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Recent large-scale clinical analysis indicates that brown adipose tissue (BAT) mass levels inversely correlate with body-mass index
(BMI), suggesting that BAT is associated with metabolic disorders such as obesity and diabetes. PET imaging with 18F-FDG is the
most commonly used method for visualizing BAT. However, this method is not able to differentiate between BAT mass and BAT
activation. This task, in fact, presents a tremendous challenge with no currently existing methods to separate BAT mass and BAT
activation. Our previous results indicated that BAT could be successfully imaged in mice with near infrared fluorescent (NIRF)
curcumin analogues. However, the results from conventional NIRF imaging could not reflect what portion of the NIRF signal from
BAT activation contributed to the signal observed. To solve this problem, we used spectral unmixing to separate/unmixNIRF signal
from oil droplets in BAT, which represents its mass and NIRF signal from blood, which represents BAT activation. In this report,
results from our proof-of-concept investigation demonstrated that spectral unmixing could be used to separate NIRF signal from
BAT mass and BAT activation.

1. Introduction

Brown adipose tissue (BAT) has been considered as “good
fat,” due to its function of dissipating large amounts of
chemical/food energy as heat to maintain the energy balance
of the whole body [1–3]. Investigations of BAT have been
ongoing for decades, particularly using animals. Reportedly,
BAT has been assumed to have no physiologic relevance
in adult humans, even though it is highly abundant in
embryonic and early postnatal stages.However, this dogmatic
opinion has been overturned by large clinical studies. In 2009,
Cypess et al. reported that, by analyzing 3640 PET-CT images
of 1,972 patients, BMI (body-mass index) inversely correlated
with the amount of BAT, strongly suggesting that BAT is an
important target in obesity and diabetes [4]. The existence of
BAT in adults has been strongly endorsed by other important
investigations as well [5–11]. Moreover, since 2009 numerous
groundbreaking studies strongly support the significance

and potential benefits of BAT [12–33]. Characteristically,
BAT contains a large number of mitochondria, abundant
uncoupling protein-1 (UCP-1) expression, numerous small oil
droplets in a single cell, and significant vascularization of BAT
tissue [4, 34–37]. The above characteristics strongly imply
that BAT plays an important role in metabolism and energy
expenditure; therefore BAT is a potential target for diabetes
and obesity therapy.

The assumption that BAT is “nonexistent” in adults is
partially due to the lack of proper imaging methods to
“see” the small BAT depots in vivo, as only 3%–8% of adult
patients’ BAT depots could be clearly visualized with 18F-
FDG if no cold or drug stimulation is applied [38–40].
However, under stimulated conditions, PET-FDG imaging
has shown that BAT is still present in 95% health adults
in the upper chest, neck, and other locations [4, 6, 8, 34,
35]. This remarkably large difference between unstimulated
and stimulated conditions strongly indicates that PET-FDG
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imaging only reflects the activation of BAT, but not BATmass.
Therefore, imaging probes that can consistently report BAT
mass are highly desirable.

Accurately reporting BATmass is a tremendous challenge
for imaging scientists, due to the fact that BAT mass and
BAT activation are intertwined under various conditions.
It is obvious that there is no absolute “resting” status of
BAT, and BAT activation cannot be “zero” for a living
subject. Therefore, dissection of BAT mass and BAT acti-
vation is a remarkable challenge. However, most of the
current imaging methods often reflect the summed signal
from BAT mass and activation. Although PET-FDG imaging
has significantly contributed to the “rediscovery” of BAT
in adults, it primarily reflects BAT activation, but not BAT
mass [41]. Similarly, most of other reported imagingmethods
are also BAT activation dependent [24, 41–51]. Our group
has recently reported that near infrared fluorescence (NIRF)
probe CRANAD-X (𝑋 = -2, -3, and -29) could be used
for BAT mass imaging [52], and Cerenkov luminescence
imaging with 18F-FDG could be applied to image BAT in
mice [53]. Via conventional NIRF imaging with CRANAD-
29, BAT mass change in a streptozotocin-induced diabetic
mouse model and BAT activation under cold exposure could
be reported. In addition, the same method could be used
to monitor “browning” of WAT that was induced by 𝛽3-
adrenoceptor agonist CL316,243 [52]. However, conventional
NIRF imaging is not capable of dissecting the signal from
BAT mass and from BAT activation.

To the best of our knowledge, there is no available
imaging method for differentiating BATmass and activation.
The key to this challenge is to dissect BATmassmeasurement
from BAT physiology status (activated or suppressed). It is
well known that BAT is highly vascularized, and activation
of BAT is tightly closely associated with a significant increase
of blood flow. Therefore, the change of blood flow has been
considered to be a biomarker for BAT activation [54–56].
For a hydrophobic NIRF probe, its emission spectra are
highly dependent on its environments [57]. In a hydrophobic
environment such as in oil droplet of BAT mass, its emission
spectra would be significantly blue-shifted [57]. Therefore,
for the same NIRF probe, there will be apparent difference
between the spectra from oil droplets of BAT and the spectra
from blood flow. Previously, we have successfully utilized
spectral unmixing technique to differentiate bound and free
probe in the case of in vivo amyloid beta detection [58]. In
this report, we demonstrated that spectral unmixing could be
used to dissect NIRF signal from BAT mass and NIRF signal
from blood flow [59]. With this technique, it is feasible to
accurately report BATmass andBATactivation/physiological
status.

2. Methods and Materials

The reagents used for the synthesis were purchased from
Aldrich and used without further purification. CRANAD-
29 was synthesized according to our previously reported
procedures [52]. All animal experimental procedures were
approved by the Institutional Animal Care and Use Commit-
tee (IACUC) at Massachusetts General Hospital and carried

out in accordance with the approved guidelines. In vivo
NIRF imaging was performed using the IVIS� Spectrum
animal imaging system (Caliper Life Sciences, Perkin Elmer,
Hopkinton, MA), and data analysis was conducted using
Living Image� 4.2.1 software. Mice were anesthetized with
isoflurane balanced with oxygen during image acquisition
(less than 5 minutes for each imaging session).

2.1. Ex Vivo Spectral Unmixing with Dissected BAT and Blood.
A two-month-old balb/c mouse was injected intravenously
with 100 𝜇L CRANAD-29 (0.4mg/kg, 15% DMSO, 15% Cre-
mophor EL, and 70% PBS pH 7.4). The mouse was sacri-
ficed at 4 hours after the injection. BAT was dissected and
0.1mL blood was collected. Sequence images were acquired
with the following parameters: Ex/Em pairs: 605/660 nm,
640/680 nm, 640/700, 640/720 nm, 675/740 nm, 675/760 nm,
and 675/780 nm. Exposure time is auto, FOV = B. Spectral
unmixing was performed with Living Image� 4.2.1 software,
and manual unmixing method was selected. The generated
spectra for autofluorescence, BAT, and blood were saved as a
spectral library for CRANAD-29.

2.2. In Vivo Spectral Unmixing of CRANAD-29 in Mice.
A two-month-old balb/c mouse was injected intravenously
with 100 𝜇L CRANAD-29 (0.4mg/kg, 15% DMSO, 15% Cre-
mophor EL, and 70% PBS pH 7.4) in a 25∘C room. Sequence
images were captured at 4 hours after CRANAD-29 injection
with the following parameters: Ex/Em pairs: 605/660 nm,
640/680 nm, 640/700, 640/720 nm, 675/740 nm, 675/760 nm,
and 675/780 nm. Exposure time is auto, FOV = D. Spectral
unmixing was performed with Living Image� 4.2.1 software,
and Library Unmixing Method was selected.

2.3. In Vivo Spectral Unmixing of CRANAD-29 in Mice under
Short Cold Exposure. Two-month-old balb/c mice (𝑛 = 5)
were placed in a 4∘C cold room for 2 hours before intravenous
injection of CRANAD-29. After CRANAD-29 was totally
washed out (about 10 days because of the slow clearance
of CRANAD-29), the same group of mice were used as
the control group (𝑛 = 5) and were placed in a 25∘C
room. Sequence images were acquired at 4 hours after probe
injection with the same parameters as above in vivo imaging.
For the cold exposure group, the mice were maintained at
4∘C for 4 hours after probe injection. Spectral unmixing was
performed with Living Image� 4.2.1 software, and Library
Unmixing Method was selected. ROIs were manually drawn
around the BAT area.

3. Results and Discussions

In our previous report, with conventional NIRF imaging, we
demonstrated that CRANAD-29 had significant selectivity
for BAT over WAT and could be used to monitor BAT
activation and BAT mass changes [52]. For a NIRF probe,
its residing environments have significant impact on its fluo-
rescence properties, including intensity, emission spectrum,
and lifetime. We hypothesized that the emission spectra of
the same NIRF probe were different from oil droplets in BAT
mass and from blood flow, due to their different residing
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Figure 1: Spectral unmixing with CRANAD-29 for ex vivo BAT and blood. (a) Unmixed #1 represents autofluorescence signal and is
corresponding to green line spectrum in (e). (b) Unmixed #1 represents NIRF signal from BAT mass and is corresponding to blue line
spectrum in (e). (c) Unmixed #2 is for NIRF from blood and red line spectrum in (e). (d) Merged image of unmixed #1, #2, and #3. (e) Ex
vivo unmixed spectra for autofluorescence (green), BAT mass (blue), and blood flow (red).

environments, and the spectral difference could be used for
spectral unmixing.

To validate our hypothesis, we first conducted spectral
unmixing imaging with ex vivo BAT tissue and blood from

a mouse injected with CRANAD-29. Sequence images were
acquired with seven Ex/Em pairs, and spectral unmixing was
conducted with Living Image� 4.2.1 software. As expected,
we were able to differentiate BAT and blood, as evidenced
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Figure 2: Spectral unmixing with CRANAD-29 for in vivo imaging. (a) Raw images of CRANAD-29 before spectral unmixing. (b) Unmixed
autofluorescence signal. (c) Unmixed NIRF signal from BATmass. (d) Unmixed NIRF signal from blood flow. (e) Merged image of unmixed
#2 and #3. Note: for clarity, unmixed #1 was not merged.
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Figure 3: Spectral unmixing with CRANAD-29 for in vivo imaging under cold treatment. (a) Unmixed NIRF signal from BAT mass under
cold treatment and control condition. (b) Unmixed NIRF signal from blood flow reflecting BAT activation. (c-d) Quantitative analysis of
unmixed NIRF signal from BAT mass (c) and blood flow (d) under cold treatment and the control condition. ∗∗∗𝑝 < 0.005.

by the well-separated images (Figures 1(a)–1(d)) and spectra
from BAT and blood (Figure 1(e)). The spectra generated
from this ex vivo unmixing were saved as a spectral library
of CRANAD-29, which can be used for in vivo unmixing
investigation.

To further validate the feasibility of spectral unmixing for
in vivo studies, we acquired sequence images with the same
parameters as the above ex vivo experiment with a mouse
that was injected CRANAD-29. We used the spectral library
of CRANAD-29 to conduct the spectral unmixing. As shown
in Figure 2, the autofluorescence, signal of BAT, and blood
stream could be well-separated, suggesting that the spectral
unmixing is feasible for in vivo imaging.

To investigate spectral unmixing which could be used to
dissect the signals from BAT mass and BAT activation, we
conducted proof-of-concept experiment with the same group
of mice with and without short cold exposure. The group
of mice (𝑛 = 5) were treated with a short cold exposure
(2 hours) and injected with CRANAD-29. After 4 hours of
the injection. Sequence images were captured with the same
parameters as above. After CRANAD-29 totally washing out,
the same mice without the cold treatment were imaged again
with the probe. We compared the unmixed NIRF signals
from BAT and blood flow under cold treatment and without
cold exposure. Obviously, with such a short cold exposure,
the BAT mass would not change, but the blood flow was
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expected to significantly increase under the cold treatment.
Indeed, we found that there was no significant NIRF signal
difference from BAT mass (Figures 3(a) and 3(c), 𝑝 = 0.975),
but an apparent increase of NIRF signal from blood flow
from the cold exposure condition, and the increase was about
1.66-fold (Figures 3(b) and 3(d), 𝑝 = 0.005). These results
indicated that our method was reliable. Taken together, the
above in vitro and in vivo data strongly indicated that spectral
unmixing could be used to separate NIRF signal from BAT
mass and BAT activation.

4. Conclusion

In this report, we developed a spectral unmixingmethod that
could be, for the first time, to differentiate BAT mass and
BAT activation.We believe that ourmethod has the feasibility
to reliably report BAT mass changes under different genetic
manipulation and drug treatment in preclinical studies. Our
cost-efficient NIRF imaging has a potential impact on pre-
clinical animal studies and will greatly assist drug discovery
and basic research related to BAT.
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