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Myeloid-derived suppressor cells (MDSCs) are immature heterogeneous cells derived

from the bone marrow and they are the major component of the tumor-induced

immunosuppressive environment. Tumor necrosis factor receptor-associated factor 6

(TRAF6), an E3 ubiquitin ligase, catalyzes the polyubiquitination of target proteins. TRAF6

plays a critical role in modulating the immune system. However, whether TRAF6 is

involved in the regulation of MDSCs has not been thoroughly elucidated to date. In this

study, we found that the expression of TRAF6 in MDSCs derived from tumor tissue was

significantly upregulated compared with that of MDSCs from spleen of tumor-bearing

mice. Knockdown of TRAF6 remarkably attenuated the immunosuppressive effects of

MDSCs. Mechanistically, TRAF6 might improve the immunosuppression of MDSCs by

mediating K63-linked polyubiquitination and phosphorylation of signal transducer and

activator of transcription 3 (STAT3). Additionally, it was discovered that the accumulation

of MDSCs was abnormal in peripheral blood of lung cancer patients. TRAF6 and arginase

1 were highly expressed in MDSCs of patients with lung cancer. Taken together, our study

demonstrated that TRAF6 participates in promoting the immunosuppressive function of

MDSCs and provided a potential target for antitumor immunotherapy.

Keywords: myeloid-derived suppressor cells, TRAF6, STAT3, tumor immunology, tumor microenvironment

INTRODUCTION

The tumormicroenvironment provides a suitable environment for the survival and development of
tumor cells. There are a large number of cytokines and chemokines in the tumormicroenvironment
that recruit immunosuppressive cells to accumulate in local tumors and promote tumor immune
escape (1–3). Myeloid-derived suppressor cells (MDSCs) are crucial immunosuppressive cells in
the tumor microenvironment, which have powerful suppressive effects (4–6). In mice, MDSCs are
immature myeloid cells that co-express CD11b and Gr1, which are further divided into 2 subsets:
CD11b+Ly6G+Ly6Clow polymorphonuclear MDSCs (PMN-MDSCs) and CD11b+Ly6G−Ly6Chi

mononuclear MDSCs (M-MDSCs) according to the expression of LY6G and LY6C (7–10).
However, human MDSCs have a more complex phenotype and are usually characterized by
CD11b+CD33+HLA-DRlow/− expression (9, 11). In tumor-bearing mice, the proportion of
MDSCs is significantly increased compared with that in wild type mice. MDSCs reach 20 to 40%
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in the spleen in tumor-bearing mice, and the massive aggregation
of MDSCs in tumor tissue is particularly obvious (12). Studies
have shown that the immunosuppressive function of MDSCs
derived from tumor tissue was stronger than that of spleen-
derived MDSCs from tumor-bearing mice (13–15).

Accumulating evidence has indicated that the suppressive
function of MDSCs is correlated with the high production
of arginase 1 (Arg1), inducible nitric oxide synthase (iNOS)
and reactive oxygen species (ROS), which can inhibit T cell
proliferation and antitumor responses (16–18). The two subsets
of MDSCs exert immunosuppressive effects in different ways.
Although both PMN-MDSCs and M-MDSCs highly express
Arg1, the expression of iNOS and ROS are notably different (19,
20). Signal transducer and activator of transcription 3 (STAT3)
is one of the key transcription factors regulating the expansion,
activation and function of MDSCs (21–24). Abnormal activation
of STAT3 signaling hinders the normal differentiation of myeloid
cells, leading to the expansion and activation of MDSCs (25–
27). STAT3 activation is mainly affected by posttranslational
modifications. In addition to phosphorylation modification,
ubiquitination also plays a critical role in modulating the activity
of STAT3 (28, 29).

Tumor necrosis factor receptor-associated factor 6 (TRAF6)
is an important member of the TRAF family (30). Unlike other
TRAF members, TRAF6 is both an adaptor protein and E3
ubiquitin ligase (31–33). As a non-conventional E3 ubiquitin
ligase, TRAF6 catalyzes the K63-linked polyubiquitination of
target proteins further affecting functions. Studies have shown
that the E3 ubiquitin ligase TRAF6 binds to STAT3 (28,
34). Moreover, TRAF6 promotes STAT3 phosphorylation by
mediating the K63-linked polyubiquitination of STAT3 (29).
However, whether TRAF6 affects the function of MDSCs by
mediating STAT3 activity is unclear.

In this study, we explored the role of TRAF6 in modulating
the immunosuppressive function of MDSCs and elaborated
the potential molecular mechanism. Our research pointed
out that the expression of TRAF6 is significantly increased
in MDSCs derived from the tumor tissue of tumor-bearing
mice. TRAF6 promoted the immunosuppressive function of
MDSCs by mediating the activation of STAT3. These data
elucidate a novel mechanism of the regulation of MDSCs in the
tumor microenvironment and propose new ideas for therapeutic
strategies targeting TRAF6.

METHODS

Cell Line, Mice, and Tumor Models
Male C57BL/6 mice, aged 6–8 weeks, were purchased from the
Laboratory Animal Center of Jiangsu University (Zhenjiang,
China). Murine Lewis lung carcinoma (LLC) cells were obtained

Abbreviations: Arg1, Arginase 1; CTL, cytotoxic T lymphocyte; FCM, flow

cytometry; iNOS, inducible nitric oxide synthase; IP, immunoprecipitation;

MDSCs,myeloid-derived suppressor cells;M-MDSCs,monocyticmyeloid-derived

suppressor cells; NO, nitric oxide; PMN-MDSCs, polymorphonuclear myeloid-

derived suppressor cells; ROS, reactive oxygen species; STAT3, signal transducer

and activator of transcription 3; TRAF6, tumor necrosis factor receptor-associated

factor 6; Ub, ubiquitin.

from the Cell Bank of Shanghai Institutes for Biological Sciences
(Shanghai, China). The cells were cultured in DMEM (Gibco,
Carlsbad, CA) with 10% fetal calf serum (Gibco, Carlsbad, CA)
at 37◦C in a humidified 5% CO2 atmosphere. 1 × 106 LLC cells
were injected subcutaneously into the mice to establish tumor-
bearing mouse model. All animal experiments were approved
by the Committee on the Use of Live Animals in Research and
Teaching of Jiangsu University.

Preparation of Single-Cell Suspensions
The murine spleen was ground and treated with ACK buffer.
After centrifugation, PBE buffer was added to obtain a spleen
cell suspension. In addition, the tumor tissue was stripped and
cut into pieces, and then collagenase, hyaluronidase and DNase I
(Sigma-Aldrich, St. Louis, MO) were used to digest the tissue in
a water bath at 37◦C for 2 h. The filtrate was collected through a
70µm cell strainer. After centrifugation, PBE buffer was added to
obtain single-cell suspensions.

Isolation of MDSCs and CD4+ T Cells
Murine Gr1+ CD11b+ MDSCs were isolated using a mouse
MDSC kit (Miltenyi Biotec, Auburn, CA) according to the
manufacturer’s instructions. To improve the purity of MDSCs
isolated from tumor tissues, enriched MDSCs were subsequently
isolated using flow cytometry (FCM).

Simultaneously, murine CD4+ T cells were isolated from the
spleens of wild-type C57BL/6mice via using amouse CD4+ T cell
isolation kit (Miltenyi Biotec, Auburn, CA). The purity ofMDSCs
and CD4+ T cells were determined by FCM.

Flow Cytometry
Single-cell suspensions were stained with relevant fluorochrome-
conjugated anti-mouse/human CD11b, anti-mouse Gr-1, Ly6G,
and Ly6C antibodies (Biolegend, San Diego, CA) and anti-
human-CD33 and HLA-DR antibodies (eBioscience, San Diego,
CA). To examine cytotoxic T lymphocytes (CTLs) and T helper
1 (Th1) cells, single-cell suspensions derived from tumor tissues
of tumor-bearing mice were treated with 1µg/mL ionomycin,
2 ng/mL monensin (eBioscience, San Diego, CA), and 50 ng/mL
PMA (Sigma-Aldrich, St. Louis, MO) for 5 h. After resuspending
in PBS, the cells were stained with anti-mouse CD3e, anti-mouse
CD8a or anti-mouse CD4 mAb (eBioscience, San Diego, CA).
The cells were incubated at 4◦C for 30min, fixed, permeabilized,
and stained with anti-mouse IFN-γ mAbs (BD PharmingenTM)
according to the instructions in the intracellular cytokine
staining kit (eBioscience, San Diego, CA). Flow cytometry (BD
FACSCalibur) was used to determine the proportion of cells.

Quantitative Real-Time PCR (qRT-PCR)
Total RNA was extracted by using TRIzol reagent (Invitrogen,
Carlsbad, CA) and reverse-transcribed to cDNA with a
PrimeScript RT reagent kit (Takara, Osaka, Japan) according
to the manufacturer’s instructions. Quantitative PCR was
performed by using SYBR Premix Ex Taq (Tli RNaseH Plus)
(Takara, Osaka, Japan). The primer sequences are listed in
Table 1.
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TABLE 1 | The gene primer sequences.

Gene Primer sequence

Arg1 Forward: 5′-GCTGGTCTGCTGGAAAAACTT-3′

Reverse: 5′-AGGGGAGTGTTGATGTCAGTGT-3′

iNOS Forward: 5′-GAGCCCTCAGCAGCATCCAT-3′

Reverse: 5′-GGTGAGGGCTTGGCTGAGTG-3′

18S Forward: 5′-TCCGGAGAGGGAGCCTGAGA-3′

Reverse: 5′-GCACCAGACTTGCCCTCCAA-3′

TRAF6 Forward: 5′-TGCTTTGCGTCCGTGCGATG-3′

Reverse: 5′-GGGTCCGAATGGTCCGTTTG-3′

β-actin Forward: 5′-AGCCATGTACGTAGCCATCC-3′

Reverse: 5′-GCTGTGGTGGTGAAGCTGTA-3′

Immunoprecipitation and Western Blotting
MDSCs were lysed by immunoprecipitation cell lysis buffer.
After centrifugation, the supernatant was collected and incubated
with anti-STAT3 Abs (Santa Cruz Biotechnology, Santa Cruz,
CA) or IgG Abs (Cell Signaling Technology, Beverly, MA) for
30min at 4◦C. Then, Protein A/G plus-agarose beads (Santa Cruz
Biotechnology, Santa Cruz, CA) were added and blended on a
shaker overnight at 4◦C. After being washed 3 times, the lysates
were boiled in SDS-PAGE protein loading buffer. TRAF6 and
STAT3 protein were detected by Western blotting.

Proteins extracted from cells were denatured and
subsequently separated by SDS-PAGE. Then, the proteins
were transferred to PVDF membranes (Bio-Rad, Hercules,
CA), and the membranes were incubated in primary antibodies
overnight at 4◦C, followed by incubation with HRP-conjugated
secondary antibodies. Detection was performed by using
LAS4000 chemiluminescence gel imaging and analysis system
(Champion Chemical, Whittier, CA). Rabbit anti-TRAF6 mAb,
rabbit anti-ubiquitin (linkage-specific K63) mAb, and HRP-
conjugated goat anti-rat IgG Ab were purchased from Abcam
(Cambridge, UK). Rabbit anti–p-STAT3 (Y705) mAb and rat
anti-β-actin mAb were obtained from Cell Signaling Technology
(Beverly, MA).

Transfection
Tumor tissue-derived MDSCs were cultured in 24-well plates
with RPMI 1640 medium containing 10% FBS. MDSCs were
transfected with TRAF6 siRNA or negative control siRNA
using Lipofectamine TM 2,000 transfection reagent (Invitrogen,
Carlsbad, CA) according to the manufacturer’s instructions. The
siRNA transfection efficiency was determined by qRT-PCR and
Western blotting. TRAF6 siRNA and negative control siRNA
were purchased from RiboBio (Guangzhou, China).

Assessment of MDSCs Suppressive
Activity
In order to determine the immunosuppressive function of
MDSCs, the sorted MDSCs were co-cultured with CFSE-labeled
splenic CD4+ T cells in the study. Splenic CD4+ T cells were
stained with fluorescent dye CFSE (5µM, Invitrogen) for 10min
at 37◦C protected from light. RPMI 1640 medium (Gibco,

Carlsbad, CA) containing 10% fetal calf serum (Gibco, Carlsbad,
CA) was added to wash the cell pellets for 3 times. Sorted
MDSCs were co-cultured with CFSE-stained CD4+ T cells at a
ratio of 1:1 in 96-well round-bottomed plates (Costar, Corning,
NY) in the presence of anti-CD3 mAbs and anti-CD28 mAbs
(Biolegend, San Diego, CA). The cells were incubated in RPMI
1640 medium supplemented with 10% fetal calf serum at 37◦C in
a humidified 5% CO2 atmosphere for 72 h protected from light.
The proliferation of CD4+ T cells was detected by flow cytometry
at 488 nm excitation light to determinate the suppressive activity
of MDSCs.

Measurement of Arginase 1 Activity and
NO Content
MDSCs were lysed with an appropriate amount of RIPA buffer
for 30min, and the lysate supernatant was collected after
centrifugation. A QuantiChrom arginase assay kit (BioAssay
systems, Hayward, CA) was used to determine the Arg1 activity
in the lysate supernatant.

The content of NO was measured by the Griess reagent
system kit (Promega, Madison, WI) according to the
manufacturer’s instructions.

In vivo Experiments
To study the effect of TRAF6 on the immunosuppressive function
of MDSCs in vivo, C57BL/6 mice were divided into siRNA
control group and siTRAF6-MDSC group. The mice in the
siRNA control group were subcutaneously injected with 1 × 106

MDSCs transfected with siNC mixed with 1 × 106 LLC cells,
and the mice in the siTRAF6-MDSC group were subcutaneously
injected with 1×106 MDSCs transfected with siTRAF6 mixed
with 1 × 106 LLC cells. We constantly monitored the length and
width of the tumor, and the tumor volume was calculated using
the formula V = 1/2 × a2 × b (“a” represents the width and “b”
represents the length). The mice were sacrificed on the 28th day
after inoculation with LLC cells and MDSCs. The proportions of
Th1 cells and CTLs from tumor tissue were analyzed by FCM.

Patients and Sampling
Fresh peripheral blood samples from 33 patients with lung
cancer and healthy controls were collected at the Affiliated
People’s Hospital, Jiangsu University. The peripheral blood
mononuclear cells (PBMCs) were isolated by density-gradient
centrifugation via using Ficoll-Hypaque solution (Haoyang
Biological Technology Co.) and subsequently analyzed by
flow cytometry. The protocol was approved by the Ethics
Committee of the Affiliated People’s Hospital of Jiangsu
University (Zhenjiang, China). Written informed consent was
obtained from all patients before study enrollment.

Statistical Analysis
The experimental data are expressed as the mean± SD. Student’s
t-test and ANOVAwere used to determine significant differences.
Correlations were determined by the Spearman correlation
coefficient. Differences were considered significant at a p < 0.05.
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FIGURE 1 | TRAF6 is highly expressed in MDSCs derived from the tumor tissue of tumor-bearing mice. Approximately 1 × 106 LLC cells were s.c. injected in the

backs of C57BL/6 mice for 28 d to establish a tumor-bearing (TB) mouse model. MDSCs were isolated by immunomagnetic beads from the spleens of TB mice, the

tumor tissue of TB mice or the spleens of wild-type (WT) mice. (A) The purity of the isolated MDSCs was determined using flow cytometry via the detection of the

CD11b+Gr1+ phenotype. The expression of TRAF6 in MDSCs derived from different sources was determined by qRT-PCR (B) or Western blotting (C). The mRNA

expression of TRAF6 in PMN-MDSCs and M-MDSCs derived from the spleen (D) or tumor tissue (E). (F) CFSE-labeled CD4+ T cells were co-cultured with MDSCs

derived from the spleen or tumor tissue in the presence of CD3 and CD28 stimulation. After 72 h, the proliferation of CD4+ T cells was tested via flow cytometry. (G)

Statistical analyses of the percentage of proliferating CD4+ T cells co-cultured with MDSCs derived from the spleen or tumor tissue of TB mice. The mRNA expression

levels of Arg1 (H) and iNOS (I) in MDSCs were measured by qRT-PCR. ***p < 0.001, **p < 0.01, *p < 0.05; ns, no significance; TB-TU-MDSCs, MDSCs derived from

the tumor tissue of tumor-bearing mice; TB-SP-MDSCs, MDSCs derived from the spleens of tumor-bearing mice; WT-SP-MDSCs, MDSCs derived from the spleens

of wild-type mice.

RESULTS

TRAF6 Is Highly Expressed in MDSCs
Derived From Tumor Tissue of
Tumor-Bearing Mice
To investigate whether TRAF6 is involved in regulating
MDSCs, we evaluated the expression of TRAF6 in MDSCs.
The purity of MDSCs isolated from the spleen or tumor
tissue of mice was >90% (Figure 1A). Compared with
that of MDSCs from the spleens of wild-type (WT) mice
or tumor-bearing (TB) mice, the expression of TRAF6
in MDSCs from tumor tissue was significantly increased
(Figures 1B,C). The expression of TRAF6 in PMN-MDSCs
and M-MDSCs were determined by qRT-PCR, and the
results showed that there was no difference in the mRNA
expression of TRAF6 in the two subgroups of MDSCs
(Figures 1D,E).

In addition, we analyzed the suppressive function of
tumor tissue-derived MDSCs. Compared with MDSCs from
spleen of TB mice, tumor tissue-derived MDSCs had stronger
suppressive effects on the proliferation of CD4+ T cells
(Figures 1F,G). Moreover, the expressions of Arg1 and iNOS
in tumor tissue-derived MDSCs were higher than that in
splenic MDSCs (Figures 1H,I). These results indicated that the
immunosuppressive function of MDSCs derived from tumor
tissue was stronger than those of splenic MDSCs from TB mice,
which was consistent with previous reports (1).

TRAF6 Knockdown Impairs the
Immunosuppressive Activity of MDSCs
in vitro
To evaluate whether TRAF6 is involved in the suppressive
effects of MDSCs, specific siRNA was used to knock down
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FIGURE 2 | TRAF6 knockdown impairs the immunosuppressive effects of MDSCs in vitro. Specific siRNA (siTRAF6) was used to knockdown the expression of

TRAF6 in MDSCs, and the efficiency of siTRAF6 knockdown was validated by qRT-PCR (A) and Western blotting (B). (C) Tumor-derived MDSCs were transfected

with siTRAF6 and cocultured with CFSE-labeled CD4+ T cells, and proliferation was measured by flow cytometry after 72 h. (D) Statistical analyses of the percentage

of proliferating CD4+ T cells co-cultured with MDSCs transfected with siTRAF6. After TRAF6 knockdown, the activity of Arg1 was measured by a QuantiChrom

arginase assay kit (E), and the concentration of NO was determined via a Griess reagent system kit (F). ***p < 0.001, *p < 0.05; ns, no significance.
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FIGURE 3 | TRAF6 alters the activity of STAT3 by mediating the K63-linked

polyubiquitination of STAT3 in MDSCs. (A) The interaction between TRAF6

and STAT3 in tumor-derived MDSCs was determined by

co-immunoprecipitation (Co-IP) assays. (B) After knockdown of TRAF6 in

MDSCs, the level of STAT3 K63-linked polyubiquitination was measured by

Co-IP assays. (C) After knockdown of TRAF6 in MDSCs, the level of STAT3

phosphorylation was assessed by Western blotting.

TRAF6 in MDSCs. After treatment with TRAF6-specific siRNA,
the expression of TRAF6 in MDSCs from tumor tissue was
effectively decreased (Figures 2A,B). Remarkably, the inhibitory
effect of MDSCs transfected with siTRAF6 on CD4+ T
cell proliferation was significantly attenuated (Figures 2C,D).
Consistently, knockdown of TRAF6 distinctly decreased the
activity of Arg1 in MDSCs (Figure 2E), although the content of
NO did not noticeably altered (Figure 2F). These data indicate
that knockdown of TRAF6 impairs the immunosuppressive
effects of MDSCs in vitro.

TRAF6 Alters the Activity of STAT3
Next, we explored the potential molecular mechanism by
which TRAF6 regulates MDSC function. It is widely known
that the transcription factor STAT3 plays a dominant role
in MDSC expansion, activation and function. Recent studies
have revealed that the E3 ubiquitin ligase TRAF6 mediates
the K63-linked polyubiquitination of STAT3 but has no
effect on STAT3 degradation (34). To determine whether
TRAF6 impacts the function of MDSCs by STAT3, we
conducted the interaction between TRAF6 and STAT3 in
MDSCs by co-immunoprecipitation (Co-IP) assays. The results
of Co-IP showed that TRAF6 was co-immunoprecipitated
with STAT3, suggesting that endogenous TRAF6 binds to
endogenous STAT3 in MDSCs (Figure 3A). Furthermore, we
examined the regulation of TRAF6 on the posttranslational

modification of STAT3. After knockdown of TRAF6 in MDSCs,
the K63-linked polyubiquitination of STAT3 was significantly
downregulated (Figure 3B). Moreover, silencing of TRAF6
remarkably decreased the levels of phosphorylated STAT3 in
MDSCs from tumor tissue of TB mice (Figure 3C).

TRAF6 Knockdown Attenuates the Ability
of MDSCs to Accelerate Tumor
Progression in Tumor-Bearing Mice
As shown in the in vitro experiments, knockdown of TRAF6
impaired the immunosuppressive activity of MDSCs. Thus, we
further investigated the effects of TRAF6 on the suppressive
effects of MDSCs in vivo. 1 × 106 Lewis lung carcinoma
cells and 1 × 106 MDSCs transfected with TRAF6 siRNA
or negative control siRNA were subcutaneously injected into
C57BL/6mice. As shown in Figure 4A, the tumor growth of mice
injected with siTRAF6-transfected MDSCs (siTRAF6) group was
evidently delayed. Furthermore, the tumor volume and weight
were significantly less than those of the control (siNC) group
(Figures 4B,C). Given that MDSCs mainly suppress the function
of T cells in the tumor microenvironment, we measured the
proportion of CD4+ Th1 cells and CD8+ CTLs from tumor
tissue of TB mice. Compared with that of the control group,
the proportion of Th1 cells was no significant difference in the
siTRAF6 group (Figure 4D), while the proportion of CTLs in
the siTRAF6 group was significantly increased (Figure 4E). Our
data showed that knockdown of TRAF6 attenuated the ability of
MDSCs to accelerate tumor progression and partly suppressed
the antitumor T cell response.

TRAF6 Expression Was Augmented in
MDSCs From the PBMCs of Lung Cancer
Patients
Considering that TRAF6 improves the function of MDSCs in
mice, we examined whether TRAF6 had similar characteristics in
MDSCs from lung cancer patients.We performed flow cytometry
to analyze the proportion of CD11b+CD33+HLA-DR− MDSCs
in PBMCs from lung cancer patients. The percentage of MDSCs
in PBMCs from lung cancer patients was higher than that
from healthy controls, which indicated that the abnormal
accumulation of MDSCs in peripheral blood was correlated with
lung cancer (Figure 5A). We further examined the expression
of TRAF6 in human MDSCs. Compared with that of healthy
control, the expression of TRAF6 was markedly augmented in
MDSCs from PBMCs of lung cancer patients (Figure 5B). In
addition, Arg1 is the important immunosuppressive molecule in
MDSCs, which was also upregulated in MDSCs from PBMCs
of patients (Figure 5C). Furthermore, there was a positive
correlation between the expression levels of TRAF6 and Arg1
(Figure 5D), indicating that TRAF6 may be participate in the
regulation of Arg1 expression in MDSCs.

DISCUSSION

As an adaptor protein and E3 ubiquitin ligase, TRAF6 is
involved in mediating various cellular signaling pathways and
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FIGURE 4 | TRAF6 knockdown attenuates the ability of MDSCs to accelerate tumor progression in tumor-bearing mice. To investigate the effects of TRAF6 on the

suppressive activity of MDSCs in vivo, 2 groups of wild-type C57BL/6 mice were s.c. injected with 1 × 106 LLC cells and 1 × 106 MDSCs transfected with siTRAF6

(siTRAF6 group) or MDSCs transfected with siNC (control group). (A) Tumor growth was constantly monitored. The width “a” and length “b” were measured, and

tumor volume was calculated. (B,C) On the 28th day after the inoculation of LLC cells, the mice were sacrificed, and the tumor image and weights were showed in

both groups. (D) The proportion of CD4+ IFN-γ+ Th1 cells in the tumor tissue of both groups was analyzed by FCM. (E) The proportion of CD8+ IFN-γ+ CTLs in the

tumor tissue of both groups was analyzed by FCM. *p < 0.05; ns, no significance.

regulating a series of physiological process (35–40). In addition,
the oncogenic role of TRAF6 in tumors has been widely
reported. TRAF6 is abnormally highly expressed in multiple
tumor tissues and modulates the malignant behavior of tumor
cells (41–46). Furthermore, mounting evidence has revealed that
TRAF6 plays a critical role in the development and activation of

lymphocytes and myeloid cells (42, 47, 48). However, whether
TRAF6 regulates MDSCs which are pivotal immunosuppressive
cells has not been reported to date.

To shed light on the potential effect of TRAF6 on MDSC
functions, we constructed murine Lewis lung carcinoma models.
Our research suggested that the expression of TRAF6 was higher
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FIGURE 5 | TRAF6 expression was augmented in MDSCs from lung cancer patients. To examine the modulation of TRAF6 in MDSCs from lung cancer patients, the

level of TRAF6 in MDSCs was measured in the lung cancer patient group (LC) and healthy control group (HC). (A) The proportions of MDSCs in the PBMCs of lung

cancer patients and healthy persons were analyzed by flow cytometry. Representative dot plots of CD11b+CD33+HLA-DR− MDSCs in the blood of patients with LC

and healthy controls are shown. (B) The mean fluorescence intensity (MFI) of TRAF6 in MDSCs was determined by flow cytometry. (C) The MFI of arginase-1 in

MDSCs was determined by flow cytometry. (D) The correlation between TRAF6 and arginase-1 in MDSCs was analyzed. ***p < 0.001.

in MDSCs from tumor tissue than that in MDSCs from spleen.
Consistent with previous research, we noted that the suppressive
function of MDSCs derived from tumor tissue was stronger than
that of spleen-derived MDSCs. Thus, we hypothesized that the
strong suppressive activity of MDSCs from tumor tissues may
be attributed to the high expression of TRAF6. After TRAF6
knockdown, the inhibitory effect of MDSCs on CD4+ T cell
proliferation was significantly decreased, with reduced Arg1
activity. Moreover, knockdown of TRAF6 attenuated the ability
of MDSCs to accelerate tumor progression in tumor-bearing
mice. Many clinical studies have demonstrated that increased
levels of both circulating and tumor-infiltrating MDSCs were

associated with poor prognosis in cancer patients. We further
confirmed that the percentage of MDSCs was markedly increased
in lung cancer patients. In addition, the expression of TRAF6
was increased in MDSCs from lung cancer patients, which was
positively correlated with the level of Arg1 in MDSCs. These
results highlighted the key role of TRAF6 in enhancing the
function of MDSCs in vitro and in vivo.

STAT3 is one of the most important transcription
factors regulating the expansion, activation and function of
MDSCs. STAT3 is abnormally activated in MDSCs in the
tumor microenvironment (23, 24, 49, 50). In addition to
phosphorylation, ubiquitination is also involved in STAT3
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activation. In our study, we demonstrated that TRAF6 binds
to STAT3 in MDSCs. TRAF6 knockdown markedly reduced
the K63-linked polyubiquitination and phosphorylation
of STAT3 in MDSCs, indicating that TRAF6 elevated the
suppressive function of MDSCs by interacting with STAT3.
Indeed, it has been reported that TRAF6 mediates K63
ubiquitination via the SH2 domain of STAT3, which is an
essential step for STAT3 phosphorylation in response to
bacterial infections (29). Thus we assumed that TRAF6
fosters the suppressive effect of MDSCs by inducing STAT3
K63 ubiquitination and subsequent STAT3 phosphorylation.
However, further studies are required to reveal the detailed
molecular mechanism by which TRAF6 affects the function of
MDSCs via STAT3.

CONCLUSIONS

In summary, we demonstrate that TRAF6 regulates the
immunosuppressive activity of MDSCs by modulating the
K63-linked polyubiquitination and phosphorylation of STAT3.
Targeting of TRAF6 might be a potential clinical therapeutic
strategy for enhancing antitumor immune response.
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