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Because of the COVID-19 pandemic, the novel coronavirus

SARS-CoV-2 has risen to shape scientific research during

2020, with its spike (S) protein being a predominant focus. The

S protein is likely the most complicated of all viral glycoproteins

and is a key factor in immunological responses and virus

pathogenesis. It is also the driving force dictating virus entry

mechanisms, which are highly ‘plastic’ for coronaviruses,

allowing a plethora of options for different virus variants and

strains in different cell types. Here we review coronavirus entry

as a foundation for current work on SARS-CoV-2. We focus on

the post-receptor binding events and cellular pathways that

direct the membrane fusion events necessary for genome

delivery, including S proteolytic priming and activation. We also

address aspects of the entry process important for virus

evolution and therapeutic development.
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Historical context
Coronaviruses were first recognized in the 1930s due to

outbreaks of respiratory disease in poultry [1], followed by

the subsequent isolation and identification of infectious

bronchitis virus (IBV) of chickens [2]. IBV became the

prototype coronavirus and was later categorized as a gam-

macoronavirus. Other pioneering work in animal health in

the 1940s and 1950s led to the identification of the etiological

agent of transmissible gastroenteritis of swine (TGEV) [3],

which was later classified as an alphacoronavirus, and murine

hepatitis virus (MHV) [4], a prototype betacoronavirus. In

humans, the first coronaviruses were discovered in the 1960s

through isolation in tracheal organ cultures. Some early

strains such as B814 isolated by the MRC Common Cold
www.sciencedirect.com 
Unit and OC38 from the NIH Laboratory of Viral Diseases

are no longer studied [5,6]. Other isolates named HCoV-

OC43 and HCoV-229E (which became members of the

betacoronavirus and alphacoronavirus genus respectively)

are still being studied to this day. The term ‘coronavirus’ was

proposed in 1968 to group these early human strains with

animal viruses such as IBV based on their shared character-

istic appearance in electron microscopy images [7]. Notably,

clinical isolates of coronavirus often grew poorly in cell

culture and underwent selection in embryonated eggs

(IBV) or mouse brain (OC43), with such laboratory-adapted

variants becoming the ‘go to’ coronaviruses for many years—

but these viruses were generally understudied.

Scientific and medical interest in coronaviruses changed

dramatically in 2003 with the outbreak of severe acute

respiratory syndrome (SARS). The causative agent

(SARS-CoV) was identified as a betacoronavirus having

an origin in bats, which emerged as a zoonotic agent via

masked palm civets and raccoon dogs—linked to expo-

sure of humans by these species in live animal markets

[8,9]. The SARS-CoV outbreak was contained relatively

rapidly, despite its initial global spread via travelers.

However, the impact of the outbreak was significant

and it stimulated a brief period of accelerated coronavirus

discovery with the identification of HCoV-NL63 and

HCoV-HKU1 [10,11], both of which are now considered

community-acquired respiratory (CAR) coronaviruses

along with HCoV-OC43 and HCoV-229E [9].

The next zoonotic coronavirus outbreak came in

2012 with Middle East respiratory syndrome (MERS),

caused by another bat-origin betacoronavirus (MERS-

CoV), in this case with a reservoir in camels [8,9].

MERS-CoV has continued to re-emerge at a low level

since 2012, with a focus of infection in certain countries in

the Middle East, with only occasional spread to other

countries via travelers. In late 2019, a novel coronavirus,

with similarity to SARS-CoV but much more extensive

transmission (SARS-CoV-2), emerged to trigger the

COVID-19 pandemic [8]. Most human coronaviruses

are now considered to be bat-origin, along with the

majority of animal coronaviruses of veterinary impor-

tance; however, certain betacoronaviruses (lineage A)—

including mouse hepatitis virus (MHV) an important

pathogenesis model—appear to have a rodent reservoir,

and gammacoronaviruses and the newly identified fourth

genus, deltacoronavirus, have an avian origin.

Virus entry basics
Viral receptors are key to our understanding of virus entry,

and much is now known about coronaviruses in this
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114 Virus entry
respect. This has been reviewed recently [12], and for

coronaviruses is encompassed by a subset of cell surface

molecules including the exopeptidases ACE2, DPP4 and

APN, CEACAMs and other non-specific attachment fac-

tors. This article is focused on post-receptor events in

virus entry, and specific receptors will only be referred to

in that context. Our knowledge of virus entry has a

foundation in classical cell biology, pioneered in the

1980s by Simons and Helenius among others [13]. Many

of these early studies used electron microscopy combined

with biochemical techniques to elucidate receptor-medi-

ated endocytosis as a primary means for virus entry into

the cell. During the 1990s and early 2000s, techniques of

molecular biology were applied to dissect out specific

entry routes into the cell, reviewed in [14]. However,

through these periods, coronaviruses received relatively

little attention.

Coronaviruses engage their receptor through their promi-

nent surface glycoprotein (spike or S) [15]. Compared to

the glycoproteins of most other viruses, S is large and

complex. It has been grouped as a class I fusion protein

based on its helical heptad repeats, but differs from most

class I fusion proteins in several key ways. Its proteolytic

activation occurs via two sequential cleavage events, in

many but not all coronaviruses [15]. The first cleavage

occurs at the boundary of the S1 and S2 domains (S1/S2)

and can be considered a dispensable ‘priming’ event that

typically occurs during S protein biogenesis and virus

assembly. The second cleavage (S2ʹ) is the critical

‘activating’ event for membrane fusion, as it liberates

what is formally an internal fusion peptide within the S2

domain [16�,17�]. These cleavage events control much of

virus entry and cell tropism; the CoV S is remarkably

‘plastic’ in its ability to take advantage of differential

protease expression and activation in different cells and

tissues. Our knowledge of S function was transformed in

2016 with the cryo-EM structure of MHV S [18�], which

paved the way for a ‘structural era’ of CoV entry [19].

However, during this time, a true understanding of the

cell biological aspects of CoV entry has remained sparse

and specific entry pathways have continued to be elusive,

in line with the highly plastic nature of the viral S protein.

Some notable insights include a study based on RNAi-

mediated knock-down of endocytosis-associated proteins

and pharmacological inhibitors, in which MHV entry was

demonstrated to be dependent on clathrin-mediated

endocytosis (CME) [20��]. Viral fusion events were less

associated with early endosomal marker (RAB5) but

occurred more readily in vesicles containing late endo-

somal (RAB7) and lysosomal (LAMP1) markers indicat-

ing a ‘late’ endosomal entry pathway. Another important

achievement was the realization that coronavirus recep-

tors are clustered into cellular membrane microdomains

along with their activating proteases [21]. Tetraspanins, as

their name implies are membrane proteins with four
Current Opinion in Virology 2021, 47:113–120 
transmembrane spans. Expressed by eukaryotes, they

contain two extracellular loops and play a central role

in maintaining the architecture of cellular membranes.

Studies on MERS-CoV have shown that the tetraspanin

CD9 played a critical role in partitioning membrane

microdomains that concentrate DPP4 receptors and

S-activating membrane proteases (TMPRSS2). As such,

tetraspanins are considered to be critical host factors that

determine the route of entry of coronaviruses into host

cells. In addition, the concept of ‘early’ and ‘late’ entry

pathways [21] appears to coincide well with a novel

feature of the CoV fusion peptide; that is, that it binds

calcium [22], a feature that may control its activity and

fusion from either the cell surface or endosomal calcium

stores. The molecular organization of the novel fusion

peptide is an area of active investigation; the finding of

two distinct subdomains (FP1 and FP2) is being explored

in relation to differences in calcium binding between

different coronaviruses [23�], with recent molecular

dynamics simulations confirming a critical role for calcium

in FP1-membrane interactions [24]. Another regulatory

feature is that the S2ʹ recognition site can be cryptic

[25,26], with small differences in the specific cleavage

site likely affecting the composition and activity of the

fusion peptide.

Coronavirus entry pathways: a plurality of
options
As a prototypical class I fusion protein, the HA of influ-

enza virus requires a protease priming event and low pH

for activation of the glycoprotein fusion machinery. How-

ever, the role of pH in S activation is a more indirect one

that aligns with its proteolytic activation by various host

proteases, some of which are pH sensitive and located in

distinct cellular compartments. A general theme has

emerged for the fusion-activating S2ʹ site, which is that

trypsin-like and type II serine proteases cleave at the cell

surface, whereas cysteine-type cathepsin proteases cleave

in intracellular compartments. This possibility of multi-

ple activation triggers sets up the concept of ‘early’ and

‘late’ entry pathways, that coincide with fusion at the

plasma membrane surface (or immediately upon endocy-

tosis) or within a more mature endosomal membrane

compartment.

This dual pathway theme reconciles many confounding

reports that showed in some cases a clear lack of depen-

dence on pH in entry, and in others, effective inhibition

of entry by lysosomotropic agents. After the SARS-CoV

outbreak in 2003, early electron micrographs appeared to

show direct plasma membrane entry of SARS-CoV into

Vero cells [27]. However this was contrasted by other

studies that showed SARS-CoV pseudovirion entry could

be inhibited by lysosomotropic agents [28], indicating

dependence on pH and thus a fusion pathway through an

endosome. However this group reported that S proteins

expressed at the cell surface could fuse readily with
www.sciencedirect.com
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adjacent plasma membranes at neutral pH when exposed

to trypsin [29], supporting a direct plasma membrane

fusion pathway too and a first hint at the possibility of

dual entry pathways. Later studies of feline coronavirus

(FCoV) fusion to supported bilayers using single particle

tracking showed that S-mediated membrane fusion of

pseudovirions required protease treatment and an acidic

environment to fuse, but the rate dependence on pH was

negligible [30]. MHV was also found to be less sensitive

to endosomal pH than influenza [20��]. These later stud-

ies suggested an indirect role for pH in entry, pointing to

its role being more critical for protease activity for

S cleavage and endosomal maturation than its interaction

with the S protein itself. As such, earlier observations of

entry inhibition by lysosomotropic agents are likely an

outcome of a reduction in cathepsin activity at higher pH

and inhibition of S cleavage when the virus takes the late

entry pathway.

As early as 2005, the hypothesis of dual entry pathways

was articulated by Matsuyama et al. [31�], where the

authors observed for SARS-CoV that the local protease

environment influenced its entry pathway, in particular,

the view that proteases produced in the lungs by inflam-

matory cells (such as elastase) could lead to many-fold

more efficient infection and the associated severe lung

damage observed in patients. Since that report, a number

of other papers have supported this notion of pathway

flexibility based on protease availability in the cellular

environment, focusing on proteases present in the respi-

ratory tract. Kam et al. [32], first pointed out that trans-

membrane serine protease (TMPRSS) localized in the

human airway can cleave SARS-CoV S. In an important

follow up to this paper, Shulla et al. [33�] showed a critical

requirement that both the virus receptor (ACE2) and

TMPRSS2 must be in the same cell plasma membrane

(co-planar) for infection by SARS-CoV in the early entry

pathway. The mutational study by Burkard and collea-

gues on MHV entry also showed that the S2ʹ protease

recognition sequence found in coronavirus spike proteins

were critical determinants governing the ‘early’ or ‘late’

site of intracellular fusion [20��]. This dual entry pathway

theme extends to MERS-CoV [34�] and further expands

to SARS-CoV-2 in recent work (see below).

Signaling events in coronavirus entry
Coronavirus entry is highly integrated with downstream

signaling events, which is currently an area of active

interest. A recent study on the early events of infection

of HCoV-NL63 in LLC-Mk2 and primary human airway

epithelial (HAE) cells has shed light on post-receptor

binding events of coronavirus entry [35��]. Following

binding to cell-surface heparan sulfate and the virus’

cognate receptor, ACE2, HCoV-NL63 virions were found

to internalize through clathrin coated pits. Viral entry was

sensitive to dynamin blockers indicative that it was

dependent on proper scission of clathrin coated vesicles
www.sciencedirect.com 
from the plasma membrane. The entry process generally

followed what was described for other coronaviruses such

as MHV [20��]. Some differences were observed in the

entry pathways used by HCoV-NL63 virions in LLC-

Mk2 cells compared to entry in HAE cells, with a strict

dependence for endocytosis for the former cells and the

possibility of an alternative, earlier entry route for the

latter. The authors suggested that the availability of

TMPRSS2 protease at the surface of HAE cells could

prime the spike protein for fusion before internalization,

however virus-cell fusion still required endocytosis and

acidification of endosomes in these cells. Rearrangements

of filamentous actin were found to be important to allow

virus-carrying endosomes to pass through the cellular

cortex. Knowledge of later events along the endocytosis

route has also been obtained by work on SARS-CoV

showing that the actin-binding protein ezrin could inter-

act directly with the C-terminal domain of its spike

protein at a post-fusion stage [36]. Functionally, ezrin

was found to inhibit SARS-CoV entry and infection,

possibly by hampering fusion pore opening and trapping

of incoming particles within the intracellular network of

filamentous actin. These findings echo the previously

identified negative regulatory role of the actin cytoskele-

ton, as entry at the plasma membrane may lead to

trapping of viruses in cortical actin, as shown elegantly

by Marsh and Bron, for the model alphavirus Semliki

Forest virus (SFV) [37].

Becauseof its role inendosomal acidification,vacuolar-type

H+ATPase (v-ATPase) has been established as a necessary

component for the endosomal route of entry that corona-

viruses undertake [20��]. However, the v-ATPase is not the

only ATPase implicated incoronavirusentryprocesses, as it

was shown that the Na+/K+-ATPase (sodium–potassium

pump) also played an important regulatory role in virus

entry and signaling, albeit through a very different mecha-

nism [38]. Inhibiting Na+/K+-ATPase expression or activ-

ity, in particular the ATP1A1 a subunit, potently decreased

infection by several coronaviruses including MHV. Inhibi-

tion using cardiotonic steroids ouabain and bufalin was

shown to block infection at an early stage during viral

internalization and inhibited viral fusion. In addition to

its ion-exchange function, Na+/K+-ATPase is also known to

participate in signal transduction, and it was demonstrated

that ouabain induces a conformation change in the a
subunit which activates phosphorylation of bound Src

protein resulting in recruitment of additional signaling

factors and downstream signaling events. This signaling

pathway plays a critical role in the early stage inhibition of

coronavirus entry by cardiotonic steroids, which is thought

to occur upstream of the inhibition by classical CME

inhibitors [38].

In addition to the study of signaling events directly

involved in coronavirus host cell binding and internaliza-

tion, early signaling pathways implicated in host innate
Current Opinion in Virology 2021, 47:113–120
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immune responses have also been an area of active

investigation. Virus entry into host cells often triggers

detection by innate immune sensors that detect pathogen

associated molecular patterns (PAMPs). Such sensing can

occur very early on during the course of infection, includ-

ing during endocytosis. In coronaviruses, this has been

well documented with SARS-CoV in vivo [39,40]. These

studies highlighted the importance of adaptor proteins

such as MyD88 and TRIF in regulating the mounting of

an effective host innate immune response against infec-

tions. Notably, TRIF, a signaling adaptor for TLR3, an

endosomal double stranded RNA sensor, was demon-

strated to be critical to mount a protective innate immune

response to SARS-CoV infection [40].

Among the various IFN-stimulated genes (ISG)

expressed during the course of a viral infection the

IFN-induced transmembrane (IFITM) family of pro-

teins, which are located in endosomes, have been impli-

cated in the restriction of a broad spectrum of enveloped

viruses, including coronaviruses [41]. In contrast, it

was demonstrated that for HCoV-OC43, IFITM2 and

IFITM3 enhance viral entry [42]. This unexpected find-

ing challenged the notion that the function of IFITMs is

limited to that of restriction factors, but they can actually

positively regulate viral entry in certain circumstances

[43]. In a more recent but similarly unexpected twist, it

was shown that the ISG lymphocyte antigen 6 complex,

locus E (LY6E), a known proviral factor for several viruses

actually restricts infection of a range of coronaviruses

including HCoV-229E, MERS-CoV, and SARS-CoV-2

[44��]. Mechanistically, it is thought that LY6E functions

by interfering with spike-mediated membrane fusion.

Recent advances in understanding the entry
mechanisms of SARS-CoV-2
Unlike many of the so-called community-acquired respi-

ratory (CAR) CoVs [9], SARS-CoV-2—as with the zoonotic

SARS-CoV and MERS-CoV—is readily isolatable in cell

culture [9], which has greatly facilitated the study of its

entry process compared to the historical CAR CoVs. Vero

E6 (primate kidney) and Calu-3 (human lung epithelial)

cells have emerged as the standard cell lines for entry and

infection studies, along with Caco-2 cells (human intestinal

epithelial). These cell lines are used in part because of the

expression of what has rapidly became established as the

SARS-CoV-2 receptor (ACE2) [45��,46��,47��], which has

been extensively studied in the context of predicted ‘spill-

over’ from animal species [48]. The cell lines differ, how-

ever, in the expression of the proteases needed for corona-

virusS fusionactivationandthis aspectofvirus entryswiftly

became a focus of early work on this newly emerging virus.

Cell biological studies also rapidly incorporated sequence

data showing the presence of a furin-like cleavage site

at the S1/S2 interface—a site notably missing from

SARS-CoV and related lineage B betacoronaviruses

[49,50�]. TMPRSS2 quickly became established as a
Current Opinion in Virology 2021, 47:113–120 
critical activating protease [51] and can play a major role

in directing the route of virus entry [52], although other

TTSPs are also likely involved [53�]. TTSPs are presumed

to act at the fusion peptide-proximal S2ʹ site. TMPRSS2 is

expressed in Calu3 (and Caco-2) cells and data show that it

can work effectively to activate virus entry in these cells

following the priming event at the S1/S2 site. In contrast,

Vero E6 cells (and engineered cells such as 293T/ACE2) do

notexpress TMPRSS2 or related TTSPs, and so in this case

virusentry is cathepsin-dependent—presumably occurring

though endosomal compartments [54��]. As such, the

SARS-CoV-2 entry pathway broadly mirrors that of

SARS-CoV, with the caveat that SARS-CoV S does not

appear to have an equivalent ‘priming’ requirement at

S1/S2. SARS-CoV-2 entry also fits well with the ‘early’

and ‘late’ pathway model proposed by Gallagher. Entry

specifically via CME has been proposed as a route of

internalization of SARS-CoV-2 in 293 T/ACE2 cells [55];

however, as discussed by the authors there are conflicting

reports regarding specific endocytosis pathways for SARS-

CoV and for coronaviruses in general, and so data need to be

interpreted cautiously. Another key set of findings comes

from a CRISPR screen where RAB7A and genes involved in

cholesterol biogenesis, among others, were identified as

critical components of the SARS-CoV-2 entry pathway

[56], indicating a key role for modified late endosomes—

in this case using a human lung A549 cell line expressing

ACE2. While many such key findings will continue to

emerge, it is always important to remember that the specific

route of SARS-CoV-2 entry may be highly dependent on

the cell type being infected [57�], based on the highly

plastic nature of the viral spike protein.

Virus entry inhibitors as coronavirus
therapeutics: application to COVID-19
Development of novel therapeutic strategies can often

follow an understanding of virus entry pathways. As with

many viruses, specific inhibition of the receptor interac-

tion, along with less specific inhibition of membrane

fusion events are logical points in virus entry to target

and there are examples of each which have been studied

for COVID-19 [58–61]. While these remain promising

approaches, it is the inhibition of S protein cleavage-

activation that is closest to therapeutic use in humans.

Following the early demonstration that camostat mesy-

late (clinically approved in Japan for pancreatitis) inhibits

TMPRSS2-mediated SARS-CoV-2 entry in Calu3 cells

[45��], this drug is now in clinical trials for COVID-19.

Other proteases inhibitor possibilities include cathepsin

and furin inhibitors, but the plasticity of S activation is in

part due to redundancy in the activating protease and so

overly specific drugs are likely to be unsuccessful;

camostat and the related FDA-approved nafamostat

[62] inhibit a range of TTSPs in addition to TMPRSS2

and so provide a solid platform for further drug discovery.

Despite initial claims, chloroquine (which raises the

low pH of endocytic compartments, and can effectively
www.sciencedirect.com
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block virus entry), has not proven effective at treating

COVID-19.

Inhibition of signaling events in virus entry provide

another rich source of therapeutic discovery. Endosomes

are becoming recognized as calcium stores and modula-

tion of calcium channels such as TPC2 using tetranidine

and associated channel-modulating PIKfyve inhibitors

[54��,63] have been shown to be inhibitory to SARS-

CoV infection, as have a selection of calcium channel

blockers. As we learn more about SARS-CoV-2 infection,

more candidate therapeutics will almost certainly emerge

that target virus entry.

Perspectives
As discussed in this article, the coronavirus S protein is

remarkably plastic, allowing a plurality of options for

entry into host cells that incorporate an overlapping triad
Figure 1

Current Opinion in Virology

A coronavirus entry triad.

Coronavirus host cell entry is determined by a triad of factors: receptor

binding and protease cleavage work in concert with the ionic

environment of the cell/subcellular compartment to facilitate membrane

fusion. Coronavirus spike proteins are extremely ‘plastic’ and can

respond to a variety of cues encountered during virion entry enabling the

use of either the ‘early’ or ‘late’ pathway, depending on the host cell type

and microenvironmental conditions. NTD = N-terminal domain of S1,

CTD = C-terminal domain of S1.

www.sciencedirect.com 
of factors: receptor binding, protease cleavage, and ions

enabling membrane fusion (Figure 1). In the context of an

emerging virus such as SARS-CoV-2, while changes in

receptor binding and membrane fusion clearly play their

part, it seems to be the priming and activation of

S through host cell proteases that drives the process of

virus evolution and adaptation. This is perhaps most

strikingly demonstrated by the findings from many

research labs that SARS-CoV-2 rapidly adapts to growth

in Vero cells via small deletions in its S1/S2 priming site,

with one outcome being a reduction of virus transmission

in animal models [64]. While coronaviruses have always

adapted to cell culture, and there are several examples

where this has occurred by selecting alternative proteases

for virus entry, the rapidity of selection seen for SARS-

CoV-2 is unprecedented—and also in line with certain

sequences derived from non-respiratory tissues from

autopsies [65��], leading to questions about the relevance

of cell or tissue-type selection of novel variants along with

utilization of their cognate proteases in the context of viral

pathogenesis [66].

It is now three decades since the term Emerging Virus

was coined by Stephen Morse. In his classic text [67],

coronaviruses—while mentioned—are certainly not one

of the featured pathogens. In the intervening time and

especially during 2020, coronaviruses have emerged as

our most prominent public health threat. While much

remains to be learned about these viruses, it is hoped that

the systematic analysis of their biology since being dis-

covered almost 90 years ago will provide a solid founda-

tion for the much-needed resurgence of coronavirus

research that will undoubtedly occur in years to come.
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