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Abstract: Defects introduced during the growth process greatly affect the device performance
of two-dimensional (2D) materials. Here we demonstrate the applicability of employing
machine-learning-based analysis to distinguish the monolayer continuous film and defect areas
of molybdenum disulfide (MoS2) using position-dependent information extracted from its Raman
spectra. The random forest method can analyze multiple Raman features to identify samples,
making up for the problem of not being able to effectively identify by using just one certain variable
with high recognition accuracy. Even some dispersed nucleation site defects can be predicted,
which would commonly be ignored under an optical microscope because of the lower optical contrast.
The successful application for classification and analysis highlights the potential for implementing
machine learning to tap the depth of classical methods in 2D materials research.

Keywords: 2D materials; machine learning; random forest algorithm; Raman spectrum

1. Introduction

Transition-metal dichalcogenides (TMDCs) are a class of layered materials analogous to graphene,
which have aroused immense interest in the last decade as a promising platform for electronic and
optoelectronic applications in the post-Moore era [1,2]. The adjacent layers in these materials are
held together by weak van der Waals forces but strong covalent bonding forces inside the layer,
making it possible to cleave or synthetize to the limit of a monolayer. Even though TMDCs have been
studied for decades in their bulk form, the properties of monolayers and few-layers with ultrathin
thickness differ dramatically from the macroscopic material characteristics, being the biggest reason
for renewed interest in this material class. Compared to their bulk counterpart, monolayers of many
TMDCs (such as MoS2, WS2, WSe2 and MoSe2) are especially exciting since they are direct band gap
semiconductors, making them ideal candidates to replace silicon for device applications, such as
light-emitting diodes, photodetectors and photodiodes [3]. The chemical vapor deposition (CVD)
method provides a convenient and controllable way to grow high-quality and large area 2D materials
at a reasonable cost, which has been earmarked as the process that will deliver scalable production [4,5].
Nowadays, continuous films of 2D materials compatible with current silicon-based microfabrication

Nanomaterials 2020, 10, 2223; doi:10.3390/nano10112223 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0003-4206-8751
https://orcid.org/0000-0001-9499-8892
http://www.mdpi.com/2079-4991/10/11/2223?type=check_update&version=1
http://dx.doi.org/10.3390/nano10112223
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2020, 10, 2223 2 of 13

processes are greatly needed for industrial electronic and optoelectronics applications [6–8]. However,
the present uniformity of as-grown monolayer films is still inadequate, such as structural differences
and poor controllable layer distribution, etc. It is a remarkable fact that the introduced cracks that
appear in synthesis processes can adversely affect the device performance and directly increase the
chip failure risk [9]. These factors greatly limit the further applications of these materials. As a
consequence, it is essential to check the uniformity of the obtained 2D materials. It is necessary to
locate and distinguish the monolayer continuous films and the random crack areas, as well as bilayer
areas prone to be introduced in the growth process, in order to better understand and improve the
growth process [10].

To identify these areas with thickness differences, the most typical methods are atomic force
microscopy (AFM) [11,12], optical microscopy (OM) [13–15], differential reflectance spectra [16,17]
and Raman spectra [18,19]. AFM is a versatile method used to measure the thickness of 2D materials;
however, the materials are easily destroyed due to the sliding of the tip on the sample surface when
working on contact mode, while the tapping mode takes a relatively long time to measure even a
small area [20,21]. Time-domain terahertz spectroscopy is an emerging technique for imaging 2D
materials, but the comparatively large spot size hinders the identification of laterally small flakes [22].
In such a situation, an accurate, versatile and nondestructive method is highly desirable not only
in fundamental research but also for practical applications. Recently, machine learning approaches
have attracted considerable attention for solving various problems in materials science and optical
engineering. OM using red–green–blue (RGB)-based optical contrast combined with machine learning
has shown emerging potential in identifying and determining the thicknesses of 2D materials. Lin et al.
first used the support vector machine (SVM) method to learn the contrast information of optical
images to determine the layer numbers of graphene and MoS2 [23]. Later, clustering analysis [24]
and the convolutional neural network (CNN) [25–27] also joined in this stage play, expanding the
identification types and application scenarios of 2D materials. However, because the accuracy of using
optical images to determine the layer number based on machine learning is not too high, the previous
researchers mainly regarded it as an initial screening to reduce manual work [25]. The attempt to use
photoluminescence (PL) imaging and computer vision techniques to analyze monolayer TMDCs also
enlightened us to combine the research methods of intrinsic material properties with new technologies
to obtain information about molecular structure and layer number simultaneously [28]. Nowadays,
based on the relation between the Raman frequency shifts of the E1

2g and A1g peaks (TMDCs) and those
of the 2D and G peaks (graphene), Raman spectroscopic mapping has been widely used to identify the
thickness and confirm the uniformity of 2D materials [29–32]. As a high-resolution imaging technique,
it does give us more information to study the nature of matter. However, it is difficult to identify these
defects in the selected area and at the same time simply using one-side Raman frequency shifts. Hence,
we consider solving this problem by introducing a machine learning approach to use more Raman
features for the simultaneous identification.

To our knowledge, we are the first to present a recognition method to distinguish the monolayer
continuous film and random defect areas of 2D semiconductors using the machine learning method
with Raman signals. Compared to other unsupervised techniques, the supervised machine learning
represented by random forest can not only reduce the computational expense and time but also
achieves high accuracy. In the introduction process for the random forest algorithm, we use several
Raman characteristics extracted from spatial mapping results as the input variables and the sample
thickness type as the output variable for generating the decision trees. The successful application of a
machine learning approach to the classification and analysis of the CVD-prepared MoS2 highlights the
potential of this method for 2D materials research.
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2. Materials and Methods

2.1. Synthesis of Monolayer MoS2 Continuous Film

The monolayer MoS2 continuous film mentioned in this paper was synthesized via the CVD
method similar to our previous work [33]. The film was grown using MoO3 powders (99.97% Sigma
Aldrich, St. Louis, MO, USA) as the molybdenum source and sulfur powders (99.98%, Sigma-Aldrich,
St. Louis, MO, USA). First, MoO3 and sulfur powders were loaded into two separate Al2O3 crucibles,
which were located at the center and the upstream of a dual-temperature-zone tube furnace with a
diameter of 100 mm. A piece of Si substrate with thermally grown 300-nm-thick SiO2 was loaded at the
downstream. Before the film growing, the quartz tube was evacuated to 4000 Pa at room temperature.
Then, the temperature of the MoO3 was increased to 670 ◦C and the temperature of the sulfur was
increased to 190 ◦C with 50 sccm of argon gas, and maintained for 10 min. Finally, the furnace was
naturally cooled down to room temperature.

2.2. Characterization and Measurements

We carried out PL, AFM and Raman measurements. The PL signals were collected by a confocal
microscopy setup (LabRAM HR Evolution, Horiba Co., Kyoto, Japan) with a 532 nm continuous-wave
(CW) laser of a frequency-doubled Nd:YAG laser. The height profiles were measured using AFM
taken by an FM-Nanoview6800 (FSM-Precision Co., Suzhou, China) in tapping m ode. Raman spectra
were obtained using the same confocal microscopy system equipped with a programmable scanning
stage with a 532 nm CW laser (Changchun New Industries Optoelectronics Tech. Co., Changchun,
China) as the excitation source. We chose the 100× objective lens (MPLFLN 100×, NA = 0.9) and
set the laser power below 1 mW to avoid local heating and undesirable oxidation of the sample.
The scanning step was set as 0.2 µm and the integration time was also carefully optimized to obtain an
adequate spectrum resolution and a satisfactory signal-to-noise ratio, while maintaining acceptable
data acquisition duration and avoiding drift.

3. Results and Discussion

As shown in Figure 1a, the MoS2 monolayer continuous film has a relatively smooth surface.
The thickness of the monolayer region is around 0.88 nm as confirmed by AFM, which corresponds
to an interlayer S–Mo–S layer [19]. The heights of the undertint line and dark triangle areas were
found to be crack and bilayer defects, respectively. The PL spectra in Figure 1b show two peaks at
670 nm and 620 nm corresponding to A (1.9 eV) and B (2.0 eV) direct excitonic transitions with the
energy split from the valence-band spin–orbital coupling, respectively. The bilayer shows a decline in
PL intensity compared with the monolayer [34]. As shown in Figure 1c, two Raman-active modes,
E1

2g and A1g, exhibit significant differences, and the Raman frequency difference of the monolayer

sample is ~17.9 cm−1, while that of the bilayer sample is ~21.1 cm−1. This is consistent with previous
results for mechanical exfoliation (ME)-prepared and CVD-prepared samples, implying this difference is
universal between samples obtained from different preparation methods [35–37]. The cracks nucleated
at sulfur vacancies propagate along the energy-favored zigzag directions upon the relatively fast
temperature-drop-induced thermal strain, which results in an orientation-specific fracture behavior [38].
In addition, the appearance of an E1

2g mode proves that all the monolayer and bilayer samples are
2H-MoS2 [39]. In the completely exposed internal area of the crack, the Raman signal of the Si substrate
is mainly collected. The peak around 520 cm−1 is attributed to the Si mode. Similar to the case of
multilayer graphene, the Raman signals from the Si substrate can be absorbed by the MoS2 flakes,
which makes the intensity of the Si mode monotonously decrease from the bare substrate to the
monolayer and bilayer MoS2 flakes [40,41]. In Figure 1c, the intensity of the Si mode is normalized to
display the spectral information more intuitively like the previous work [42].
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Figure 1. (a) Optical image of the MoS2 sample. The inset shows the height profile, and the
atomic force microscopy (AFM) profile is taken along the gray line drawn on the optical image.
(b) Photoluminescence (PL) spectra of the monolayer and bilayer areas. (c) Raman spectra of the
monolayer, crack and bilayer areas.

The pixels of the optical image in Figure 1a were reduced to be consistent with the collection
points of the spectra by bicubic sharper process. Then, the reserved pixels could be clustered using the
k-means algorithm [43], which can partition all pixels into three clusters with each cluster having a
mean value, and pixels in one cluster are closest to the corresponding mean value among the cluster
means [44]. Combined with the AFM heights, three regions with crack, monolayer and triangle bilayers
can be identified as shown in Figure 2a. When using k-means clustering to classify different regions of
the optical image, in addition to ensuring sufficient optical contrast, the clustering also depends on the
AFM data to ensure effective classification. Nowadays, spectroscopy is the backbone of research in
such diverse fields, ranging from physics to engineering, chemistry and biology [45]. Compared to
relying on AFM to determine thickness, the more convenient way is to use the potentiality of classical
spectroscopy research methods to obtain information about molecular structure, chemical composition
and even layer number simultaneously.

In the research methods for 2D material properties, Raman spectroscopy is the most commonly
used technique in many fields, since it allows the essential characteristics of matter that are invisible
by standard OM and AFM to be viewed [46]. Ultralow-frequency Raman spectroscopy has been
used to reliably determine layer numbers of TMDC flakes, but this technique requires expensive
adapters and nonstandard equipment setup [47]. Therefore, it is of vital importance to look for a
suitable technique using the standard Raman system. Generally, high-frequency Raman peaks of
lattice vibrations (i.e., phonons) in TMDCs exhibit several prominent features, including frequency,
intensity and full width at half maximum, which contain useful information in characterizing the
physical and chemical properties of the materials. Figure 2b,c show the Raman spectral mapping of the
E1

2g and the A1g peaks. From these two mappings, we can find the differences between the monolayer

and bilayer areas. The frequency of the E1
2g peak decreases, while that of the A1g peak increases with

increasing layer number. The observed blueshift of the A1g peak originates from the constraint of
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atom vibration by the interlayer van der Waals force in MoS2, whereas the stacking-induced structure
changes or long-range Coulomb interlayer interactions account for the redshift of the E1

2g peak [18].

Therefore, as shown in Figure 2d, the Raman frequency difference between the E1
2g and A1g peaks can

be used as a fingerprint feature to identify the monolayer and bilayer MoS2 regions of the flakes [19].
However, the crack area cannot be identified straightforwardly by only using the frequency shifts of
the E1

2g or A1g peaks.Nanomaterials 2020, 10, x 5 of 13 
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Figure 2. (a) K-means algorithm clustered image for the selected sample with monolayer (cyan), bilayer
(dark cyan), and crack (light cyan) regions. Raman spectral mapping of the (b) Pos(E1

2g) and the (c)

Pos(A1g). (d) Raman spectral mapping of the frequency difference between the Pos(E1
2g ) and the

Pos(A1g).

The great discrepancies in Raman intensity from crack to monolayer inspired us to consider more
features extracted from Raman spectra to realize the simultaneous identification of these three regions.
It is worth noting that when the detection position controlled by the scanning stage moves to the
boundary of two regions, i.e., the junction of the crack and monolayer, it will inevitably collect signals
both from the crack and monolayer MoS2 at the same time, which makes it difficult to classify different
areas based on Raman intensity by setting the threshold manually. We chose the average value of
the E1

2g peak intensity of a large monolayer MoS2 area as the reference intensity, and all thresholds

(a fixed percentage) were set based on this value. The Raman spectral intensity mappings of the E1
2g

peak are shown in Figure 3a–c and the thresholds are 68, 70 and 72%, respectively. It is not difficult
to see that when the threshold changed slightly, the predicted information of the crack area and the
monolayer area also changed. This means that an effective evaluation tool is lacked for judging the
rationality of the artificially set thresholds. In addition, the monolayer sample generally has two
Raman peaks, E1

2g and A1g, under the excitation of green or blue lasers with proper power. When using
the same intensity threshold of the A1g peak to make judgments, there are also some differences in
the conclusions drawn compared to the E1

2g peak, as shown in Figure 3d–f, which further increase
the difficulty of manual processing. The rising machine learning approaches can help to successfully
extract and analyze the multiple Raman characteristics among many samples to address this problem.
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(a,d) 68%, (b,e) 70% and (c,f) 72% of the monolayer signal, respectively.

The introduction of machine learning enables computers to tackle problems involving knowledge
of the real world and make decisions that appear correct. Here we implement the random forest
algorithm (Figure 4) to search for a hidden correlation that may exist between the sample types and
the characteristic data obtained from the spatial Raman mapping. This method has been successfully
applied on a PL spectra study [48]. Compared to other classification procedures, the random forest
machine learning approach has the advantage of high classification accuracy [49]. Furthermore, it can
determine variable importance and model complex interactions among predictor variables [50]. Here,
we define zi, including five types of spectral information (α, β, γ, δ and ε) as the input variables:
α and β are the intensity and frequency of the E1

2g peak, respectively; γ and δ are the intensity and
frequency of the A1g peak, respectively; ε is the Raman frequency difference between the two peaks
previously mentioned. The sample types of crack, monolayer and bilayer are defined as output
variables, which are acquired from the k-means algorithm results. The ZOrig = [z1, z2, z3, . . . , zi, . . . ,
zk] are all training data for machine learning. Bootstrap sampling is used to expand a moderate
number of data sets into a large volume of data sets required to improve the classification accuracy,
which is a resampling technique used to estimate statistics on a population by sampling a dataset
with replacement. Concretely speaking, we create n decision trees by generating new data sets Z1,
Z2, . . . , Zn, using n data sets randomly extracted from the original ZOrig with duplication permitted.
For example, Z1 = [z3, z7, z16, zg, . . . , zi] and Z2 = [z5, z5, z15, . . . , zk], where g and i are integers (≤k),
and some data are allowed to appear multiple times (e.g., z5 appears twice in Z2). As a result, bootstrap
sampling can maintain the original distribution of the data and make the generated training sets
independent of each other, thereby significantly improving accuracy [51].

Random forest is an ensemble learning algorithm that uses a group of decision trees built by
the subtraining sets as weak individual learners of randomly sampled training data. Each decision
tree has multiple nodes, and the threshold values of the variables at each node are computationally
determined to yield the largest information gain. Generally speaking, the greater the information
gain, the greater the “purity improvement” obtained using this feature variable. Since one individual
decision tree typically exhibits high variance and tends to overfit, random forest can achieve reduced
variance by combining diverse trees, hence yielding a better model overall. Moreover, the out-of-bag
data that are not used in the training process for each decision tree can be used to estimate the skill and
effectiveness of the trained random forest model. The whole algorithm is conducted in Python using
the open-source pandas and scikit-learn machine learning libraries [52].
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Figure 4. Basic architecture of the learning procedure in the random forest method. Each small square
represents a spatial measurement point carrying Raman characteristic information. The subtraining
sets from 1 to n are acquired by a bootstrap sampling process, and then decision trees based on these
subtraining sets can be built. The out-of-bag data of each tree can be used to estimate the effectiveness
of the trained random forest model.

Figure 5a shows the prediction procedure for the random forest method. After generating the
whole forest, new samples from different positions carrying the input Raman characteristic information
will be judged through the formed decision trees one by one. Since the training sets are different from
each other, they may give different judgments for one sample by different trees. The final output result
is generated by the democratic majority voting which can acquire a dramatically reduced variance.
After the optimal parameter combination is fixed, it can immediately give a classification result for the
new input data. The accurate measurement of Raman spectra and the use of a sufficient number of
training sets enable the constructed random forest to obtain a relatively high accuracy rate. As shown in
Figure 5b–e, we choose different sample areas on several pieces of substrate to test our model, and the
classification results via the random forest method are successful in distinguishing the monolayer,
crack and bilayer areas. In the central areas of these three regions, random forest can provide reliable
results. However, due to the relatively small number of detection points at the boundary regions,
the result accuracy is not particularly high. Compared with the Raman mapping of the input variable
ε in Figure 5b, we find that the proposed model successfully retains the accuracy of Raman shifts
to effectively identify monolayer and bilayer areas. Benefitting from the high-speed computing
power of the computer, the random forest algorithm can be easily and continuously strengthened
by increasing the amount of data. As the number of learning data of insufficient sample types are
increased, the recognition accuracy is expected to be further improved [48].

Furthermore, some dispersed dots in Figure 5b are easily predicted, which would be commonly
ignored under optical microscope because of the lower optical contrast. As reported in the previous
work [53], several stages were observed during the MoS2 atomic layer growth. Initially, some small
domains were nucleated at random locations on the substrate. Then, the nucleation sites continued to
grow and formed boundaries when two or more domains met, resulting in partially continuous films.
The as-grown films are predominantly monolayer, with small areas consisting of two or more layers at
the preferred nucleation sites [42,53], which explains the manifested bilayer Raman characteristics of
these areas located on the monolayer continuous film. This suggests that prediction via the random
forest possesses the application potential to view subtle differences through the material’s basic features.
By using a shorter wavelength laser and a larger numerical aperture objective, it is expected that
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the spatial resolution will be further improved, which makes it possible to identify defects that are
difficult to find and/or determine only by optical images. A smaller laser spot is ideal for analyzing
the microscopic characteristics of the sample. In theory, the higher the spatial resolution, the more
precise the micro-area spectral information that can be obtained. The random forest algorithm is not a
conservative and fixed tool and it can be flexibly adjusted according to our actual needs to adapt to
different scenarios. During the Raman spectra acquisition process, it is better to ensure the stability of
the experimental conditions, so as to ensure the accuracy to the greatest extent.
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Figure 5. (a) Basic architecture of the prediction procedure in the random forest method. The new
samples from the untrained data are judged through each tree one by one, and the final output results
are acquired by the majority voting process. (b–e) The predicted pictures for different samples with
crack (grown), monolayer (grass green) and bilayer (dark green) areas. The dispersed dots shown in
Figure 5b are predicted to be bilayer. The inset figures in Figure 5b show the corresponding optical
micrograph (left inset) and Raman mapping of the input variable ε (right inset). The other inset figures
show the corresponding optical micrographs. Scale bars indicate 1 µm.

To further demonstrate the performance of our built random forest model, the receiver operating
characteristic (ROC) and precision-recall (PR) curves are analyzed for crack/others and bilayer/others,
respectively [25]. We use pre-labeled new data that does not appear as the testing set to calculate
the accuracy, which is used to evaluate the performance of the trained model. The ROC curve is a
popular method for accuracy assessment because it is comprehensive, understandable and visually
attractive [54,55]. This method uses the area under the curve (AUC) for quantitative assessment,
which plots 1-specificity on the x-axis against sensitivity on the y-axis. The range of the AUC varies from
0.5 to 1.0 and a perfect predictor gives an AUC score of 1, while a predictor that makes random guesses
like coin tossing has an AUC score of 0.5. While the PR curve shows the trade-off between precision
and recall for different thresholds. A system with high recall but low precision will return many results,
but most of its predicted labels are incorrect in comparison to the training labels. However, a system
with high precision but low recall is just the opposite, returning very few results, but most of the
predicted labels are correct in comparison to the training labels. An ideal system with high precision
and high recall will return many results, with all results labeled correctly.

As shown in Figure 6a, when using only the Raman frequency difference between the E1
2g and

A1g peaks, the AUC is 0.9891 for bilayer/others but is only 0.7543 for crack/others, which means that
the Raman frequency difference can recognize bilayer samples extremely well but is not good for the
cracks. Uniformly, the PR curves in Figure 6b also prove this point, in which the average precision (AP)
values are 0.9895 and 0.7167 for bilayer/others and crack/others, respectively. However, when taking all
the input variables (α, β, γ, δ and ε) into consideration, the numerical values of AUC and AP are 0.9852
and 0.9867 for crack, and 0.9902 and 0.9914 for bilayer, which means that this technique based on the
random forest method can successfully characterize and confirm the monolayer, crack and bilayer
areas at the same time.
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only use the characteristic of the Raman frequency difference. Cyan and green curves show the ROC
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the situation of a random guess. (b) Precision-recall (PR) curves for the crack and bilayer identification
only use the characteristic of the Raman frequency difference.

Generally, unsupervised techniques, such as CNN and U-Net, are more robust, but they require
immense training data and higher computing resources. However, supervised machine learning,
like SVM and random forest, deals with prelabeled training data, which not only reduces the
computational expense and time but also achieves high accuracy especially when the dimension of the
feature vector is not very large [56]. Compared with using the optical contrast via pixel intensities of
red, green and blue, the Raman features can directly describe and reflect the intrinsic characteristic
differences in materials, which means that even a reduced number of training sets can also help us to
get relatively accurate results in a short time. Among the machine learning algorithms, the random
forest algorithm has been proven to have unique potential in processing spectral data, with benefits
due to its high accuracy and strong resistance to over-fitting. The introduction of machine learning
makes it possible to continuously learn in spectroscopy research.

This work is a preliminary step and an attempt to combine machine learning methods with
traditional Raman spectroscopy, but it has great migration possibilities for other 2D materials and
even bulk materials. Since the Raman spectra of various defects in imperfect 2D materials exhibit
different changes, we expect that this method will play a greater role in the characterization of more
complex material property control engineering, such as doping, oxidation, mechanical deformations,
etc. Machine learning algorithms can be used to build databases under different equipment and
experimental conditions, which can better help us analyze and compare experimental data. At the same
time, the abundant information in the spectra makes it possible for machine learning to solve different
problems by extracting different multi-dimensional variables. The power of machine learning is rapidly
transforming modern science, and we can anticipate more exciting results stemming from this interplay
between machine learning and the physical sciences [57]. Nowadays, the confluence of many traditional
and emerging disciplines, for example, nano-manufacturing, big data technology, computer science
and artificial intelligence, is expected to lead the trend in the theoretical and experimental advances in
exploring 2D materials, and usher in abundant research opportunities for developing novel 2D devices
and systems.

4. Conclusions

In this study, we demonstrated an effective method based on a random forest algorithm to classify
monolayer MoS2 continuous film, random crack and bilayer areas from the variables extracted from
Raman spectra. The random forest method was used to analyze multiple Raman features to identify
samples, solving the problem of ineffective identification of samples by just one specific variable. It can
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successfully determine the importance of a certain characteristic variable and some dispersed defect
dots can also be predicted, which would commonly be ignored under an optical microscope. By taking
peak intensity and frequency information into consideration at the same time, a high accuracy rate is
obtained. The method developed in this work can also be used for other 2D materials and can provide
a valuable reference for material characterization in several fields.
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