibroblast-like morphology in MCF-7 Snail

cells (Figure 3A). We also confirmed by Western blot analysis that

this model represents an EMT model by analyzing the expression

of EMT markers; MCF-7 Snail cells demonstrated higher levels of

Snail and vimentin and lower levels of E-cadherin as compared to

MCF-7 Neo cells (Figure 3B). We also analyzed the effects of Snail

overexpression on cell adhesion and migration using rat tail

collagen I and human fibronectin matrices, and found that MCF-7

Snail cells displayed decreased cell adhesion and increased cell

migration on both matrices (Figure 3C, 3D). To determine the

effects of Snail overexpression in vivo, we injected MCF-7 Neo

and MCF-7 Snail cells subcutaneously into female nude mice.

Significantly larger tumor volumes were observed in MCF-7 Snail

tumor xenografts as compared to MCF-7 Neo xenografts after 2

weeks (Figure 3E). H&E staining was performed as well as

immunohistochemistry to demonstrate higher expression of Snail

in MCF-7 Snail tumor xenograft tissues as compared to MCF-7

Neo tumor xenografts (Figure S3). Therefore, Snail increases

EMT and tumorigenicity in MCF-7 breast cancer cells.

Snail Promotes Nuclear Translocation of p-ERK
Next, we examined p-ERK levels upon Snail overexpression.

For this, we retransfected parental MCF-7 cells stably with

constitutively active Snail cDNA or empty Neo vector and selected

various clones of Neo and Snail. Using representative clones, we

observed that MCF-7 Snail clones that expressed high levels of

Snail also expressed higher p-ERK as compared to MCF-7 Neo

clones (Figure 4A). Interestingly, Snail overexpression correlated

with predominantly nuclear localization of p-ERK as observed by

immunofluorescence, while p-ERK was predominantly cytoplas-

mic, surrounding the nucleus in MCF-7 Neo cells (Figure 4B,

Figure S4). We further confirmed that Snail could regulate p-ERK

by knocking down Snail in a representative MCF7-Snail clone;

this led to decreased p-ERK (Figure 4C). We further examined p-

ERK localization utilizing Western blot analysis of nuclear and

cytoplasmic fractions. We observed that Snail overexpression led

to p-ERK primarily within the nuclear fraction as compared to the

cytoplasmic fraction (Figure 4D). However, in MCF-7 Neo cells,

although there was p-ERK in both the nuclear and cytoplasmic

fractions, it was interesting to note that it was predominantly the p-

ERK1 isoform (Figure 4D). Furthermore, we noted that in MCF-

7 parental cells, p-ERK staining was similar to MCF-7 Neo cells

and co-localized with nuclear import protein nucleoporin98

(NUP98), a nuclear membrane marker, suggesting that the

predominant nuclear expression of p-ERK within these cells

may reside within the nuclear membrane (data not shown). To

determine whether Snail-mediated nuclear translocation of p-

ERK may be associated with downstream effectors of p-ERK, we

reviewed literature about MAPK and its effectors within the

subcellular compartments and found that p90 ribosomal s6 kinase

(p90RSK) is a cytoplasmic substrate of p-ERK, while Elk-1

transcription factor is a nuclear substrate of p-ERK [23]. P90RSK
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and Elk-1 are involved in tumor progression and biochemical

changes in chromatin structure, and indirectly increasing cell

proliferation through c-Fos activation, respectively [23]. We

analyzed the protein expression of phosphorylated (active) and

total forms of p90RSK and Elk-1 in MCF-7 Neo and MCF-7 Snail

cells. We found that the p-p90RSK was expressed predominantly

within the cytoplasmic fractions of both MCF-7 Neo and MCF-7

Snail cells; however, p-Elk-1 was highly expressed predominantly

in the nuclear compartment and at significantly higher levels in

MCF-7 Snail as compared to MCF-7 Neo cells (Figure 4D).

Further evidence that Snail may promote activation of ERK1/2,

which subsequently activates Elk-1 was supported by the fact that

Snail knockdown in MDA-MB-231 cells led to translocation of p-

Elk-1 from the nucleus into the cytosol (Figure S5).

Inhibition of ERK Activity with UO126 Decreases Snail
Expression and Partially Reverts EMT Independent of
Proteasomal Degradation

MAPK/ERK signaling is closely involved with cancer devel-

opment, progression and metastasis [18,23,27]. We sought to

determine if Snail-mediated EMT may be regulated via p-ERK in

our model of breast cancer. To accomplish this task, we inhibited

p-ERK using MEK inhibitor UO126 (20 mM) for 30 min, 2 h,

6 h, and 24 h. MCF-7 Neo and MCF-7 Snail cells treated with

UO126 led to p-ERK inhibition within 30 min up to 24 h

(Figure 5A). Interestingly, Snail expression was decreased in MCF-

7 Snail cells within 24 h after UO126 treatment (Figure 5A). Also

noted, was the dramatic changes in MCF-7 Snail cell morphology

after UO126 treatment; the cells became more epithelial and

clumped after 24 h and were still viable as shown by DAPI

staining (Figure 5B). EMT was antagonized as shown by

decreased vimentin and increased E-cadherin expression (Fig-

ure 5C), which was associated with significant decrease in cell

migration and increase in cell adhesion (Figure 5E). To determine

whether ERK inhibition was inducing proteasomal-mediated

degradation of Snail, we pre-treated MCF-7 Neo and MCF-7

Snail cells with MG132 proteosomal degradation inhibitor for 2 h

prior to treatment with UO126 for 6 or 24 h. We observed that

inhibition of Snail expression following UO126 treatment was not

restored by MG132 (Figure 5D), suggesting that UO126 does not

decrease Snail protein expression via the proteosomal pathway.

Conversely, we observed that UO126 treatment of MCF-7 Neo

cells altered morphology and led to spindle–shaped cells with

extensions (Figure 5B, arrows), which was accompanied by

decreased expression of E-cadherin (Figure 5C), as well as

decreased cell adhesion (Figure 5E). These data suggest that

although Snail can regulate p-ERK, there may also be a feedback

loop by which p-ERK can also positively regulate Snail expression.

Furthermore, it appears that p-ERK inhibition in MCF-7 Snail

Figure 1. p-ERK expression is increased in patient tumor tissues. (A) 10 mg of normal/tumor-matched infiltrating ductal carcinoma (IDC)
grades 1–3 and lymph node metastatic patient lysates were separated using SDS-PAGE electrophoresis, then immunoblotted onto nitrocellulose.
Expression of p-ERK and ERK was determined using Western blot analysis. b-actin was used as Western blot loading control. (B) Human breast cancer
tissue microarray was double-labeled with p-ERK (green) and Snail (red) antibodies using immunofluorescence analysis. DAPI was used to identify the
nuclei. Images were captured using Zeiss Axiovision Rel4.8 at 206 (left panel) and Apotome software at and 406 oil magnification (right panel).
Results are representative of at least three independent experiments.
doi:10.1371/journal.pone.0104987.g001

Snail Regulates ERK2

PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e104987



cells reverts EMT, while surprisingly, p-ERK inhibition in MCF-7

Neo cells antagonizes cell adhesion.

ERK2 Isoform Regulates Snail Expression and EMT
Since we had observed that MCF-7 Neo cells expressed a higher

level of p-ERK1 isoform in both the cytoplasm and nuclear

fraction, whereas MCF-7 Snail cells expressed a higher level of p-

ERK1 and ERK2 isoform within the nuclear fraction, we

dissected the roles of the different isoforms further. In MCF-7

Neo cells, we observed that neither ERK1 nor ERK2 siRNA

affected Snail or vimentin expression, though E-cadherin levels

appeared to increase with ERK1 knockdown (Figure 6A).

However, in MCF-7 Snail cells, both ERK1 and ERK2 siRNA

decreased Snail and vimentin levels, but ERK2 siRNA decreased

Snail and vimentin more significantly; however, E-cadherin was

not affected (Figure 6B). Functionally, ERK2 siRNA decreased

cell migration in both MCF-7 Neo and MCF-7 Snail cells more

significantly as compared to ERK1 siRNA (Figure 6C). Moreover,

Figure 2. Snail is correlated with increased p-ERK in breast cancer cells. (A) Normal immortalized breast epithelial cells (HMEPiC), the
adenocarcinoma cell lines MCF-7 and T47-D, and triple negative cell line MDA-MB-231 were utilized to analyze Snail, p-ERK and total ERK protein
levels by Western blot analysis. (B) MCF-7, T47-D, and MDA-MB-231 cell lines were utilized to perform a migration assay on collagen. Cells that had
migrated through the boyden chamber insert were fixed, stained, counted and graphed. Bars, SD, paired Student’s t-test. (C) T47-D and MDA-MB-231
cells were transiently transfected with control siRNA or Snail siRNA and expression levels of Snail, p-ERK, and ERK were determined with Western blot
analysis (top panel). Relative protein levels compared to actin were analyzed by Image J analysis using National Institute of Health (NIH) software and
plotted (bottom panel). Bars, SD. Statistical analysis was done using ANOVA and Tukey’s Multiple Comparison as Post Hoc (* p#0.05, ** p#0.01). (D)
Immunofluorescent analysis was also performed on T47-D and MDA-MB-231 cells transiently transfected with control siRNA or Snail siRNA. b-actin
was utilized as a loading control for Western blot analysis; DAPI was used to identify the nuclei in immunofluorescent analyses. Magnification 20X;
Inset 40X. Results represent experiments performed in triplicate at least twice independently.
doi:10.1371/journal.pone.0104987.g002
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ERK2 siRNA was also more effective than ERK1 siRNA at

increasing cell adhesion in MCF-7 Snail cells (Figure 6D). This

suggests that ERK2 may be the primary regulator of Snail-

mediated EMT when compared to ERK1.

Discussion

Our research focused on the physiological functions influenced

by Snail transcription factor to promote to breast cancer

progression. Snail regulates epithelial-mesenchymal transition

(EMT), which involves a loss of epithelial markers like E-cadherin

and an increase in mesenchymal markers like vimentin [2,3,5].

Snail transcriptionally represses genes by binding to the enhancer

sequence (E-box) of genes such as E-cadherin, Occludin, Claudins,

and Mucin-1 [2,3]. Moreover, Snail induces resistance to cell

death, noted in skin tumors induced in mice, biopsies of breast

carcinomas from patients, gastric cancer, and hepatocellular

carcinomas [6]. This communication studied the relationship

between Snail and phosphorylated ERK (p-ERK), in an effort to

discover novel pathways by which ERK1/2 may be altered during

breast cancer progression.

ERK1/2 is involved in several functions of breast cancer

progression; ERK1/2 can regulate cell proliferation, survival,

motility, and differentiation by indirectly shifting normal mam-

mary epithelial cells into a more mesenchymal, less adherent state

[22]. Previous studies have indicated an evident link between

Snail, other Snail gene members (i.e., Snail, Slug, Twist) and

Figure 3. Snail increases EMT in vitro and tumorigenicity in vivo. (A) Morphology images of MCF-7 Neo and MCF-7 Snail cells were captured
by brightfield microscopy (1006magnification). (B) Expression of EMT markers Snail, E-cadherin, and Vimentin was analyzed using Western blot. (C)
Adhesion and (D) migration assays performed on collagen I and fibronectin matrices were imaged at 106magnification (left panel), counted and
graphed (right panel). (E) MCF-7 Neo or MCF-7 Snail cells were injected subcutaneously into nude female mice (N = 6) and two weeks later, mice were
sacrificed and tumor volumes measured and graphed. b-actin was utilized as a loading control for Western blot analysis. Statistical Analysis was done
using paired Student’s t-test, Bars, SD (**p,0.01, ***p,0.001). Results are representative of at least three independent experiments.
doi:10.1371/journal.pone.0104987.g003
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MAPK/ERK signaling [2,18,23]. Snail has been shown to up-

regulate p-ERK which subsequently increases cell survival in

Madine Darby Canine Kidney (MDCK) cells [6]. Maintenance of

Slug (Snail2) gene expression promotes tumor motility through the

ERK signaling pathway in breast cancer [24]. Snail overexpres-

sion in ARCaP prostate cancer cells increased ERK activity, which

was associated with increased cell migration and decreased cell

adhesion [23].The present study associates Snail expression and p-

ERK with breast cancer progression, as Snail protein and ERK

activity was increased in breast cancer patient tissue as well as

breast cancer cell lines (MCF-7, T47-D) and triple negative breast

cancer cells (MDA-MB-231). MDA-MB-231 breast cancer cells

are highly aggressive and migratory, as previously published [25]

as well as in our study.

The expression of p-ERK and Snail were higher and co-

localized in higher grade tumors. These findings correspond to a

recent communication that analyzed p-ERK expression in patient

tumors [26]. High levels of p-ERK were associated with poor

prognosis based on poor differentiation, larger tumor sizes, and

higher stages of breast cancer. Transient Snail knockdown using

siRNA decreased p-ERK levels markedly in MDA-MB-231 cells,

and led to re-localization of p-ERK from the nucleus to the

cytoplasm in T47-D cells. Interestingly, the decreased p-ERK

levels in MDA-MB-231 cells following Snail knockdown was

accompanied by a shift in localization of p-Elk-1, a downstream

substrate of nuclear p-ERK, from the nucleus to the cytoplasm.

This would suggest that Snail may regulate p-ERK, and more

specifically regulate its localization in cancer cells. Subcellular

localization of ERK1/2 and its ability to undergo nucleocytoplas-

mic translocalization within the cell has been the focus of several

investigations [27]. Although ERK1/2 is found abundantly

throughout the cell in many organelles and cell structures, entry

of this protein into the nucleus is highly selective; one study

showed that nuclear entry of MAPK does not occur in primary

ovarian and mammary epithelial cells due to lower import activity

for ERK1/2 as compared to cancer cells [28]. These findings

suggest that targeting nuclear MAPK may be an appropriate

method to diagnose and/or treat cancer.

High levels of Snail expression and nuclear expression of

ERK1/2 have been shown in separate studies to correlate with

Figure 4. Snail promotes nuclear ERK activation. (A) MCF-7 parental cells were stably transfected with constitutively active Snail cDNA utilizing
lipofectamine 2000, and stable clones selected using G418 and isolated. Expression of Snail, p-ERK and ERK in representative Neo and Snail clones
was analyzed by Western blot analysis (top panel) and quantified (bottom panel). (B) Expression and localization of p-ERK in MCF-7 Neo and MCF-7
Snail cells was analyzed using immunofluorescence. (C) MCF-7 Snail cells were transiently transfected with either control or Snail siRNA for 72 h and
cell lysates analyzed for expression of Snail, p-ERK and ERK by Western blot analysis (left panel) and results of Western blots were quantified and
graphed (right panel). (D) Nuclear and cytoplasmic extracts were isolated from MCF-7 Neo and MCF-7 Snail cells. The expression of Snail, p-ERK, ERK,
p-Elk-1, Elk-1, p-p90RSK, and p90RSK was analyzed by Western blot analysis. b-actin was utilized as a loading control for Western blot analysis; DAPI
was used in immunofluorescence to identify the nuclei. Magnification, 636 oil. Topoisomerase I (Topo I) was utilized as a nuclear marker while
GAPDH was utilized as a cytoplasmic marker. Relative protein levels compared to actin was analyzed by Image J analysis using National Institute of
Health (NIH) software and plotted. Values were expressed as mean 6 S.E.M. Statistical analysis was done using ANOVA and Tukey’s Multiple
Comparison as Post Hoc (** p#0.01). Results are representative of experiments performed in triplicate.
doi:10.1371/journal.pone.0104987.g004
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poor prognosis and cancer cell growth [2,29]. We utilized the

MCF-7 Neo/MCF-7 Snail cell model to more closely study the

relationship between Snail expression and p-ERK. We confirmed

that MCF-7 Neo/MCF-7 represented an EMT model; indeed, we

found that when Snail is overexpressed in less invasive MCF-7

cells, the morphology of these cells shifted from epithelial to

mesenchymal and fibroblastic. Snail overexpression also decreased

E-cadherin epithelial marker while vimentin mesenchymal marker

was increased, which was concomitant with decreased cell

adhesion and increased cell migration. Additionally, Snail

overexpression increased tumorigenicity in vivo. This study

reports evidence for the first time, that Snail oncogene can

negatively regulate adhesion to fibronectin and collagen in breast

cancer cells, while also regulating other properties of epithelial cells

Figure 5. Inhibition of p-ERK with UO126 decreases Snail and reverts EMT independent of proteasomal degradation. (A) Expression
of p-ERK, ERK and Snail was analyzed by Western blot analysis in MCF-7 Neo and MCF-7 Snail cells treated with DMSO control (Ctrl) or UO126 for
30 min, 2 h, 6 h, and 24 h. (B) MCF-7 Neo and MC-7 Snail cells were treated with either DMSO (control) or UO126 and stained with DAPI. Cell
morphology and integrity were analyzed by merging DAPI immunofluorescence imaging with brightfield microscopy. (C) Expression of E-cadherin
and vimentin in cells treated with DMSO Ctrl or UO126 was analyzed by Western blot analysis. (D) MCF-7 Snail were treated for 6 h and 24 h with
DMSO Ctrl, UO126 and UO126+MG132. Cell lysates were analyzed by Western blot analysis. (E) Migration and (F) adhesion assays was performed on
MCF-7 Neo and MCF-7 Snail cells treated with DMSO Ctrl or UO126. b-actin was utilized as a loading control for Western blot analysis; DAPI was used
to identify the nuclei in immunofluorescence analyses. Maginification 40X. Statistical Analysis was done using ANOVA and Tukey’s Multiple
Comparison as Post Hoc (**p#0.01, ***p#0.001). Values were expressed as mean 6 S.E.M (N = 3). Results are representative of at least three
independent experiments.
doi:10.1371/journal.pone.0104987.g005
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Figure 6. ERK2 isoform regulates Snail expression and EMT. (A) MCF-7 Neo and (B) MCF-7 Snail cells were transiently transfected with various
constructs (I, II, III, V) of ERK1 and ERK2 siRNA for 72 h. Expression of p-ERK, ERK, Snail, E-cadherin, and vimentin was analyzed using Western blot (left
panel). Relative protein levels compared to actin were analyzed by Image J analysis using National Institute of Health (NIH) software and plotted with
Control siRNA set at 100% (right panel). (C) Migration and (D) adhesion assays were performed utilizing MCF-7 Neo and MCF-7 Snail cells transiently
transfected with ERK1 I or ERK2 IV siRNA. b-actin was utilized as a loading control for Western blot analysis. Statistical Analysis was done using ANOVA
and Tukey’s Multiple Comparison as Post Hoc (*p#0.05, **p#0.01, ***p#0.001; #p#0.05, ##p#0.01). Values were normalized to untreated controls
and expressed as mean 6 S.E.M (N = 3). Results are representative of at least three independent experiments.
doi:10.1371/journal.pone.0104987.g006
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that have been previously studied (i.e., E-cadherin reduction and

increased migration). Our previous studies have shown that

similarly in prostate cancer cells, Snail can decrease cell adhesion

and increase cell migration by regulating integrin signaling, and

down-regulating maspin tumor suppressor [23,30].

The ERK/MSK1/Elk-1/Snail signaling pathway has been

associated with breast cancer progression in vitro and in vivo;

exogenous chemokine (C-X-C motif) ligand 5 (CXCL5) mimicked

the effect of breast tumor-associated osteoblast (TAOBs) activities

to induce Raf/MEK/ERK mediated up-regulation of Snail in

MCF-7 and MDA-MB-231, which resulted in decreased E-

cadherin expression [18]. We utilized our MCF-7 Neo/MCF-7

Snail cell model to more closely dissect out MAPK regulation by

Snail. We found that Snail overexpression in MCF-7 breast cancer

cells led to increased p-ERK levels, whose localization was

predominantly within the nucleus. Moreover, the MCF-7 Snail

cells with nuclear p-ERK also displayed increased activity of its

downstream substrate, Elk-1. A previous study examined expres-

sion of p-ERK in a total of 886 breast cancer patients and found

that surprisingly, p-ERK correlated inversely with tumor size [31].

However, they did not dissect out the localization of these low

levels of p-ERK. It is possible that some tumors with low levels of

p-ERK may actually have it localized within the nucleus, which

may allow sufficient ERK activity that correlates with poor

prognosis. These findings suggest that there may be a shift in

MAPK localization as breast cancer cells become more metastatic.

Surprisingly, MCF-7 Neo cells did express some p-ERK, but it was

noted that it was mostly due to the ERK1 isoform, which was

localized in the cytoplasm and the nucleus. However, we observed

that the activity of nuclear Elk-1 was minimal in MCF-7 Neo cells,

suggesting that p-ERK within these cells do not signal in the

nucleus via Elk-1. Previously, it has been shown that up-regulation

of ERK2 isoform activity contributed to increased invasion in

MDA-MB-231 cells, which was also corroborated by 3D cell

migration assays [32]. It is plausible that Snail may be able to

activate preferentially the ERK2 isoform, which may lead to Elk-1

activation. However, we cannot totally rule out Snail activation of

ERK1 isoform, which was also higher in nuclear extracts as

compared to cytoplasmic extracts.

Interestingly, though we showed that Snail can regulate p-ERK,

MAPK inhibition utilizing UO126 in MCF-7 Snail cells led to

decreased expression of Snail, reversion of EMT as evidenced by

increased E-cadherin, decreased vimentin, decreased cell migra-

tion and increased cell adhesion. Normally, the molecular half-life

of Snail is only about 25 min, and is highly unstable [14]. The

molecular mechanism that drives tightly-controlled Snail activa-

tion can include GSK-3b-directed phosphorylation that can

include b-TrCP-directed ubiquitination and eventually proteaso-

mal degradation [12,14]. We investigated whether proteasomal

degradation was the basis behind decreased Snail protein upon

inhibition of MAPK activity, by pre-treatment with MG132

proteosomal degradation inhibitor. However, we found that

MG132 did not prevent the loss of Snail protein upon UO126

treatment, suggesting that MAPK inhibition does not target Snail

for proteosomal degradation. It has been reported that AP-1

activation can be induced by cellular stress brought on by UV-

irradiation [33]. This mode of AP-1 activation induces Snail

expression through the MAPK pathway in keratinocytes. There-

fore, we propose that AP-1 activation may be an alternative

pathway by which MAPK may regulate Snail and subsequently

EMT. Moreover, we propose that Snail may promote EMT in

breast cancer cells possibly through activation of p-ERK and

preferentially the ERK2 isoform and not the ERK1 isoform since

MCF-7 Neo cells have high levels of p-ERK1 that does not

activate Elk-1 activity. In fact, inhibition of MAPK activity in

MCF-7 Neo cells led to decreased E-cadherin expression and

decreased cell adhesion; this is opposite to the effects observed in

MCF-7 Snail cells.

We studied a possible mechanism of differential activation of the

ERK1 and ERK2 isoforms, and their downstream targets during

EMT. ERK1 or ERK2 siRNA were used to analyze the effects on

EMT in MCF-7 Neo and MCF-7 Snail cells. ERK2 siRNA more

markedly decreased Snail and vimentin expression in MCF-7

Snail cells, which correlated with decreased migration and

increased adhesion when compared to ERK1 siRNA; however,

E-cadherin expression was not restored. This differs from the effect

of UO126, which was able not only to decrease Snail and vimentin

expression, but to also restore E-cadherin expression. Additionally,

while UO126 in MCF-7 Neo cells seemed to decrease E-cadherin

and increase cell adhesion, neither ERK1 nor ERK2 siRNA was

able to significantly affect cell migration or cell adhesion in MCF-7

Neo cells. These differences may be explained either by the level of

knockdown (it was not complete with the siRNA but there was

complete inhibition of p-ERK with UO126) or possibly due to the

effect of UO126 on other proteins apart from ERK1/2.

Therefore, our data suggest that although Snail can regulate p-

ERK, there is also a feedback loop by which p-ERK, particularly

the ERK2 isoform can positively regulate Snail expression. This

would corroborate previous studies showing that increased ERK2

isoform activity contributed to increased invasion and migration in

MDA-MB-231 [32].

Although most studies usually study ERK1/2 activity without

dissecting out the role of each isoform, recent studies are

suggesting that they may have different functions. For example,

it has recently been shown that although ERK1 and ERK2 share

85% homology in amino acid sequence and are activated by the

same factors and have the same substrates. ERK2 genetic

knockdown is embryonic lethal, while ERK1 genetic knockdown

causes impaired thymocyte maturation and synaptic plasticity

[34,35]. Additionally, studies have shown that ERK1 ablation in

mouse embryo fibroblasts and NIH3T3 cells increases ERK2

dependent signaling and increases cell growth, whereas ERK2

knockdown decreases cell proliferation [36]. These differences in

function between ERK1 and ERK2 mirror what we observe in

our present study, where we find that ERK2 is more effective than

ERK1 in mediating EMT, cell migration and cell adhesion.

However, the discrepancies we observe between UO126 and

ERK1 knockdown in MCF-7 Neo cells show that there is still

more work that needs to be done to dissect out the role of ERK1.

Our cell model was better able to dissect out the role of ERK2 on

EMT in breast cancer.

Clinical trials have attempted to treat breast cancer with CI-

1040 (PD184352), an orally active, highly potent selective MEK1

and MEK2 inhibitor, but were unsuccessful [22]. Breast cancer

patients treated with epidermal growth factor receptor (EGFR)

inhibitor, Gefitinib, suffered relapses, which were due to MAPK

inhibition that paradoxically lead to PI3K/AKT activation [21].

Others have found that ERK2 also functions to promote therapy

resistance [29,37,38]. Current clinical trials are testing the use of

MEK and PI3K inhibitors in order to generate more effective

therapeutic strategies. Our studies attempt to demonstrate that it

may be possible to target breast cancer progression by targeting

the ERK2 isoform, which will abrogate Snail-mediated signaling.

Collectively, our findings indicate for the first time that Snail-

mediated induction of EMT, increased cell migration and

decreased cell adhesion, may be mediated by p-ERK, and more

specifically, p-ERK2 isoform (Figure 7). This study demonstrates
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the significance of therapeutic targeting of Snail via targeting of

the ERK2 isoform in future investigations on breast cancer.

Supporting Information

Figure S1 Single and merged images for breast cancer tissue

microarray double-labeled with p-ERK and Snail antibodies. (A)

Normal breast tissue adjacent to cancer, (B) infiltrating ductal

carcinoma grade 1, (C) infiltrating ductal carcinoma grade 2, (D)

infiltrating ductal carcinoma grade 3. DAPI was used to stain the

nuclei. Images were captured at 406 (oil) magnification.

(TIF)

Figure S2 Single and merged images from immunofluorescent

staining for T47-D and MDA-MB-231 transiently transfected with

Snail siRNA. T47-D and MDA-MB-231 transiently transfected

with either control siRNA or Snail siRNA were analyzed by

immunofluorescent staining for p-ERK, ERK and Snail. Snail (A,

D), p-ERK (B, E), and ERK (C, F) primary antibodies were used

to determine subcellular localization in samples. DAPI was used to

stain the nuclei. Images were captured at 206magnification.

(TIF)

Figure S3 Snail is expressed in mouse tumor xenografts

overexpressing Snail. MCF-7 Neo and MCF-7 Snail cells were

injected subcutaneously into female nude mice (N = 6) and 2 weeks

later, mice sacrificed and tumor xenografts excised. Sections from

the tumor xenografts were stained with (A) hematoxylin/eosin

(H&E) to examine histology of the tissues as well as (B) Snail

primary antibody by immunohistochemistry. Images were cap-

tured at 106 and 206magnifications.

(TIF)

Figure S4 Snail and p-ERK co-localize in the nucleus of MCF-7

Snail transfectants while p-ERK is cytoplasmic in MCF-7 Neo

cells. (A) Snail, (B), p-ERK (C) and ERK were analyzed by

immunofluorescence in MCF-7 Neo and MCF-7 Snail cells.

Images were captured at 206magnification. (D) Another view of

p-ERK in MCF-7 Neo cells is shown at 406magnification. The

cell membrane of one of the epithelial cells can be seen (white

arrows) while the p-ERK is mostly cytoplasmic closer to the

nucleus. DAPI was used to stain the nuclei.

(TIF)

Figure S5 Snail knockdown correlates with nucleo-cytoplasmic

translocalization of p-Elk-1. MDA-MB-231 breast cancer cells

were transfected with either control siRNA or Snail siRNA. Cells

were analyzed by immunofluorescence with either (A) p-Elk-1 or

(B) Elk-1 primary antibodies. DAPI was used to stain the nuclei.

Images were captured at 206magnification.

(TIF)
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9. Smith AP, Verrecchia A, Fagà G, Doni M, Perna D, et al (2009) A positive role

for myc in TGFbeta-induced Snail transcription and epithelial-to-mesenchymal

transition. Oncogene 28(3): 422–30.

10. Martı́nez-Estrada OM, Cullerés A, Soriano FX, Peinado H, Bolós V, et al (2006)

The transcription factors slug and snail act as repressors of claudin-1 expression

in epithelial cells. Biochem J 394(Pt 2): 449–57.

Figure 7. Snail promotes EMT via ERK2. Cells with low Snail
maintain an epithelial morphology. During cancer progression, the
expression of Snail increases, which promotes the nuclear localization of
p-ERK2 isoform. This leads to EMT characterized by decreased E-
cadherin, increased vimentin, decreased cell adhesion and increased
cell migration. By a positive feedback loop, p-ERK can increase Snail
expression. This leads to tumors with high levels of Snail and a
mesenchymal morphology.
doi:10.1371/journal.pone.0104987.g007

Snail Regulates ERK2

PLOS ONE | www.plosone.org 12 August 2014 | Volume 9 | Issue 8 | e104987



11. Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, et al

(2008) Epithelial-Mesenchymal Transition in Breast Cancer Relates to the Basal-

like Phenotype. Cancer Res 68: 989.

12. Yang Z, Rayala S, Nguyen D, Vadlamudi RK, Chen S, et al. (2005) Pak1

phosphorylation of snail, a master regulator of epithelial-to-mesenchyme

transition, modulates snail’s subcellular localization and functions. Cancer Res

65(8): 3179–3184.

13. Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ (2005) Wnt-dependent regulation of

the E-cadherin repressor snail. J Biol Chem 280(12): 11740–11748.

14. Zhou BP, Deng J, Xia W, Xu J, Li YM, et al (2004) Dual regulation of Snail by

GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal

transition. Nat Cell Biol 6(10): 931–940.

15. Du C, Zhang C, Hassan S, Biswas MH, Balaji KC (2010) Protein kinase D1

suppresses epithelial-to-mesenchymal transition through phosphorylation of

snail. Cancer Res 70(20): 7810–7819.

16. Yamasaki H, Sekimoto T, Ohkubo T, Douchi T, Nagata Y, et al (2005) Zinc

finger domain of Snail functions as a nuclear localization signal for importin

beta-mediated nuclear import pathway. Genes Cells 10(5): 455–464.

17. Aziz SW, Aziz MH (2013) Major signaling pathways involved in breast cancer.

In: Ahmad A, editor. Breast Cancer Metastasis and Drug Resistance: Progress

and Prospects. New York: Springer. pp.47–64.

18. Hsu YL, Hou MF, Kuo PL, Huang YF, Tsai EM (2013) Breast tumor-associated

osteoblast-derived CXCL5 increases cancer progression by ERK/MSK1/Elk-

1/snail signaling pathway. Oncogene 32(37): 4436–4447.

19. Whyte J, Bergin O, Bianchi A, McNally S, Martin F (2009) Key signalling nodes

in mammary gland development and cancer. Mitogen-activated protein kinase

signalling in experimental models of breast cancer progression and in mammary

gland development. Breast Cancer Res 11(5): 209.

20. Sebolt-Leopold JS, Dudley DT, Herrera R, Van Becelaere K, Wiland A, et al

(1999) Blockade of the MAP kinase pathway suppresses growth of colon tumors

in vivo. Nat Med 5(7): 810–816.

21. Normanno N, De Luca A, Maiello MR, Campiglio M, Napolitano M (2006)

The MEK/MAPK pathway is involved in the resistance of breast cancer cells to

the EGFR tyrosine kinase inhibitor gefitinib. J Cell Physiol 207(2): 420–427.

22. Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, et al (2004)

Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with

advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol

22(22): 4456–4462.

23. Neal CL, McKeithen D, Odero-Marah VA (2011) Snail negatively regulates cell

adhesion to extracellular matrix and integrin expression via the MAPK pathway

in prostate cancer cells. Cell Adh Migr 5(3): 249–257.

24. Chen H, Zhu G, Li Y, Padia RN, Dong Z, et al (2009) Extracellular signal-

regulated kinase signaling pathway regulates breast cancer cell migration by

maintaining slug expression. Cancer Res 69(24): 9228–9235.

25. Lacroix M, Haibe-Kains B, Hennuy B, Laes JF, Lallemand F, et al (2004)

Considerable differences between MCF-7 and MDA-MB-231 breast cancer cells
in response to the protein kinase C (PKC) activator PMA (TPA). Oncol Rep 12:

701–707.

26. Kuo HT, Hsu HT, Chang CC, Jiang MC, Yeh CM, et al (2013) High nuclear
phosphorylated extracellular signal-regulated kinase expression associated with

poor differentiation, larger tumor size, and an advanced stage of breast cancer.
Pol J Pathol 64(3): 163–169.

27. Wortzel I, Seger R (2011) The ERK cascade: Distinct functions within various

subcellular organelles. Genes Cancer 2(3): 195–209.
28. Smith ER, Cai KQ, Smedberg JL, Ribeiro MM, Rula ME, et al (2010) Nuclear

entry of activated MAPK is restricted in primary ovarian and mammary
epithelial cells. PLoS ONE 5(2): e9295.

29. Shukla A, Hillegass JM, MacPherson MB, Beuschel SL, Vacek PM, et al (2010)
Blocking of ERK1 and ERK2 sensitizes human mesothelioma cells to

doxorubicin. Mol Cancer 9: 314.

30. Neal CL, Henderson V, Smith BN, McKeithen D, Graham T, et al (2012) Snail
transcription factor negatively regulates maspin tumor suppressor in human

prostate cancer cells. BMC Cancer 12: 336.
31. Svensson S, Jirström K, Rydén L, Roos G, Emdin S, et al (2005) ERK

phosphorylation is linked to VEGFR2 expression and Ets-2 phosphorylation in

breast cancer and is associated with tamoxifen treatment resistance and small
tumours with good prognosis. Oncogene 24(27): 4370–4379.

32. von Thun A, Birtwistle M, Kalna G, Grindlay J, Strachan D, et al (2012) ERK2
drives tumour cell migration in three-dimensional microenvironments by

suppressing expression of Rab17 and liprin-b2. J Cell Sci 125(Pt 5): 1465–1477.
33. Silvers AL, Bachelor MA, Bowden GT (2003) The role of JNK and p38 MAPK

activities in UVA-induced signaling pathways leading to AP-1 activation and c-

Fos expression. Neoplasia 5(4): 319–329.
34. Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, et al (2002)

Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and
facilitates striatal-mediated learning and memory. Neuron 34(5): 807–820.
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