Supplementary Figure Legends

Figure S1: APA events in SH-SY5Y cells and hESC-derived MNs upon TDP-43 knock-down

(A) Table of top 10 APA events in SH-SY5Y cells treated with control siRNA or TARDBP siRNA for 96 hrs. (B) Depiction of Δ PDUI for all significant APA genes in TDP-43 depleted SH-SY5Y cells. (C) Overlapping APA genes between siRNA-treated SH-SY5Y cells and doxycycline-induced TARDBP knockdown SH-SY5Y cells, filtering for p < 0.05 and $L\Delta$ PDUIL \geq 0.1. (D) Table of top 10 APA events in hESC-derived motor neurons (ESC-MNs) treated with control siRNA or TARDBP siRNA. Note that TARDBP siRNA treated ESC-MNs displayed only a partial (\sim 60%) reduction in TDP-43 protein levels. (E) Depiction of Δ PDUI for all significant APA genes in TDP-43 KD ESC-MNs.

Figure S2: Genes affected by APA function in ALS-relevant pathways

Gene ontology (GO) analysis of biological processes (BP) and molecular functions (MF) of coding APA genes with p < 0.05 and $\Delta PDUII \ge 0.1$ in (A, B) SH-SY5Y cells, (C, D) SK-N-BE(2) cells, and (E) i³Neurons (note that GO MF terms were not significantly enriched in i³Neurons). Analysis was performed using ShinyGO v0.77.

Figure S3: APA genes are bound by TDP-43 outside of the 3'UTR

Venn diagram illustrating the intersection of APA events between SH-SY5Y cells, SK-N-BE(2) cells, and i³Neurons depleted of TDP-43, along with evidence for direct TDP-43 binding in regions outside of the 3'UTR, in which eCLIP-seq data show TDP-43 binding within the 5'UTR, in introns, or in exons of APA genes.

Figure S4: RNA-sequencing tracks depict APA for the *CNPY3* and *SMC1A* genes in the presence or absence of TDP-43 knock-down

RNA-seq tracks for *CNPY3* (**A**) and *SMC1A* (**B**) in i³Neurons, SH-SY5Y cells, and SK-N-BE(2) cells in the presence or absence of TDP-43 knock-down. The location of the TDP-43 3'UTR binding site is depicted in green (*CNPY3* at chr6: 42,935,715 - 42,935,762; *SMC1A* at chrX: 53,379,722 - 53,379,785).

Figure S5: Isoform specific quantification of CNPY3 APA in the presence or absence of TDP-43 knockdown.

qRT-PCR quantification of CNPY3 variant 1 and variant 2 in (**A**) SH-SY5Y cells or (**B**) i³Neurons in the presence of absence of TDP-43 knockdown. **p < 0.01; unpaired two-tailed t-test; n = 3 biological replicates. Data are presented as mean values \pm s.e.m.

Figure S6: Validation of TDP-43 knockdown in i³Neurons and iPSC-MNs.

Immunoblot of i³Neurons (**A**) and iPSC-MNs (**B**) in which TDP-43 was knocked down with shRNAs for 10 days. ****p<0.0001, one-way ANOVA (**A**), unpaired two-tailed t-test (**B**); n=3 biological replicates. Error bars = s.e.m.

Figure S7: Gene ontology (GO) analysis of coding APA events in ALS/FTD postmortem neuronal nuclei depleted of TDP-43.

GO analysis of biological processes enriched for coding APA events with p < 0.05 and $\Delta PDUII \ge 0.1$ highlights genes that function in nucleocytoplasmic transport and synapse assembly.

Figure S8: The MARK3 3'UTR contains two conserved RBP binding motifs

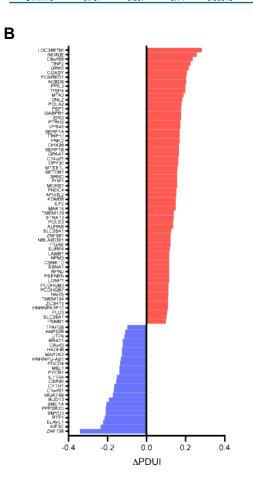
(A) Predicted RBP binding motifs in the MARK3 3'UTR with p < 0.001 and Z-score > 3.5 for at least one motif (RBPmap). (B) Graphical representation of select conserved cis-regulatory elements in the MARK3 3'UTR.

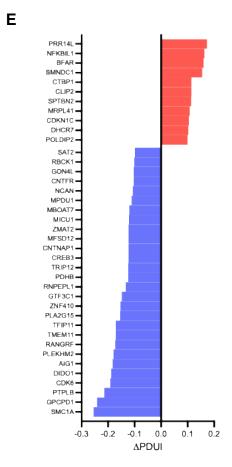
Figure S9: Quantification of MARK3 APA in ALS/FTD and FTLD-TDP frontal cortex.

qRT-PCR quantification of (**A**) the short 3'UTR MARK3 isoform, (**B**) the long-3'UTR MARK3 isoform, and (**C**) the ratio of long:short 3'UTR isoforms in postmortem frontal cortex tissue from controls or from ALS/FTD and FTLD-TDP patients with confirmed inclusion of the *UNC13A* CE (as described in **Fig. 3E**). *p<0.05; unpaired two-tailed t-test; n = 11 (control), n = 30 (*UNC13A* CE). Data are presented as mean values \pm s.e.m.

Figure S10: TDP-43 knock-down in iPSC-MNs corresponds with a trend towards increased tau S262 phosphorylation.

(A) Immunoblot of S262 phosphorylated tau and total tau in iPSC-MNs transduced with lentivirus encoding control shRNA or shRNA TARDBP for 10 days. Statistical significance was determined by one sample t-test; n=3 biological replicates. (B) Immunoblot of MARK3, S262 phosphorylated tau, and total tau in iPSC-MNs transduced with lentivirus encoding either control shRNA, MARK3 shRNA, GFP (empty vector), or MARK3-V5 for 10 days. Statistical significance was determined by unpaired two-tailed t-test; n=3 biological replicates. *p<0.05, ***p<0.001; unpaired two-tailed t-test; n = 3 biological replicates. Error bars = s.e.m. (C) Immunoblot of MARK3 in iPSC-MNs transduced with lentivirus encoding control shRNA, TARDBP shRNA, or MARK3 shRNA for 10 days. Statistical significance was determined by unpaired two-tailed t-test; n=3 biological replicates. Error bars = s.e.m.

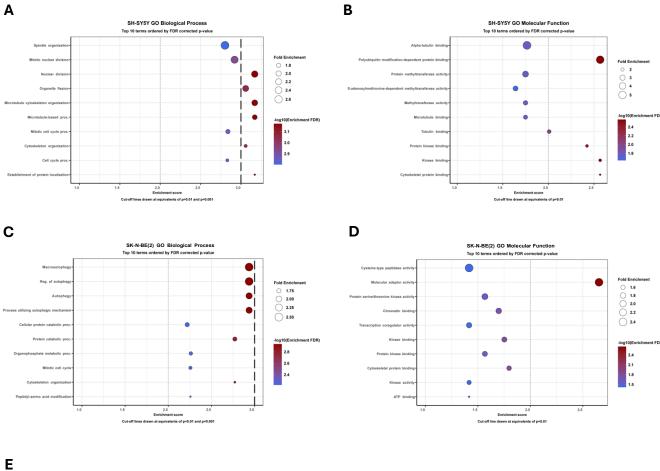

Figure S11: TDP-43 knock-down does not significantly increase MARK3 or MARK4 protein levels in i³Neurons or in postmortem ALS/FTD or FTLD-TDP patient tissue.


(A) Immunoblot of MARK3 in i³Neurons depleted of TDP-43 with shRNA for 10 days. n=3 biological replicates. Statistical significance was determined by one-way ANOVA; p=n.s. Note that the lower molecular weight portion of this blot is shown in Figure S6; thus, the same total protein blot was used for quantification. (B) Quantification of immunoblots for MARK3 protein in the frontal cortex of healthy controls (n=5) or ALS/FTD and FTLD-TDP patients (n=11). Statistical significance was determined by unpaired two-tailed t-test; p=n.s. (C) Immunoblot of MARK4 in i³Neurons depleted of TDP-43 with shRNAs for 10 days. Statistical significance was determined by one sample t-test against a value of 1; p=n.s. Error bars = s.e.m.

Gene	PDUI CTL	PDUI KD	ΔPDUI	p-value	Adj. p-value	TDP-43 binding
ILF2	0.71	0.86	0.15	7.10E-10	1.22E-06	N/A
RPN2	0.883	1	0.117	8.77E-10	1.22E-06	Intron
HNRNPA1P10	0.75	0.86	0.11	1.26E-09	1.40E-06	Exon
SMC1A	0.28	0.0733	-0.207	1.44E-06	0.000616	Intron 3'UTR
PLD3	0.783	0.89	0.107	5.60E-05	0.0195	N/A
COASY	0.78	0.987	0.207	0.00012	0.0381	N/A
SSNA1	0.883	1	0.117	0.00015	0.0477	N/A
ACBD6	0.72	0.923	0.203	0.00024	0.0659	Intron
PNKD	0.817	0.987	0.17	0.00028	0.0754	N/A
STR A13	0.757	0.897	0.14	0.00045	0.104	N/A

Gene	PDUI CTL	PDUI KD	ΔPDUI	p-value	Adj. p-value	TDP-43 binding
SMC1A	0.722	0.467	-0.255	0.0064	1	Intron 3'UTR
GPCPD1	0.783	0.542	-0.242	0.0055	1	N/A
PTPLB	0.907	0.692	-0.215	0.011	1	N/A
CDK6	0.972	0.780	-0.192	0.0053	1	Intron Exon 3'UTR
DID O1	0.515	0.327	-0.188	0.043	1	Intron
AIG1	0.835	0.652	-0.183	0.033	1	Intron
PLEKHM2	0.718	0.538	-0.180	0.030	1	N/A
RANGRF	0.957	0.783	-0.173	0.0009	0.55	N/A
TMEM11	0.937	0.765	-0.172	0.0004	0.37	N/A
TFIP11	0.912	0.740	-0.172	0.0093	1	N/A

D



Overlap with Brown et. al, 2022
ACBD6
ELAVL1
GRK6
INO80E
NPM3
PPP2R2D
PTRH2
SMC1A
ZNF138

C

Figure S1

Pineurons GO Biological Process
Top 10 terms ordered by FOR corrected p-value

Fold Enrichment
OrganizationOrgan

Figure S2

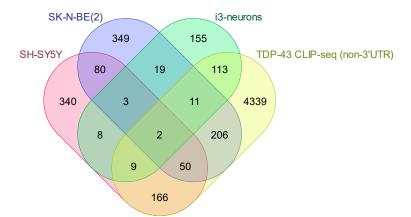
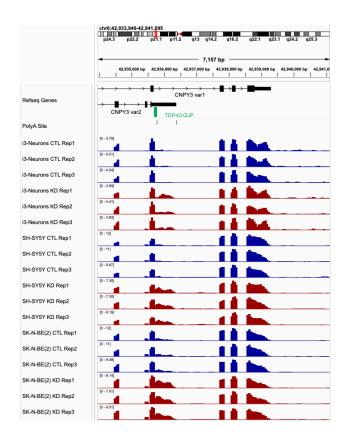
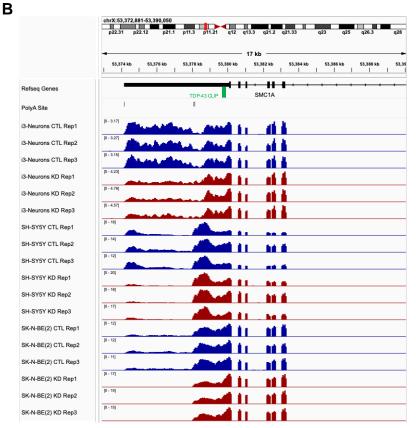
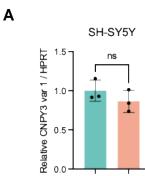
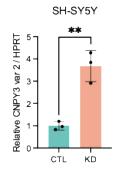
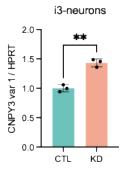
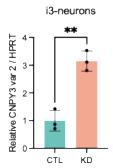





Figure S3

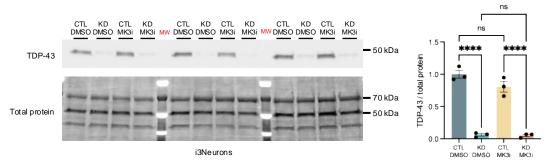
Figure S4

0.0

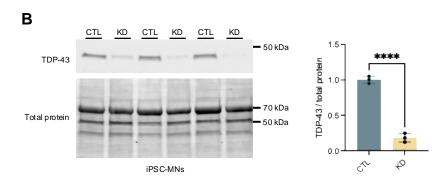

Figure S5

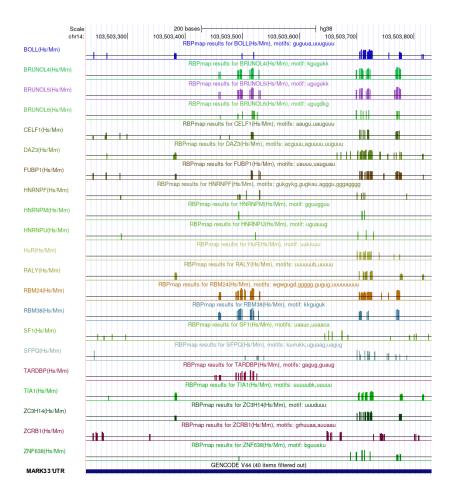
В



CTL

KD




Figure S6

ALS/FTD neocortex GO Biological Process Top 10 terms ordered by FDR corrected p-value Cellular response to histamine Inhibitory synapse assembly-Fold Enrichment Response to histamine O 30 O 60 Gamma-aminobutyric acid signaling pathway-O 90 Protein import into nucleus -log10(Enrichment FDR) Protein import-3.25 3.00 Synapse assembly 2.75 Nucleocytoplasmic transport-2.50 Chemical synaptic transmission Intracellular protein transport-2.0 Enrichment score

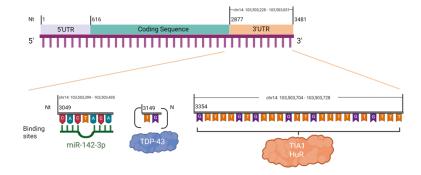
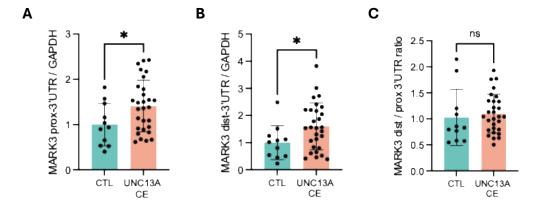
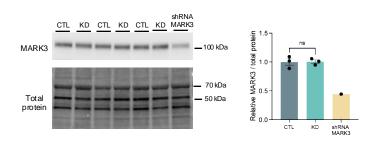
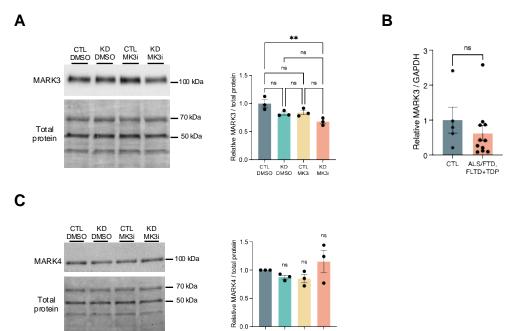

Cut-off lines drawn at equivalents of p=0.01 and p=0.001

Figure S7


Figure S9

С

Figure S10

CTL KD CTL DMSO DMSO MK3i

Figure S11