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J.; Hessel, V.; Strelec, I. Waste

Management in the Agri-Food

Industry: The Conversion of

Eggshells, Spent Coffee Grounds, and

Brown Onion Skins into Carriers for

Lipase Immobilization. Foods 2022,

11, 409. https://doi.org/10.3390/

foods11030409

Academic Editor: Remedios Yáñez

Received: 9 January 2022

Accepted: 28 January 2022

Published: 30 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Review

Waste Management in the Agri-Food Industry: The Conversion
of Eggshells, Spent Coffee Grounds, and Brown Onion Skins
into Carriers for Lipase Immobilization
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Abstract: One of the major challenges in sustainable waste management in the agri-food industry
following the “zero waste” model is the application of the circular economy strategy, including the
development of innovative waste utilization techniques. The conversion of agri-food waste into
carriers for the immobilization of enzymes is one such technique. Replacing chemical catalysts with
immobilized enzymes (i.e., immobilized/heterogeneous biocatalysts) could help reduce the energy
efficiency and environmental sustainability problems of existing chemically catalysed processes.
On the other hand, the economics of the process strongly depend on the price of the immobilized
enzyme. The conversion of agricultural and food wastes into low-cost enzyme carriers could lead to
the development of immobilized enzymes with desirable operating characteristics and subsequently
lower the price of immobilized enzymes for use in biocatalytic production. In this context, this review
provides insight into the possibilities of reusing food industry wastes, namely, eggshells, coffee
grounds, and brown onion skins, as carriers for lipase immobilization.

Keywords: eggshells; spent coffee grounds; brown onion skins; conversion techniques; enzyme immobilization

1. Introduction

The development of a new generation of immobilized (heterogeneous) biocatalysts
is a priority in line with the growing interest in industrial products obtained in a healthy
and sustainable way [1], regardless of the following product groups: food, chemicals
(biofuels), or pharmaceuticals. Indeed, it is expected that new and/or improved existing
technologies will be needed in the coming decades to follow the trend towards sustainable
production and to allow better utilization of waste from the agri-food industry, for which
all fossil reserves are still exploited today. Selected recent studies presented in this review
confirm that there is no lack of potential for the above-mentioned topic. Replacing chemical
catalysts with biocatalysts, and particularly immobilized (heterogeneous) ones, can address
outstanding issues of energy efficiency, environmental friendliness, and cost-effectiveness
of the process.

The study on the life cycle assessment of biodiesel production in relation to the use of
different catalysts shows that the negative environmental impact of biodiesel production
decreases when heterogeneous biocatalysts (immobilized lipases) are used compared to
the use of chemical catalysts or homogeneous biocatalysts, mainly due to their repeated
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use. At this stage, the degree of environmental impact strongly depends on the number
of reuses of heterogeneous biocatalysts during the production process [2]. This is true not
only for biocatalytic biodiesel production, but also for any other biocatalytic production
that seeks to implement the principles of sustainable development.

Sustainable production, from the introduction of the concept and definition by Agenda
21 to the present [3], represents a development that meets the needs of current generations
without compromising the ability of future generations to meet their needs [4]. It should
be noted that behind this definition there are not only activities related to environmental
protection but also a whole range of activities related to the protection of natural, cultural,
and social values that are closely linked to material goods. Sustainable development thus
stands for a series of technical, technological, economic, and social changes carried out
to meet the needs of the present and future generations. One of the pillars of sustainable
development is the circular economic model, which aims to ensure sustainable development
at every stage of product creation, processing, and transformation by creating a “closed-
loop” economy [5]. The transition from a linear to a circular economy model means that
resources remain in the economy even after the end of the life cycle of materials and
products. The new value is created through a “closed loop”, thus approaching a model that
avoids the creation of waste, i.e., the “zero waste” model [6].

One of the five major challenges of sustainable waste management in the agri-food in-
dustry using the “zero-waste” model [7] is the development of innovative waste utilization
techniques for the production of chemicals, fine chemicals, bioactive compounds, enzymes,
and functional materials. These products have, at least, twice the added value of products
derived from the currently prevailing, outdated waste management strategies that are not
consistent with sustainable development. Outdated waste management strategies result
in low value-added products, such as animal feed, treated waste from the processes of
composting, anaerobic digestion, and incineration, which can also have a negative impact
on the environment and ultimately, and most undesirably, result in landfilling [8].

Previous research has shown that there is a possibility to use waste oils and fats from
the agri-food industry as cheaper feedstock [9–12] for biodiesel production. In addition,
solid waste from pumpkin oil production can be used as a carrier for the immobilization
of lipases for sustainable biocatalytic production of biodiesel [13]. In addition, it has been
shown that agri-food industry wastes have the potential for the production of very valuable
semi-finished products and products for further application in the food, biotechnological,
and pharmaceutical industries [14], and that lipases can be used to treat wastes from the
oil industry [15]. Through an economic analysis of biocatalytic biodiesel production in
microstructured reactor systems, several authors [13,16,17] have shown that the share
of biocatalyst (immobilized lipase) production costs is about 38.5% of the total biodiesel
production costs in such systems. Up to 87.9% of the total costs associated with lipase
immobilization are associated with the commercial immobilization carrier. This percentage
can be significantly reduced if cheaper carriers (commercial and/or alternative) such as
agri-food wastes and/or by-products are used and if the immobilized lipase is used in
multiple production cycles.

Agri-food wastes/by-products are widely available and inexpensive, and their use
in the preparation of the heterogeneous biocatalyst would have the following multiple
positive effects: reducing the environmental impact and lowering the cost of the enzyme
immobilization phase, which would ultimately lower the price of the final product. The
idea of developing carriers based on agri-food waste materials for the immobilization
of lipases can be traced back several decades when such waste was primarily used for
energy and fine chemical production. However, after being used for the production of
fine chemicals, there was always a certain amount of transformed waste material left to
be disposed of. Since these transformed materials were mostly lignocellulosic, the idea of
using them as carriers for the immobilization of enzymes emerged. Two reviews [18,19]
have recently presented a systematic review of studies dealing with lignocellulosic and
non-lignocellulosic wastes used for enzyme immobilization. They can serve as a good basis
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for the analysis of other types of such waste that have not yet found wider application
in enzyme immobilization. Recent trends in enzyme immobilization are aimed at using
materials that have never been used to obtain immobilization carriers or at finding new
uses for already known carriers. Of course, such trends require the improvement of existing
and the development of new biocatalytic technologies [20].

In this context, this review provides insight into the potential for reuse of less com-
monly considered agri-food wastes as carriers for lipase immobilization, focusing on
eggshells, coffee grounds, and brown onion skins.

2. Lipases as Heterogeneous Biocatalysts

Lipases (EC 3.1.1.3) are triacylglycerol acyl hydrolases that act on carboxylic acid ester
bonds. In addition to their natural function of hydrolyzing triacylglycerol to diacylglycerol,
monoacylglycerol, glycerol, and free fatty acids, lipases can catalyze esterification, inter-
esterification, and transesterification reactions in non-aqueous media. This versatility has
enabled the use of lipases in the food, pharmaceutical, leather, textile, cosmetics, and paper
industries, where they have been used in “free” soluble form (homogeneous biocatalyst) or
immobilized form (heterogeneous biocatalyst) [1,21–25].

Lipases are used in free form as an active ingredient in foods, such as bakery and pasta
products, and various types of cheese and dairy products to improve the quality and taste
of the final product [24,26–28] or in immobilized form to provide a substitute for human
milk [27,28], cocoa butter [29–32], specific flavors as food additives [33], or for the produc-
tion of ω-3- and ω-6-fatty acids from fish and other oil species [34,35]. Although lipase
accounts for about 10% of all industrial enzymes used in current industrial production, the
use of these enzymes is expected to increase due to their versatility [24,36–39]. Increasing
use of immobilized lipases is expected, especially in the chemical industry for the fast-
growing field of “green” biodiesel synthesis [38], but also in the processing/pretreatment
of wastewater from the food industry with a high-fat content [36,37,39].

As already stated, the use of biocatalysts (including lipases) compared to chemical
catalysts in industrial production is desirable due to high substrate and reaction specificity,
environmental compatibility, and lower energy requirements, all of which have an impact
on reducing the cost of the production process. The high price of biocatalysts, as well as
the very low possibility of reusing the homogeneous biocatalyst, are major drawbacks for
wider use of lipases in industrial production. The above problems can be overcome by
using immobilized/heterogeneous lipases, which can be easily separated from the reaction
mixture after completion of the production process and reused in the continuous production
processes. According to literature data, immobilization also improves the operational
stability of lipases and the possibility of their use under extreme pH and temperature
conditions [40]. Figure 1 shows the advantages and disadvantages of heterogeneous
biocatalysts. Immobilized lipases open the possibility of developing new production
technologies, e.g., via the transition from batch to continuous processes. By introducing
continuous processes instead of batch processes, reactor size and investment costs are
reduced, facilitating process control with low variations in product quality. Within the
concept of continuous biocatalytic reactors, special attention is paid to microstructured
reactors [41,42], as they offer the significant advantage of intensifying mass and heat
transfer as so-called “novel process windows” [43,44].

Immobilization of enzymes means that the enzyme is enclosed in a phase (ma-
trix/support) that is different from the phase of substrates and products. In some cases,
Immobilized enzymes entrapped or localized on a solid carrier retain their catalytic activity
so that they can be used repeatedly and continuously, while in other cases immobilization
improves their catalytic and operational properties. Various immobilization techniques
have been used to immobilize enzymes (Figure 2).
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Depending on the molecular forces that occur between enzymes and solid carriers,
immobilization techniques can be broadly divided into the following: (i) adsorption, (ii) co-
valent bonding, and iii) entrapment. Adsorption is the simplest method of immobilization
based on weak forces (interactions) between the matrix and enzymes, which include van
der Waals forces, hydrophobic interactions, and hydrogen bonding, as well as stronger ionic
interactions. The latter is more desirable for industrial applications because immobilized
enzymes cannot be used indefinitely due to loss of activity upon reuse, but can be stripped
(desorbed) from carriers and replaced by “healthy” enzymes under optimal conditions.
However, enzyme immobilization by adsorption, which relies on ionic interactions between
enzymes and carriers, has yet to find its applicability in industrial production [46].

Covalent binding of enzymes is an effective immobilization technique and has been
shown to be the most stable interaction for the immobilization of enzyme molecules to
the carrier. Covalent binding usually involves the binding of amino groups of lysine
residues to aldehyde, carboxyl, or epoxide groups of carriers, or of carboxyl groups of
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glutamic acid residues to the amino groups of carriers. The enzymes can bind directly
to the carriers (direct covalent immobilization) or bind indirectly to the carriers at the
flexible “arm” (spacer) (indirect covalent immobilization) [40]. In both cases, the first step
of immobilization involves chemical modification of the carrier groups to provide covalent
binding of the enzymes (direct covalent immobilization) or the spacer “arm” on the carrier,
followed by activation of the spacer “arm” for covalent binding of the enzyme (indirect
covalent immobilization). Chemical modification of the carrier groups can be carried out
with tresyl chloride, sulfonyl chloride, bromocyanine, epichlorohydrin, glutaraldehyde,
N-hydroxy-succinimidyl, sodium periodate, hydrazine, ß-mercaptoethanol, and dithio-
threitol, while glutaraldehyde, hexamethylenediamine, and polyethylenimine are used
as spacer arms [47]. In addition, crosslinking is another type of covalent immobilization
in which enzymes are crosslinked in solution to form aggregates, or crosslinking occurs
after adsorption.

The entrapment method is based on the following: (i) entrapment of an enzyme in
a polymeric network that allows the substrate and products to pass through but retains
the enzyme, (ii) entrapment of enzymes in organelle-like structures, and (iii) anchoring of
enzymes in a phospholipid layer [35,40,47–58].

Considering the advantages and disadvantages of the above-mentioned types of en-
zyme immobilization in terms of their cost and simplicity, it can be said that adsorption is
the cheapest and simplest method of immobilization, while immobilization by covalent
binding as well as immobilization by enzyme entrapment is much more complicated and
therefore more expensive. On the other hand, immobilization by adsorption is usually the
worst in terms of stability and reusability of immobilized enzymes, because immobilized
enzymes may leak from the carrier (“carrier leakage”), which is rare in immobilization by
enzyme entrapment and extremely rare in immobilization by covalent binding. Therefore,
the reusability of more tightly immobilized enzymes is higher. In addition, covalent binding
usually leads to a high proportion of the bound enzyme on the carrier and enables the
reusability of the immobilized enzyme. However, direct covalent binding usually leads to
changes in enzyme conformation, often caused by the significantly lower activity of the
immobilized enzyme compared to the free enzyme, which can be partially corrected by
indirect covalent immobilization, where flexible chemical structures reduce steric interfer-
ence between enzyme molecules and allow for greater mobility [35,40,48,49,51,55,58]. All
of the above methods can be generally applied to the immobilization of lipases.

Physical compressive strength, ease of derivatization, chemical inertness to the enzyme
and the environment in the reaction mixture, biocompatibility, biodegradability, nontoxicity,
availability, and very low cost are the preferred properties of carriers for enzyme immo-
bilization [2,51,54]. For the immobilization of enzymes, commercially available organic
or inorganic carriers of natural or synthetic nature are usually used, which in most cases
meet the desired properties of the carrier. However, most commercially available carriers
are expensive, which significantly increases the cost of preparing immobilized enzymes.
Therefore, there is a need to find cheaper carriers for immobilization, such as widely avail-
able waste/by-products from the agri-food industry. Moreover, in lieu of the substantial
cost of waste disposal, the agri-food industry might even realize some profit and make a
substantial long-term gain by investing in the production of immobilization carriers.

Among the numerous wastes generated in the agri-food industry, eggshells, coffee
grounds, and brown onion skins are particularly “suitable” candidates (raw materials) for
the preparation of carriers for the immobilization of enzymes. The latter is supported by
the available information on their structure, chemical composition, and current knowledge
on their potential use. Treatment of these wastes could result in collagen-based carriers
(eggshell membrane) and cellulose- and/or hemicellulose-based carriers (spent coffee
grounds and brown onion skins). Unlike other wastes from the agri-food industry (residues
after processing of cereals, corn, oilseeds, sugar beet bagasse [59–61], rice [62], coconut [63],
residues from the wood processing industry, etc.), which are widely used in biorefineries as
feedstock for the production of high-value products such as chemicals, materials, biofuels,
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and bioenergy [64], eggshells, spent coffee grounds, and brown onion skins have not
yet found a suitable place in sustainable production and are mainly landfilled and thus
represent an additional burden on the environment.

2.1. Carriers Based on Eggshell Membranes

The average annual production of eggs is 65 million tones, of which about half is used
in industrial production, resulting in 6.5 million tones of industrial waste to be disposed
of [65]. Moreover, according to an estimate of the increase of global egg production to
90 million tones per year by 2030 [66], the amount of industrial waste that needs to be
properly disposed of is also expected to increase. In the European Union, about 11 million
tones of eggs are produced annually, of which about 37 thousand tones are produced in the
Republic of Croatia (RH).

Eggshells represent about 11% of the total egg mass and contain on average 94%
calcium carbonate, 1% magnesium carbonate, 1% calcium phosphate, and 4% organic
matter [66,67].

Structurally (Figure 3), eggshell wastes contain the following two main parts: the
calcified matrix (shell) and the organic envelope, called eggshell membrane in the available
literature. The calcified matrix is dominated by calcium carbonate in the form of calcite crys-
tals, whereas the eggshell membrane is dominated by collagen in the form of cross-linked
protein fibres [68,69]. The eggshell membrane consists of two tightly bound membranes
(one inner and one outer), which, because of their chemical composition, resemble the
basal lamina or extracellular cement of proteins, lipids, and carbohydrates, to which cells
are bound during tissue coupling. In addition to the calcified matrix and membrane, the
eggshells also contain some of the proteins remaining on the membrane and some number
of microorganisms. According to the available literature data, the removal of protein from
eggshells is achieved by cooking and/or washing with distilled water [65,70–74] or boiling
in a 0.1% sodium dodecyl sulphate solution [71]. Cleaning of eggshells and removal of
microorganisms is achieved by using dilute acid solutions such as acetic and hydrochloric
acids. These procedures are most commonly used in the preparation of eggshells as a carrier
for the immobilization of enzymes [65,70–73,75,76]. However, the available literature does
not provide data on the effect of different eggshell pretreatment methods (i.e., cooking
in 0.1% sodium dodecyl sulphate solution or washing in acidic solutions) on enzyme
immobilization efficiency.
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Research by Ribeiro et al. [78], Salleh et al. [75], Chattopadhyay and Sen [79], Norouizan et al. [76],
Vemuri et al. [71], Venkaiah and Kumar [80], and Makkar and Sharma [70] indicates
the potential of eggshells as carriers for enzyme immobilization after some degree of
pretreatment. Immobilization of enzymes (urease, lipase, and tyrosinase) on eggshells
was performed by adsorption [75], adsorption by sequential entrapment of the enzyme
in a glutaraldehyde matrix [70,71], and adsorption on a polyethyleneimine-coated shell
followed by entrapment of the enzyme with glutaraldehyde [76]. However, it is unlikely
that they will find their way into commercial production as carriers in their intact form.
The main reason for this is that the calcified matrix of eggshells is a very cheap source
of natural calcium in the form of calcium carbonate, from which inorganic and organic
calcium salts can be prepared by relatively simple processes. Organic and inorganic calcium
salts are used in the food, pharmaceutical, and chemical industries (as additives and dietary
supplements), as well as for the production of calcium-based fertilizers for agricultural
purposes [66,67,81,82]. Among the numerous methods of obtaining calcium salts from
eggshells, the best known are those based on dissolving calcium carbonate from the calcified
matrix in dilute solutions of acids such as hydrochloric, acetic, and o-phosphoric acids.
Dissolution with acids also produces the eggshell membrane as a byproduct (Figure 4).
Eggshell membrane is not only a cost-effective source of collagen and hyaluronic acid
for the pharmaceutical and cosmetic industries [66,83], but unlike the calcified matrix, it
has great potential to be used as a carrier for enzyme immobilization [65,72,83–86]. This
is supported by many studies focused on the development of biosensors based on the
immobilization of enzymes on an eggshell membrane as solid carrier [73,83,87–96].
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Figure 4. Schematic representation of eggshell transformation into calcium salts and membrane.

Comparing the production of calcium salts by treating eggshells with dilute acids with
the production of eggshell membranes for the development of biosensors, it can be seen
that ground eggshells are used for the production of salts while intact eggshells or eggshell
halves are used for the production of eggshell membranes for biosensors. Moreover, in most
cases of eggshell membrane preparation for biosensor development, partial decalcification
of eggshells by acids is performed to facilitate the separation of large portions of eggshell
membrane from the remaining eggshells. Accordingly, it seems very likely that these two
types of production processes could be combined to simultaneously produce calcium salts
and larger pieces of the eggshell membrane by using half and/or larger pieces of eggshells
instead of ground ones. This would greatly facilitate the eggshell membrane separation and
handling process. In addition, the eggshell membrane produced could be uniformly ground
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to the particle size required for the preparation of carriers for lipase immobilization. One of
the most important facts related to the separation of eggshell membranes from eggshells by
acids is that exposure of eggshell membranes to acids leads to changes in their chemical
composition (compared to the untreated membrane) [97,98]. However, there are no data
in the literature to date discussing the effects of various acid-induced changes in eggshell
membrane composition on enzyme immobilization efficiency. Considering that changes in
the chemical composition of the carrier can alter the immobilization efficiency, such studies
would allow the selection of the most appropriate eggshell membrane preparation process
to obtain the carrier with the desired properties.

2.2. Carriers Based on Spent Coffee Grounds and Brown Onion Skins

The European Union is one of the largest consumers of coffee in the world [96]. Annual
imports of coffee beans (raw and roasted) into the EU amount to almost 5 million tones,
of which the Republic of Croatia accounts for about 23 thousand tones. If we take into
account the fact that about half of a coffee bean is consumed in the production of liquid
beverages that produce coffee grounds [99,100], it becomes clear that coffee grounds are a
widely available raw material. This is supported by the fact that approximately 6 million
tones of coffee grounds are produced annually worldwide [100]. The average annual
production of onions (Allium cepa L.) is about 66 million tones [101], with about 10.5 million
tones produced in the European Union and about 19 thousand tones in the Republic
of Croatia [102]. Onion processing generates significant amounts of waste, estimated at
500,000 tones annually in the EU [101].

Both the spent coffee grounds and the brown onion skins have complex chemical com-
positions [99–101,103–108]. According to literature reports, spent coffee grounds contain
about 60% water-insoluble lignocellulosic material, i.e., about 50% insoluble fibres in dry
matter, with cellulose and hemicellulose dominating the fibres [99,100,104,107,109–111],
while brown onion skins contain about 60% insoluble fibre in dry matter, with the major
polysaccharide of insoluble fibre being cellulose [101,105,106,108,112,113]. In addition to
the predominant lignocellulosic polymers—cellulose and hemicellulose, which are mainly
responsible for the suitability of these waste materials as enzyme carriers, they also contain
certain amounts of proteins, polyphenols, and lipids [99–101,103–114] that can interfere
with the process of enzyme immobilization and must be removed by extraction. For ex-
ample, coffee grounds obtained from the industrial preparation of instant coffee contain
between 13.6 and 17.5% proteins, 10 and 15% lipids, and about 4% polyphenols and 2.5%
condensed tannins in dry matter [99,100,104,107]; brown onion skins contain from 2 to 5%
protein, about 1% lipid, and about 5.3% polyphenols [101,103,105,106,114]. Since the above
components differ in polarity and thus extractability in different solvents [101,104–107,115],
a multistep extraction system is required as a pretreatment procedure for the preparation of
suitable chemically inert carriers for enzyme immobilization based on cellulose or mixtures
of cellulose and hemicellulose, including a nonpolar solvent (hexane), followed by a polar
solvent (ethanol and/or water), and finally an alkaline wash (1% NaOH) (Figure 5).

In addition to the chemically inert lignocellulosic material, extracts enriched with
specific groups of high-value bioactive components are expected, including certain oils
and terpenes, polyphenols and flavonoids, and proteins. For example, the lipids from
spent coffee grounds and brown onion skins should be concentrated in the hexane extract,
the simple sugars and proteins should be concentrated in the water extract and the 1%
sodium-based extract, and the various groups of polyphenols should be concentrated in
the ethanol and water extracts and the 1% sodium-based extract. In any case, the process of
multistep extraction must be optimized in terms of starting material (spent coffee grounds,
brown onion skins), extraction time, and polar solvent (two-solvent system ethanol and
water or single solvent ethanol or water). These products could be further used to produce
other high-value products based on an analysis of their chemical composition.
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As mentioned above, the suitability of spent coffee grounds and brown onion skins as
carriers for the immobilization of enzymes is mainly due to the presence of lignocellulosic
polymers. Cellulose is a long, unbranched polymer of glucose units linked by β-1,4-
glycosidic bonds. It is the main component of the plant cell wall and the most abundant
polymer in nature. Cellulose is insoluble in water, chemically inert under mild reaction
conditions of enzymatic reactions, non-toxic, and biodegradable. Cellulose fibers are
resistant to mechanical shear forces. In addition, due to the hydroxyl groups present on the
surface of cellulose fibers, cellulose is a suitable carrier for the immobilization of enzymes by
adsorption, but can also serve as an inexpensive carrier that can be used for covalent binding
of the enzyme after certain chemical modifications. Furthermore, to commercially available
forms of pure cellulose and its modified derivatives, water-insoluble lignocellulosic material
from agri-food industry waste can also be used as an even more cost-effective carrier
for lipase immobilization. This can be demonstrated by research on immobilization of
lipases on olive pomace [116–118], rice husks [53,57], corn stalks [119], coconut shells or
fibers [119,120], palm stalks [119], and loofah sponges [121]. Immobilization of lipase was
achieved by adsorption to pretreated and processed waste or by covalent binding to the
chemically modified carrier (e.g., chemically modified pretreated waste material). The two
most commonly used lipases in immobilized form are from Thermomyces lanuginosus (TLL)
and Candida antarctica lipase B (CALB). Covalent immobilization methods were used to
immobilize lipases on olive pomace [113–115] and rice husks [53] using glutaraldehyde
to activate carriers from the aforementioned wastes. Cespugli et al. [57] prepared rice
husks for covalent binding in a different way, first oxidizing them and functionalizing
them by introducing a di-amino spacer. CALB lipase immobilized in this way showed
better results in terms of operational stability compared to the same lipase immobilized
on a commercial carrier, methacrylic resins. T. lanuginosus lipase immobilized on olive
pomace [116–118] showed operational stability in a functional test reaction (synthesis of
biodiesel from pomace oil with methanol) in up to 10 consecutive batches. Corici et al. [53]
and Brigida et al. [119] immobilized lipase by adsorption on rice husks and coconut fibers,
respectively, while Ittrat et al. [120] used corn stalks, palm stalks, coconut shells, corn cobs,
rice husks, Wodyetia bifurcata AK Irvine leaves, and Salacca wallichiana stems. The worst
results were reported by Corici et al. [53], probably due to the low activity of immobilized
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lipase and low operational stability. On the other hand, the results of Brigida et al. [119]
showed that the immobilized lipase (CALB) exhibited increased temperature stability up
to 50–60 ◦C and retained its activity up to 50% after three cycles in the functional test
reaction with methyl butyrate hydrolysis. Similarly, in the second reaction with butyl
butyrate synthesis, the immobilized CALB retained its activity up to 80% over six cycles.
The results reported by Ittrat et al. [120] showed that the carrier based on Salacca wallichiana
stem proved to be the best among all other carriers investigated. Compared with the
immobilized free lipase, the storage stability at room temperature (25–32 ◦C) and the
stability to organic solvents increased, but a significant loss of activity was observed after
two consecutive cycles of use, which was due to the leakage of the enzyme from the carrier.

The above examples of immobilization of lipase on various carriers derived from
waste from the agri-food industry refer to carriers based on lignocellulosic material. While
cellulose is a linear polymer composed of glucose molecules, hemicellulose is a branched
polymer composed of various monosaccharides (pentoses and hexoses), depending on the
plant species. Lignin, on the other hand, is a polymer composed of various propyl phenol
units, namely, coniferyl alcohol, sinapyl alcohol, and coumaryl alcohol, as well as other
modified phenolic acids. It is important to emphasize that both types of polymeric material,
hemicellulose and lignin, surround the cellulose fibers in plant cell walls [99,100,104,107].
Accordingly, it is expected that during immobilization of lipase on the lignocellulosic
material obtained by pretreatment of spent coffee grounds or brown onion skins (depending
on the type of pretreatment), multiple interactions will occur between the side branches
of the enzyme and the functional groups of the lignocellulosic material. Therefore, in
the process of waste preparation as a carrier for lipase immobilization, it is necessary to
remove lignin. To obtain lignocellulosic carriers from spent coffee grounds and brown
onion skins, sequential solid-liquid extraction with hot solvents must be performed. The
sequential extraction from non-polar to polar solvents involves the non-polar solvent n-
hexane, followed by two polar solvents (water and ethanol), after which the preparation
of the carrier must be completed by alkaline washing (1% aqueous sodium hydroxide
solution) as the final step for lignin removal [107,115].

There are few publications on the possibility of using spent coffee grounds and brown
onion skins as potential carriers for enzyme immobilization. In the case of brown onions,
there are only three papers that can be put in context since the immobilization occurred
on the inner membrane of the red onion. Kumar and Pundir [122] covalently immobi-
lized lipase from porcine pancreas on the onion membrane by previously activating it
with glutaraldehyde. The functionality test reaction was milk hydrolysis with the aim of
producing skim milk. The activity of immobilized lipase was 63.6% of the initial value. The
immobilized lipase was used up to 100 times over two months without significant loss of
activity when stored at +4 ◦C. Authors Kumar and D’Souza [123] and Wang et al. [124]
also chose the brown onion membrane as an immobilization carrier for the preparation of
biosensors for the detection of glucose in model solutions and real systems, fruit juices,
and wines. The immobilized enzyme was glucose oxidase, and the resulting biosensor
proved to be very effective and stable. Kumar and D’Souza [123] used the biosensor up to
127 times, and the immobilized glucose oxidase retained up to 90% of its original activity.
However, this raises the question of the cost-effectiveness of the manufacturing process of
the biosensor on a support that is the inner membrane of the brown onion, since the brown
onion membrane is an edible part of the onion and not a waste product in the processing
of the brown onion. The same can be observed in the case of spent coffee grounds as
a potential carrier for enzyme immobilization, for which there are only four literature
data points [125–128]. Chen et al. [125] immobilized β−glucosidase by covalent binding
to spent coffee grounds activated with glutaraldehyde and used it to convert isoflavone
glycosides to their aglycones from black soy milk. The immobilized β−glucosidase was
stable for 20 days without losing activity in 30 batches. In their work, Buntić et al. [126–128]
performed immobilization of cellulase by adsorption and covalent binding. The results
indicate an improvement in storage stability and activity of immobilized cellulase com-
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pared to its free form. The functionality test reactions with immobilized cellulases were not
performed in their studies.

In all four cases, enzyme immobilization was performed on carriers with questionable
properties, as they were prepared without complete removal of all possible components that
could interfere with the immobilization process. One of the most important properties of the
carriers is their chemical inertness towards the enzyme and the reaction mixture. Therefore,
it is necessary to apply various treatment procedures to obtain carriers with these properties.
The systematic analysis of the composition of the starting wastes, of the intermediates in
the preparation of the carrier and finally of the carriers is necessary to complete the lack of
knowledge about the possible application of these three discussed wastes.

3. Conclusions and Future Directions

Biocatalytic processes generally leave a barely noticeable environmental footprint
compared to chemically catalyzed processes. They are more environmentally friendly and
more in line with sustainable development principles. Therefore, future research on the
development of heterogeneous biocatalysts based on agricultural and food wastes will
certainly have a significant impact and contribution in the field of lipase immobilization
and waste utilization. It will also help to fill the knowledge gap mentioned above regarding
the reuse of the wastes discussed in this review, i.e., eggshells, coffee grounds, and brown
onion skins as carriers, and clarify the lipase immobilization processes. Based on all
the above, it is obvious that a systematic analysis of the usability of eggshells, spent
coffee grounds, and brown onion skins as carriers for enzyme immobilization is needed
and should include the following: (i) different types of carrier preparation, (ii) different
techniques for lipase immobilization, (iii) evaluation of immobilization efficiency in terms
of the amount and activity of the immobilized enzyme, operational stability, and rate and
production yield of the desired end products, and (iv) reusability of the immobilized lipases
in the production process.

Considering that agri-food wastes are widely available and inexpensive, their use
is expected to have a positive long-term impact on the development of society and the
economy by reducing environmental pollution, lowering the price of immobilized lipases,
and ultimately achieving a potentially lower price for the final products obtained in a
healthy and safe manner through biocatalytic processes. In addition, agri-food industry
waste is recycled, which is one of the cornerstones of the circular economy. Lipases immo-
bilized on agri-food industry wastes represent a technological and economic improvement
of biocatalytic production, indicating the possibility of achieving sustainable production
based on the circular economy and approaching the “zero waste” model.
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42. Denčić, I.; de Vaan, S.; Noël, T.; Meuldijke, J.; de Croon, M.; Hessel, V. Lipase-based biocatalytic flow process in a packed-bed
microreactor. Ind. Eng. Chem. Res. 2013, 52, 10951–10960. [CrossRef]

43. Hessel, V. Novel process windows—Gate to maximizing process intensification via flow chemistry. Chem. Eng. Technol. 2009, 32,
1655–1681. [CrossRef]

44. Hessel, V.; Tibhe, J.; Noël, T.; Wang, Q. Biotechnical micro-flow processing at the EDGE—Lessons to be learnt for a young
discipline. Chem. Biochem. Eng. Q. 2014, 28, 167–188. [CrossRef]
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