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Abstract

We effortlessly perform reach movements to objects in different directions and depths. However, how networks of cortical
neurons compute reach depth from binocular visual inputs remains largely unknown. To bridge the gap between behavior
and neurophysiology, we trained a feed-forward artificial neural network to uncover potential mechanisms that might
underlie the 3D transformation of reach depth. Our physiologically-inspired 4-layer network receives distributed 3D visual
inputs (1st layer) along with eye, head and vergence signals. The desired motor plan was coded in a population (3rd layer)
that we read out (4th layer) using an optimal linear estimator. After training, our network was able to reproduce all known
single-unit recording evidence on depth coding in the parietal cortex. Network analyses predict the presence of eye/head
and vergence changes of depth tuning, pointing towards a gain-modulation mechanism of depth transformation. In
addition, reach depth was computed directly from eye-centered (relative) visual distances, without explicit absolute depth
coding. We suggest that these effects should be observable in parietal and pre-motor areas.
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Introduction

Aiming to an object in three-dimensional (3D) space requires

the transformation of the early visual representation of hand and

target position into a desired movement vector specified relative to

the effector, i.e. the arm [1,2,3,4]. This visuomotor transformation

has been well characterized experimentally in the azimuth/

elevation dimensions [1,5,6,7,8,9] and the theoretical processes

involved [1,10,11,12,13,14,15,16] as well as the underlying neuro-

physiology [2,17,18,19] is fairly well understood. However,

Blohm and Crawford [1] have recently shown that the distance

(i.e. radial depth) of the hand and the target is a major component

that has to be taken into account in the visuomotor transformation

process. Much less is known about how and where depth

information is transformed from early visual coordinates into

effector-centered coordinates in the brain [20]. In particular, no

model predictions exist regarding what neural properties

electrophysiologists might expect to find at the tip of their

electrodes when recording from depth transformation areas

[20,21,22,23,24,25,26].

In contrast, the encoding of object distance in the early visual

system is relatively well understood [27,28,29,30,31,32,33,34,

35,36,37]; retinal disparity selective neurons have been found in

many areas of the striate and extra-striate cortex and provide

visual distance information relative to fixation distance, i.e. relative

distance as opposed to the absolute distance of the object relative

to the body. This information is transmitted to the posterior

parietal cortex (PPC), an area believed to be involved in the

visuomotor transformation for reaching [2,17,18,19]. Pioneering

electophysiological studies recording from the PPC have found

that in addition to azimuth/elevation receptive fields, neurons are

also modulated by fixation distance (vergence) as well as

target/hand depth, pointing towards a code of 3D position

[20,21,22,23,24,25,26]. In addition, disparity fields in PPC have

been reported to at least partially shift with vergence angle [23,26];

since a perfectly shifting disparity field represents the summation

of relative distance and fixation distance to generate absolute

distance, these results are an indication of the PPC contribution to

the relative-to-absolute distance transformation.

On the motor planning side, it is known that neurons in the

pre-motor cortex have 3D tuning fields corresponding to all 3

spatial dimensions, whether encoded explicitly in spatial co-

ordinates or implicitly in a muscle-related reference frame

[8,38,39,40,41]. In other words, a neuron in these areas is

preferentially active for movements in a certain direction in 3D

space and its activity drops as the angle of the movement from the

preferred direction increases.

The lack of theoretical investigations has prevented neurosci-

entists from searching for signals specifically related to the

visuomotor transformation of depth. The only theoretical study

investigating depth coding focused on distance representations

[42]. However, one finding from the study is relevant to the

visuomotor transformation of reach depth, i.e. vergence-related

gain modulation. Gain modulation of a neuron does not change its

receptive field location or shape but up- or down-regulates its

overall activation, typically as a function of body geometry signals

such as eye or head orientations. It is known to contribute to

motor planning, sensory-motor transformations and multi-sensory

integration [14,15,16,43,44]. Within a population of neurons, gain

modulation can alter the relative contribution of each neuron to a

certain computation resulting in very different overall population
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outputs [44]. The goal of the present paper is to provide the

theoretical foundations of how distance (i.e. motor depth) can be

accurately computed in effector-centered coordinates through

distributed processing from distance encoded in a visual reference

frame. Moreover, our aim was to provide testable predictions as

to what properties neurons involved in this process might display.

To this end, we trained a physiologically inspired artificial feed-

forward 4-layer neural network to perform the 3D reference frame

transformation for reaching. To train this network, we used a 3D

geometrical model describing the analytical relationship between

sensory inputs and the ideal 3D reach [1]. The properties of this

network with respect to the more classical approach of angular

direction information have been analyzed elsewhere [13]. Here,

we will specifically focus on the depth-related processes of this 3D

visuomotor transformation for reaching. We analyzed the

modulation of the network units’ receptive fields with distance-

related signals (such as vergence, hand distance and target

distance) and show that our model reproduces PPC neuron

properties. Based on this analysis, we make specific testable

predictions as to how fixation depth, reach distance, retinal

disparity as well as horizontal eye orientation might influence

depth-related neuronal activity in areas such as the parietal and

pre-motor cortices, known to be involved in the reference frame

transformation for reaching [2,18,19]. Finally, we propose a

potential general mechanism by which relative distances could be

directly transformed into motor depth without requiring explicit

absolute depth codes.

Results

The goal of this study was to propose potential physiological

properties of neurons that are involved in the 3D visuomotor

transformation of depth for reaching. Therefore, we built a 4-layer

artificial neural network (Figure 1) designed to mimic the

macroscopic anatomy of brain areas mediating this reference

frame conversion and trained it to perform the full 3D visuomotor

transformation for reaching (see Methods for more details). After

ensuring good network performance, we analyze the emerging

properties of the network, specifically focusing on the visuomotor

transformation of reach depth.

After 10,000 training steps, the network performance reached a

mean (6SD) absolute movement error of 4.5663.42cm. Another

performance requirement for the network was to ensure that the

network did indeed use extra-retinal signals in the visuomotor

transformation. To quantify this, we computed the 3D compen-

sation index (see Methods) as the slope of the overall observed 3D

compensation (i.e. network performance) relative to the predicted

compensation and found a compensation index of 0.985. This

means that the network almost perfectly accounted for the 3D

geometry to generate a motor plan. We also specifically computed

the depth-related motor error as being 2.2162.17cm and found

that the depth-related 3D compensation index was 0.984. These

values were better than the ones typically found in human

experiments [1]. After ensuring the good performance of the

network, we can now begin analyzing the emerging HLU (2nd

layer) and POU (3rd layer) properties.

Before diving into the analysis of the network, let us first have a

closer look at the problem that needs to be solved during the depth

transformation. Figure 2 depicts the different depth signals that we

will consider. The retinal distance information that the brain

receives about initial hand position and the target location is a

relative depth signal, i.e. relative to fixation depth. The brain has

Figure 1. Neural network model. Network inputs consisted of retinal disparity maps (67 units each) for hand and target positions, retinal position
maps (253 units each) for hand and target positions as well as 3D eye and head orientations signals (6 push-pull units each) and a vergence input (1
unit). Example population activations (color surfaces above maps of units) are shown for two different retinal disparities and retinal positions (hand
and target). All inputs were fully connected to the 2nd (hidden) layer composed of 200 units through weight matrix win. All hidden layer units (HLUs)
were fully connected to the 125 population output units (POUs) through weight matrix wout. To train the network, we designed an optimal linear
estimator (OLE, weights fixed) read-out layer in which each of the 3 units represented one dimension of the decoded motor vector. See text for more
details.
doi:10.1371/journal.pone.0041241.g001

Figure 2. Reaching depth codes. Schematic showing the relation-
ship between relative distance, absolute distance, fixation distance and
movement depth.
doi:10.1371/journal.pone.0041241.g002

Reach Depth Transformation Network
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information about fixation depth through the ocular vergence

angle (and other retinal cues, but we will only consider conditions

in complete darkness where those cues are absent). Combining

relative distance and vergence, a network can recover absolute

distance, if needed [42]. However, for reach planning the brain

ultimately only requires motor depth, which can either be

computed by subtracting the relative or the absolute hand and

target depths. (Note that a reach plan still needs to be transformed

into a set of muscle activations using an inverse model of the arm,

which might require additional information, e.g. about current

joint angles [45], but this was beyond the scope of our model). If

this operation were carried out using a gain-like mechanism

[3,13,14,15,42,44], then we would predict that depth-related

activity should be up- and down-regulated in the hidden layer

(HLUs) of our network (gain modulation) and as a result, receptive

fields should shift in the population output layer (POUs). To gain

insight into this mechanism, we will first analyze how depth-

related signals modulate azimuth-elevation receptive fields and

then how those signals modulate disparity fields.

Visual receptive field modulations with depth
Figure 3A shows typical visual position receptive fields (RFs)

from HLUs and POUs (90deg visual fields). The RFs were

computed while keeping all other input signals constant, i.e. zero

eye/head/vergence angles and constant hand/target distances at

50cm. The locations of the RFs’ center of mass (magenta square),

maximum (cyan cross) and minimum (magenta dot) activation are

also indicated. As can be observed, individual RFs can be broadly

or narrowly tuned, cover different portions of space and can

present different levels of overall activation. The potential eye/

head gain modulation on each unit can be seen through the length

and direction of the black (eye) and white (head) sensitivity vectors.

Eye and head orientation sensitivity vectors represent the direction

of eye/head orientation change that maximally affected the

position receptive field. Sensitivity vectors are determined by the

weight matrices connecting the eye/head input to a unit of interest

(see Methods).

In this section, we will analyze how distance-related sensory

inputs (fixation distance, i.e. vergence; hand/target distance)

modulate RFs of the HLUs and POUs.

Vergence-induced RF shifts. First, we were interested in

how fixation distance changed the visual (position) RF of HLUs

and POUs. This analysis is shown in Figure 4. Figure 4A shows a

typical example of how vergence modulates the visual RF of a

HLU; Figure 4B shows the same analysis for a POU. As can be

observed, the HLU is mainly gain-modulated by vergence; the

overall activity (see color legend) varies with vergence angle, but

the RF location (indicated by the centre of mass, magenta square)

does not change across different vergence angles. In contrast, the

RF of the typical POU shifts with vergence, in addition to some

modulation of the overall activity.

We quantified the vergence-induced RF shift in Figure 4C. To

do so, we computed the horizontal and vertical RF centre of mass

for different vergence angles and performed a correlation analysis

to determine the vergence-related RF shift index (see Methods

section). Figure 4C (left) shows the overall vergence-related spatial

Figure 3. Typical retinal position and disparity receptive fields and depth gain modulation. A. Position receptive fields have 90deg limits.
Black and white bars indicate eye and head movement sensitivity vectors respectively. HLU: hidden layer units. POU: population output units. B.
Retinal disparity fields have 30deg horizontal and 15deg vertical limits. Back bars indicate vergence sensitivity vectors. Each receptive field and retinal
disparity field is characterized by a maximum (blue cross), minimum (magenta circle) and center of mass (magenta square) of activity. Different
preferred distance codings of each HLU are analogous to Gnadt & Mays [21].
doi:10.1371/journal.pone.0041241.g003

Reach Depth Transformation Network
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shift (horizontal and vertical) in RFs for all HLUs (red dot indicates

the example unit shown in panel A). As can be observed, the index

was close to zero for almost all HLUs indicating that HLUs

generally do not shift their RF for different vergence angles. In

contrast, POUs show a wide distribution of RF shift indices, both

horizontally and vertically (Figure 4C, right), that was significantly

wider than the distribution for HLUs (F-test, p,0.01). Thus,

POUs show shifting RFs for different vergence angles (red dot

corresponds to example in panel B).

Hand/ target depth-induced RF shifts. Next we analyzed

how hand and target depth modulates HLUs and POUs. For

example, Figure 5A shows how horizontal target disparity (i.e.

target distance relative to fixation distance) modulates the RFs of a

typical HLU and POU. Similar to vergence modulation, target

depth mainly gain-modulates the HLU activity while the RF

location does not shift. This is similar to neural recording results

from parietal area LIP, as observed by Gnadt and colleagues

[21,22]. The typical POU, however, shows large RF shifts across

different target depths. RF shifts for POUs were significantly larger

than RF shifts for HLUs (F-test, p,0.01). This behavior was

analogous for changes in hand distance (not shown).

We analyzed how hand and target distance shifted the HLUs

and POUs RFs horizontally (Figure 5B and D) and vertically

(Figure 5C and E). We did so by computing the RF shift from a

regression between RF centre of mass and hand/target disparity.

One would expect a negative correlation between hand and target

RF shifts if individual units were modulated by the movement

vector ( = target – hand) and no correlation whatsoever if the hand

and target were modulating RFs independently. Both hand and

target disparity induced small or no RF shifts in HLUs, neither

horizontally (Figure 5B) nor vertically (Figure 5C). In contrast, the

RF of POUs showed a wide distribution of shifts in both horizontal

(Figure 5D) and vertical (Figure 5E) directions, significantly wider

than in HLUs (F-test, p,0.01). We did however not find any

significant correlation between hand and target RF shifts in either

of the directions or layers (p.0.24 for both horizontal and vertical

indices across HLUs and POUs), suggesting that hand and target

information is coded independently. This does, however, not

preclude the possibility that the motor vector is transformed at a

population level.

Gain modulation. To quantify how vergence, hand and

target depths gain modulate the strength of unit activity, we

Figure 4. Vergence modulation of visual (position) receptive fields. A. Typical example of vergence modulation of a receptive field for a HLU.
Black bars indicate the strength of vergence sensitivity. Otherwise the same conventions as in Figure 2 apply. B. Typical example of vergence
modulation of a receptive field for a POU. Whereas HLUs are only gain modulated by vergence, POU receptive fields tend to also shift with vergence
changes, as can be observed by the shift in the center of mass (magenta square). C. Indices of horizontal and vertical receptive field shifts due to
vergence for HLUs (left) and POUS (right). Normalized histograms show proportion of data points in bin of size 0.1. Most HLUs do not have shifting
receptive fields (histogram narrowly centered around 0). Indices of vergence-induced receptive field shifts for POU units show a wide distribution.
Red dots indicate examples shown in panels A and B.
doi:10.1371/journal.pone.0041241.g004
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computed gain modulation indices similar to Bhattacharyya et al.

[26] (see Methods section). The results of this analysis are shown in

Figure 6A for HLUs and Figure 6B for POUs. While there was a

wide range of gain modulation values, it is worth noting that –

similar to previous experimental findings [26] – vergence

modulated significantly fewer HLUs than hand/target depth,

while this was not the case in POUs (see Discussion Section).

Retinal disparity fields and depth coding
We have seen in the previous section that hand, target and

fixation distance independently modulate the receptive field of HLUs

and POUs. Next, we will analyze how activity changes with

combined hand, target and fixation distance modulations. This

analysis was directly inspired by Ferraina et al. [20], who recorded

neuronal activity during such a task in area PE within the PPC.

Figure 5. Receptive field modulations with hand/target disparity. Same conventions as in Figure 3, but now showing hand/target disparity-
related effects. A. Receptive field modulations with horizontal target disparity for a typical HLU and POU unit. B. Relationship between horizontal
hand and target disparity-induced receptive field shift indices for HLUs. C. Same relationship for vertical shift indices. D. Relationship between
horizontal hand and target disparity-induced receptive field shift indices for POUs. E. Same relationship for vertical shift indices shows that POU
receptive fields are broadly shifting with changes in hand/target disparity (depth).
doi:10.1371/journal.pone.0041241.g005

Reach Depth Transformation Network
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Their main results are reproduced with permission in Figure 7A.

Monkeys were asked to reach from different hand distances to

targets at different distances while fixating in different depths

(Figure 7A, left). For this typical neuron, discharge as a function of

target distance was essentially gain modulated by both initial hand

distance (Figure 7A, right) and fixation distance (Figure 7A,

center).

We simulated the exact same experimental set-up as Ferraina

et al. [20] in our network. Figure 7B shows the result of a typical

HLU plotted in the same way as in Figure 7A. As can be observed,

the HLU nicely reproduced the main findings of Ferraina et al.

[20], i.e. showing gain modulation with both fixation distance

(vergence, V1-3, Figure 7B, left panel) and initial hand distance

(H1-3, Figure 7B, right panel). This was the case across the

majority of HLUs. In contrast, the observed network behavior was

quite different in POUs. Figure 7C shows a typical POU whose

activity remained largely unaffected by hand and fixation distance.

Again, this was true for the majority of POUs.

These results are a first indication that POUs code more for

movement-related parameters (absolute movement depth) than for

visual parameters (relative distance). Next, we will elaborate on

this observation and perform a more detailed analysis of how

distance is encoded and transformed in our network.

Vergence modulation. In order to investigate how depth is

coded in our network, we began by looking at how target retinal

disparity (RD) fields were modulated by vergence, i.e. fixation

distance. Examples of typical RD fields are shown in Figure 3B. A

RD field is a unit’s response to different combinations of

horizontal and vertical retinal disparities arising from different

target distances (horizontal axis: left is further, right is closer) and

binocular torsion values (up corresponds to clockwise torsion)

respectively [46]. For example, HLU#29 prefers stimuli that are

located further away than fixation distance, i.e. negative disparity

tuning (e.g. Figure 3B). For disparity fields, sensitivity vectors show

the strength and sign of vergence modulation. We hypothesize that

if RD coding does not change with vergence, then a unit is coding

for relative distance (i.e. relative to fixation distance). In contrast,

modulations with changes in vergence would be indicative of a

transformation between relative depth and absolute depth or

movement distance.

Figure 8A shows a typical HLU and a typical POU retinal

disparity field across different vergence angles. While the HLU

RD was gain modulated by vergence, it did not shift preferred

depth (magenta square, centre of mass). In contrast, the typical

POU showed a shift in preferred RD coding with vergence. To

analyze these observations more quantitatively across the entire

network, we performed a regression analysis similar to the one

carried out for receptive fields in the previous section. We

correlated RD preferred depth shifts with vergence changes and

plotted the results in Figure 8B (HLUs) and Figure 8C (POU). This

analysis confirmed our observation from the typical network units

in Figure 8A. HLUs were mostly gain-modulated (not shown) but

did not show significant horizontal or vertical preferred RD shifts

(Figure 8B). However, POUs showed large RD shifts for

horizontal disparity (Figure 8C), significantly larger than HLUs

(F-test, p,0.01). This is in line with the finding that horizontal

disparity is mainly responsible for distance coding, while the role of

vertical disparity is less clear [47]. These observations are

analogous to and consistent with findings from Genovesio and

Ferraina [23] of neurons in the lateral intraparietal areas (LIP).

More importantly, Bhattacharyya et al. [26] show that reach-

related neurons in the parietal reach region of PPC display

properties that are almost identical to our HLUs. Overall, this

analysis shows that while HLUs mainly code for relative distance,

POUs seem to shift their coding more towards absolute distance or

movement distance.

Combined depth. To gain further insight into how depth is

coded and transformed in the network, we analyzed the combined

effects of hand distance, target distance, vergence, and movement

distance on the activity of the network units. How these variables

relate to each other is depicted in Figure 2. Figure 9A shows the

modulation of hand RD for a typical HLU and a typical POU

with target depth relative to fixation (i.e. degrees of horizontal

disparity). Since both hand and target inputs are visual signals,

both hand and target depths are coded through RD fields. Similar

to the vergence modulations of RD, HLUs only show gain effects

of target distance but no RD shifts, in contrast to POUs who show

large preferred RD shifts. Note that we observed qualitatively the

same behavior for hand depth modulations of target RD (not

shown).

Figure 9B–G shows the RD shift indices with hand, target,

fixation and movement distance for HLUs (Figure 9B–D) and

POUs (Figure 9E–G). Note that target depth indices were

computed on the hand RD fields while all other index calculations

were carried out on the target RD fields. Overall, HLUs’ RD fields

did not (or only slightly) shift with hand or target depth (Figure 9B)

but were only gain modulated by these variables (not shown). In

contrast, POUs showed significantly larger RD field shifts (F-test,

p,0.01) across hand and target depth (Figure 9E) on top of some

gain modulation (not shown). We also tested for correlations

between hand and target shift indices. A perfect negative

correlation would mean that depth coding shifts in equal but

opposite directions for hand and target depth, which would be

Figure 6. Vergence, hand and target depth gain modulation. A.
Summary of gain modulation analysis for HLUs. Vergence (black), hand
depth (cyan) and target depth (red) gain modulation indices are shown
as a histogram for all HLUs. We used an arbitrary threshold of 0.2 to
determine the percentage of ‘‘significantly’’ modulated units. Note that
vergence modulated HLUs less than hand/target depth. See Methods
section for calculation of the gain modulation index. B. Gain
modulation summary for POUs. Vergence, hand and target depth had
similar effects.
doi:10.1371/journal.pone.0041241.g006
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indicative of an invariant movement depth code (since movement

depth = target depth – hand depth). While we did not find any

consistent correlation between the hand and target shift indices in

HLUs (R2 = 0.003, p = 0.47), there was a significant (although

weak) correlation for POUs (R2 = 0.05, p = 0.01). We also

analyzed how movement depth and vergence modulated RD

fields. HLUs show virtually no shifts in RD fields with movement

(Figure 9C) and fixation (Figure 9D) depth. In contrast, POUs

show a wide distribution of RD shift indices with movement depth

(Figure 9F) and vergence (Figure 9G). This points towards a depth

code for POUs that is not anymore relative to fixation distance but

rather shifted towards movement depth. Thus, to summarize the

findings, it appears that while HLUs code relative distance (which

is consistent with [26]), POUs might code absolute distance or

movement distance in a distributed way.

Depth transformation. Our final analysis addresses whether

hand, fixation and target distance are coded jointly or indepen-

dently. To do so, we computed the depth separability indices,

similar to what has previously been done for movement coding in

the fronto-parallel plane [13,48]. To do so, we first computed the

units’ activity pattern for different combinations of hand, vergence

and target distance, while keeping all other inputs constant.

Examples of these activity patterns for hand-target distance

changes can be seen in Figure 10A for two typical HLUs and

two typical POUs. Note that typical HLUs are mainly modulated

either along the hand or target distance axis, but not both, while

typical POUs display combined hand-target codes. This means

that these two HLUs seem to code hand or target direction

separately, while the two POUs seem to code for a combination of

hand-target distance.

To quantify this observation across all units, we computed the

separability index for hand-vergence-target combinations by

averaging the local response field gradient directions of the depth

modulation patterns (e.g. Figure 10A and B) and multiplied it by 2

modulo 2p [13,48]. If the response field gradient is mainly

horizontal or vertical (i.e. the unit activity is modulated by one

variable only, as for HLUs, Figure 9A), then the result of this

computation is either 0deg or 180deg. Combined modulation of

response fields (such as for POUs, Figure 10B) will result in

290deg (subtractive interaction) or +90deg (additive interaction of

variables). Thus each unit is characterized by one angular

separability value. The results of this computation are plotted as

Figure 7. Simulation of experiments performed by Ferraina et al. [20]. A. Original data from Ferraina et al. [20]. Left panel shows a
schematic of the setup with 5 different target positions (T), 3 different initial hand positions (H) and 3 different fixation distances (vergences, V).
Center and right panels show the modulation of neuronal activity across target distance with vergence and initial hand position distance respectively.
B. Typical hidden layer unit activity under similar simulated conditions. Same representation as in panel A. C. Typical population output unit
activation under the same conditions. Note that while HLUs were strongly modulated both by vergence and hand distance, POUs were generally not
modulated by vergence but only by initial hand position.
doi:10.1371/journal.pone.0041241.g007

Reach Depth Transformation Network
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polar histograms in Figure 10C–E (HLUs) and Figure 10F–H

(POUs) for target-vergence distance combinations (panels C and

F), hand-vergence distance combinations (panels D and G) and

hand-target distance combinations (panels E and H). As can be

observed, hand/target and vergence are generally coded – at least

partially – in conjunction for both HLUs (Figure 10C, D) and

POUs (Figure 10F, G). This is apparent from the fact that most

units have separability indices that lie in between V and T–V

(panels C and F) or that lie in between V and H–V (panels D and

G), which is similar to what has been found in parietal cortex [26].

However, hand and target distance are coded independently in

HLUs (Figure 10E), indicating that movement depth has not been

computed yet at this stage of the processing. However, the

difference between hand and target is generally coded in the

POUs (Figure 10H); this difference is equal to the desired

movement depth. These results point towards a transformation

of relative and independent hand/target distances into an absolute

movement depth.

Depth from eye/head rotations
Retinal inputs depend on the eye-head orientations. As a

consequence, the same retinal input is interpreted differently by

the motor system for different eye-head orientations (see

Figure 11A). Therefore, the same retinal movement vector should

result into different movement depths depending on the eye-head

orientation. While the consequences of this are known for the

horizontal-vertical plane [1,2,17,19], this has not been explicitly

considered with respect to the visuo-motor transformation for

depth. Here we ask whether the RD fields are also modulated by

eye-head orientation, which would be required to take this aspect

of the visuomotor transformation into account.

Figure 11B shows the RD for a typical HLU and a typical POU

and for different horizontal eye orientations. Clearly, eye position

affects both typical units’ RD field. The HLU’s RD field is gain

modulated by eye position, while the POU’s RD preferred

location also shifts in addition to gain modulation. We again

performed a regression analysis of RD field shifts as a function of

horizontal and vertical eye movements. Figure 11C and F show

the results for HLUs and POUs respectively. This analysis

confirms that HLUs do not generally shift their preferred RDs,

but the preferred RDs for POUs show a significantly wider range

of shifts (F-test, p,0.01). This indicates that the depth changes due

to eye rotations are accounted for by the network.

This effect was also observed for both eye and head rotations.

Figure 11D, E shows the relationship between the RD shift indices

due to horizontal (panel D) and vertical (panel E) eye and head

rotations for HLUs. Although there were almost no RD shifts,

there remained a significant correlation between the small eye and

head movement depth indices. For POUs, the eye and head

movement depth shift indices were much larger (Figure 11G, H)

and were also correlated significantly. Since eye and head

rotations have the same effect on motor depth (i.e. the eyes rotate

with the head when the head moves), this shows that the network

accounted for eye-head-rotation induced depth changes in a

consistent fashion.

Figure 8. Vergence modulation of retinal disparity receptive fields. A. Typical HLU and POU unit activity modulation with ocular vergence
angle. Same representation as in Figure 2. B. Horizontal and vertical receptive field shift index with vergence angle for all HLUs. Histograms show that
shift indices center tightly around zero. Vergence-related activity modulation in HLUs is mainly due to gain-like mechanisms. This is analogous to
Genovesio & Ferraina [23]. C. Same receptive field shift indices for all POU units displays a much broader distribution of indices.
doi:10.1371/journal.pone.0041241.g008
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Discussion

We trained a physiologically inspired feed-forward neural

network to perform the 3D visuomotor transformation for reach

depth. Emerging properties of our network were consistent with all

known electrophysiological findings about distance coding in the

cortex, which validates our approach. In addition, we make a

number of new predictions as to the receptive field and retinal

disparity field properties that one might find when recording in

brain areas involved in the visuomotor transformation of reach

distance. For example, if the brain uses the same mechanism as

our network, then we predict that reach planning areas involved in

the transformation of reach depth should show eye/head/

vergence-related changes of direction and depth coding and that

absolute hand/target distance codes should be rarely observed as a

result of a direct transformation from relative distances into

movement distance. Finally our network provides a potential

mechanistic explanation of how the brain might transform relative

distance into movement depth. These points will be discussed

below.

Network comparison to literature
Our network results are in agreement with all electrophysio-

logical data that we are aware of concerning the coding of

movement depth in the brain. First we found that HLUs’ receptive

fields are modulated by retinal disparity (i.e. depth) and have a

preferred depth. This is analogous to a 3D position code found in

area LIP during saccadic eye movement tasks [21,22] and the

parietal reach region (PRR) in a reaching task [26]. Second,

fixation distance (i.e. vergence) gain-modulated HLUs’ retinal

disparity response while shifting the preferred disparity of POUs.

Our HLU properties are in line with recent finding by

Bhattacharyya et al. [26] showing that PRR neurons’ retinal

Figure 9. Relative versus absolute distance coding. A. Changes of typical hand RD fields with target depth (coded in degrees of disparity). The
HLU shows some gain modulation but no RD field shift, while the POU’s RD field shifts with target position, as evidenced by the shifting centre of
mass (magenta square). B–G. RD shift indices of relative hand/target depth (panels B and E), movement depth (panels C and F) and vergence (panels
D and G) for HLUs (panels B–D) and POUs (panels E-G). This confirms the observation from the typical trials in panel A. RD fields of HLUs do not shift,
while large shifts are observed for POUs.
doi:10.1371/journal.pone.0041241.g009
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disparity tuning was gain-modulated by the vergence angle. Area

LIP shows intermediate distance codes similar to POUs, as

evidenced by a wide distribution of disparity tuning shifts with

fixation distance [23]. In addition, gaze direction and ocular

vergence angles modulate neural activity in area V6a of the

posterior parietal cortex [49] in a way that is similar to HLUs in

our network. However, the latter studies were performed using

saccadic eye movements and these results differ from brain areas

involved in reach planning [26].

To the best of our knowledge, only three studies have

investigated the coding of reach depth [20,24,26]. They show

that posterior parietal cortex (PPC) neurons are tuned for target

depth and gain-modulated both by fixation distance (vergence)

and initial hand distance (hand disparity). We reproduce these

findings in detail (Figure 7) and show that our HLUs are

compatible with this PPC code. It is also interesting to note that

vergence gain modulation was weaker than hand/target depth

gain modulation in HLUs (see Figure 3C, D), which is similar to

findings by Ferraina et al. [20,24]. This was surprising given that

our network was not designed to display this effect; rather, this

asymmetry was an emerging property of our training. Thus,

instead of being an asymmetry between the role of vergence and

hand/target distance in the brain, these results suggest that this is

simply the optimal way for a distributed network to get the job

done. These observations point towards a gain-modulated relative

distance code in the parietal cortex that is in eye-centered

coordinates [26]. This is also consistent with previous studies that

have shown 2D reach coding in eye-centered coordinates in the

PPC [50,51]. Here, we propose that this type of reach coding in

the parietal cortex also applies to 3D space.

Figure 10. Depth separability index. A. Hand-target depth modulation for two typical HLUs. Color coding shows unit activity levels (same color
scale as in Figure 7) for different combinations of hand and target distance. B. Hand-target depth modulation for two typical POUs. HLUs’ activity is
modulated either in the hand or in the target direction but not both, while POUs’ activity shows maximal activity for a specific combination of hand-
target distance. C–H. Separability plots for target-vergence depth dependencies (panels C and F), hand-vergence depth dependencies (panels D and
G) and hand-target depth dependencies (panels E and H). HLUs code hand and target distance separately (panel E); POUs mainly code for the
difference between hand and target distance (panel H).
doi:10.1371/journal.pone.0041241.g010
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Potential mechanisms for depth transformations
In this study, gain modulation emerged through self-organiza-

tion of a trained network. Presumably, this was because gain

modulation is the only known mathematical way that reference

frame transformations can be achieved in a feed-forward neural

network. Using gain modulation, the network gradually transforms

egocentric, relative depth inputs into motor depths, by weighing

units’ with different preferred depths differently depending on the

sensory context, i.e. depending on vergence, eye-head orientations

and hand/target depth. Therefore, we interpret the presence of

gain modulation across all layers of our network as providing the

computational foundations for the visuomotor transformation of

depth. Also compatible with this concept is the observation of a

wide range of different receptive field and retinal disparity shift

indices in the POU of our network as a result of the gain-weighted

combination of different HLUs. We therefore suggest that the

visuomotor transformation of reach depth might also rely on gain

modulation mechanisms as has previously been found for azimuth

and elevation [3,12,13,14,15,16,43,44].

We have shown that motor depth can be calculated directly

through distributed computing without having to explicitly

compute absolute distance (from relative depth and vergence).

As a result, we observe mixed or intermediate depth codes that are

neither relative, nor absolute, nor reflecting purely motor depth.

Figure 11. Depth from eye/head rotations. A. Schematic illustrating how eye/head rotations of the same visual hand-target vector lead to
different motor depths. B. Modulation of RD fields with horizontal eye position for typical HLU and typical POU. The HLU is gain-modulated by eye
position, but it’s preferred RD does not shift. The preferred RD of the typical POU shifts significantly (magenta square). C, F. Indices of RD shift due to
horizontal and vertical eye position changes for HLUs (no shifts, panel C) and POUs (wide distribution of shifts, panel F). D, E, G, H. RD shift indices for
horizontal (panels D, G) and vertical (panels E, H) eye versus head rotations for HLUs (panels D, E) and POUS (panels G, H). There was a significant
correlation between the eye and head indices both horizontally and vertically throughout the network.
doi:10.1371/journal.pone.0041241.g011
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Although some network units (POUs) did show absolute distance

coding (see Figures 8, 9, 10), Figure 10 suggests that absolute

distance is a by-product of transforming relative depth into

motor depth in a distributed manner rather than a requirement.

For perception, the conversion of relative distance to egocentric

(absolute) depth has been investigated theoretically in the past

[42]. Interestingly, our network shows that the intermediate

stage of coding depth in absolute terms is not a requirement in the

reach system. Instead, relative depth is readily converted into

movement depth without transitioning explicitly to absolute depth.

Therefore, in contrast to the perceptual system where absolute

distance might be required [42,52], our network predicts that this

might not be the case for the sensory-motor transformation

underlying reaching.

To carry out the 3D visuomotor transformation of depth, the

presence of ocular version and vergence signals in the network

is a crucial requirement. Interestingly, eye version effects on the

3D position code have also been observed in neuronal recordings

in the parietal cortex [49,53], which might be indicative of a role

of parietal cortex in the depth transformation. Our network shows

how eye (and head) position gain fields are crucial for rotation-

dependent depth changes and to transform eye-centered motor

depth into spatially accurate movement distances.

Predictions and limitations
Since only few neurophysiological studies on the coding of

reach depth in the cortex exist, the main strength of our network

is to make a series of testable predictions. Of course, these

predictions are based on the specific way that our network solved

the problem, which might be different from how the brain does it.

However, given the similarities between our network properties

and recordings from the real brain, we might nevertheless

provide useful predictions. Structurally speaking, we hypothesized

that HLUs represent parietal cortex areas and POUs are similar

to pre-motor areas in the brain. However, it is also possible that

the 3D visuomotor transformation is carried out more gradually

across many different areas. In that case, all our predictions

would still be valid, but there would be a less clear cut difference

between areas showing only gain modulations and areas also

showing shifts in their tuning curves; in that case, a more gradual

transition between those behaviors would be expected.

One of the strongest predictions of our study concerns the

separability of hand, target and fixation distances (Figure 10).

While gain modulations of disparity tuning with hand and

fixation distance are present [20,24,26], we predict that there

should also be modulation of target distance and moreover that

they should be coded independently in PPC. In agreement with

this prediction is the recent finding that vergence and disparity

coding is separable in PRR [26]. In addition, the monotonic

interaction of vergence with disparity tuning (through gain

modulation) should lead to partially inseparable coding of

vergence and hand/target distance in PPC (see Figure 10). In

contrast, pre-motor areas in the brain (such as PMd) should show

inseparable, combined coding of hand and target distance,

compatible with a movement distance code.

In general, the coding of a motor plan in depth in pre-motor

areas is a wide open question. The implication of pre-motor cortex

as a potential functional equivalent to POUs is solely based on

previous speculations [13,38,41,44] and remains to be shown.

From POUs in our network, we predict that pre-motor receptive

fields should shift with hand/target distance (retinal disparity) and

with ocular vergence (see Figures 4 and 5). In addition, pre-motor

disparity tuning should also shift with vergence and hand distance

(Figure 8 and 9), as required to establish a final motor plan in

depth. The disparity tuning in pre-motor areas should also shift

with eye/head rotations to reflect the depth changes resulting from

rotating eye-centered motor plans (Figure 11).

There are many limitations to this network model. For example,

in the real brain, sensory information about the hand arises from

proprioception in addition to vision. As a consequence, when both

signals are simultaneously available, the neural network underlying

reach planning must also solve the multi-sensory integration

problem [45,54,55,56]. In addition, our network is purely static,

but in the real brain these computations are carried out in a

dynamic fashion and using spike codes. Also, our rate-based

network does not follow cortical architecture, which might

influence network performance [57]. For example, the described

transformations could be carried out by more than 2 hidden

layers, in which case we would expect a more gradual trans-

formation of relative distances into movement depth. There might

also be slight differences in emerging network properties depend-

ing on the actual training algorithm used, although Blohm et al.

[13] have not found any qualitative differences when using other

training methods or network sizes. Therefore, those and many

other extensions of our current model are possible in future

research.

In summary, we have shown that simple feed-forward neural

networks can capture in much detail the visuomotor transforma-

tion of depth, which expands on previous findings for angular

direction [13]. Based on our network, we provide a potential

mechanistic explanation for depth transformations in the brain,

relying upon gain modulation of depth tuning; 3D spatial tuning

curves are gain weighted by binocular eye and head orientation

signals to directly produce reach depth from visual inputs and

through distributed coding. The main strength of our network

approach is that it bridges algebraic (lumped) models, behavior

and neurophysiology. As a result, we can attempt to make specific

testable predictions of neuronal properties that one might find in

areas involved in transforming reach depth from visual to effector-

centered coordinates.

Methods

Model overview
The visuomotor transformation for reaching in azimuth and in

depth can be divided into three consecutive stages. First, the brain

must combine binocular 2D retinal images to build and maintain

an internal egocentric representation of 3D hand and target

positions [51,58,59,60,61]. Second, these gaze-centered hand and

target codes have to be transformed into a 3D motor plan that is

specified with respect to the effector [2,18,19,62]. Third, the brain

needs to convert this motor plan into appropriate muscle

activations to drive that arm to the target [39,63,64,65]. Here,

we focus on the second stage of this process and specifically ask

how hand and target distances are converted into appropriate

movement distances.

Our model consisted in a physiologically inspired, fully

connected feed-forward neural network approximating the com-

plete 3D open-loop visuomotor transformation for reach planning

[1]. Figure 1 shows a schematic of the model architecture. To

address this visual-to-motor transformation process of hand and

target distance into reach depth, we used 3D gaze-centered visual

population codes and 3D effector-centered movement population

coding as the network’s inputs and output respectively. The visual

input of both hand and target was composed of a 2D retinal

angular direction map and a 2D retinal disparity map. Extra-

retinal (monocular) eye, head and vergence signals were also

required to perform the 3D reference frame transformation [1].
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We chose to use only visual initial hand position and no explicit

proprioceptive information as an input because it has been

shown that in the absence of vision the posterior parietal cortex

encodes hand position in gaze-centered coordinates [66]. Stu-

dying multi-sensory integration of proprioceptive and visual

initial hand positions in a network model should be the main

focus of a separate future study. The analysis of a similar neural

network [13] with respect to the visuomotor transformation of

target elevation and azimuth has produced network properties

that were fully compatible with electrophysiological results

[41,43,48,50,66,67,68,69], which validates our approach. All

input signals were fed into a first hidden layer, then a second

hidden layer that we call the population output. The forth layer

consisted of 3 units encoding the desired motor vector in effector-

centered coordinates (in Euclidean space) and was a read-out for

the activity of the population output (3rd) layer. We used this read-

out to train the network.

The input-output relationship of all network units in the second

and third layer was modeled by a sigmoid function, mimicking the

non-linear transfer function of real neurons [70,71,72], such that

a(x)~
1

1ze{x
ð1Þ

None of the inputs were subjected to the sigmoid transfer

function, nor was the output layer; both were purely linear. Note

that we did not use ‘‘basis function networks’’ that force Gaussian

(non-monotonic) response tuning, as this has been done in

previous studies [14], but instead used monotonically increasing

sigmoid transfer functions, as this is physiologically more realistic

[70,71,72].

Network inputs
Retinal position: topographic hand and target

maps. Hand and target azimuth (pX) and elevation (pZ) angles

were encoded in a set of topographically arranged units

representing cyclopean retinal positions [73,74,75] relative to the

fovea. These units had Gaussian receptive fields (width s= 20deg)

and their activations were specified by:

ai~ exp {
(pX {xi)

2z(pZ{zi)
2

2:s2

 !
ð2Þ

where xi and zi are each unit’s preferred directions. Analogous to

striate cortex, these units were uniformly distributed on a

topographical map with 90deg range. We used a 90deg range

despite the fact that inputs were restricted to a 70deg range in

order to avoid edge effects. The horizontal/vertical spacing

between units was 10deg, which led to 253 units in each retinal

position map. Figure 1 shows two example population activations

for different retinal positions (hand: [220deg; 20deg], target:

[10deg; 230deg]) as color surfaces over the topographically

arranged input units. Similar retinal maps have been used in

previous network studies [13,15,16,76].

Retinal disparity: topographic hand and target

maps. Hand and target horizontal and vertical (dH, dV) retinal

disparities specify the relative distance of the hand/target with

respect to the fixation distance (determined by the ocular vergence

angle (see below)). Retinal disparity coding neurons had tuning

profiles similar to those found in monkey neurons [34,77] and cats

[78,79,80]. Here, we used idealized disparity tuning functions that

were 2D extensions of previously used ones [42,81], such that:

ai~ai,X
:ai,Z ð3Þ

were ai,k~

a0
: exp {

(dk{ki )2

s2
i

� �
{a1

: exp {
(dk{ki{s2

i
)2

s2
i

� �
, for kiƒ{1

a0
: exp {

(dk{ki )2

s2
i

� �
{a1

: exp {
(dk{kizs2

i
)2

s2
i

� �
, for ki§1

a0
: exp {

(dk{ki )2

s2
i

� �
, for {1vkiv1

8>>>>>>><
>>>>>>>:

ð4Þ

and where k stands for X or Z, variance s2
i ~ X 2

i zZ2
i

� ��
2 with

a minimum variance of 10 minarc and constants a0 = 1 and

a1 = 0.35 [13,42]. Different combinations (Xi, Zi) of units’

preferred disparities were limited to an ellipse (45deg,30deg).

Again, the data range was only about (25deg, 10deg) and we chose

larger disparity ranges to avoid edge effects. Preferred disparities

were spaced at 1deg for disparities ,2deg, spaced at 5deg for

disparities up to 10deg and were spaced at 10deg anywhere else

resulting in a total of 67 units in each retinal disparity map.

Figure 1 shows two example population activations for hand

([210deg; 5deg]) and target ([2deg; 1deg]) retinal disparities on

top of the topographically arranged retinal disparity input units.

Note that the population tuning for retinal disparity is non-

symmetric, in contrast to the symmetric (Gaussian) tuning for

retinal positions.

Eye-in-head, head-on-body and vergence inputs. The 3D

visuomotor transformation depends critically on extraretinal

information about body geometry as encoded by eye-in-head

and head-on-body signals [1] and on fixation distance as coded by

ocular vergence [46]. Eye and head orientations were coded as

angular vectors in a 6D push-pull antagonistic arrangement

inspired by motor neuron activity [16,82,83,84]. Angular vectors

(rX, rY, rZ) equal to the unitary rotation axis multiplied by the

rotation angle in degrees. This results in a unique angular vector

describing the shortest path of rotation from one point to another

in 3-dimensional space (the negative of a given angular vector

describes the exact opposite rotation of the positive counter-part).

The 3D angular vectors for eye and head orientation were then

transformed into two 6D arrays of inputs (one for eye and one for

head orientation) as follows [13,76,85]:

a+,i~0:5+
ri

2:r0
ð5Þ

where the maximum angle of rotation, r0, was equal to 50deg for

eye and 70deg for head orientations (the data set included

rotations up to 45deg for eye and 65deg for head orientations).

Also, the coordinate system for encoding eye orientation angular

vectors was rotated 45deg around the z-axis (i.e. vertical axis) to

reproduce the mixed vertical-torsion encoding of eye orientations

in the brainstem neural integrator [86,87,88,89]. As a result, eye

and head orientation units show linear increases/decreases of

activity for orientations away from straight-ahead. For example for

a 25deg horizontal eye orientation, the two units coding for

horizontal orientation would be at 0.25 and 0.75, while the other

four units (coding for vertical and torsional orientations) would be

at 0.5.

To encode the ocular vergence angle, we used a single positive

input. The vergence angle QV was defined as the absolute angle

between the right and left eye gaze directions (in degrees), so that

larger vergence angles represent closer fixations. The activation of

the vergence unit changed linearly with vergence angle (0deg

(4)
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vergence corresponded zero activation) and was determined as

follows:

a~
QV

45 deg
ð6Þ

Note that previous studies have used both distributed

[10,11,14,15,16] and lumped [13,42,76,85] codes for eye/head/

vergence signals. However, they all found qualitatively the same

(gain-modulated) behavior in their hidden layer units. Therefore,

we chose to use a lumped code for simplicity.

Population output units and network output
The network output (4th layer) consisted in 3 units that coded

the movement vector in Euclidean space, each unit coding

movement distance along one spatial direction, i.e. cardinal axes X

(horizontal), Y (posterior-anterior) and Z (vertical). These output

units were designed to decode the distributed representation of

the movement vector encoded by the population output units

(POUs, 3rd layer) and act as a behavioral read-out allowing for

an unambiguous quantitative interpretation of single POU unit

activity [10]. For that purpose, we calculated the connection

weights between layers 3 and 4 prior to training based on the

assumption of cosine tuning in layer 3 (see below) and kept those

weights unaltered during network training.

We used 125 cosine-tuned POUs in our network with preferred

movement directions (~ppi ) randomly and uniformly distributed on a

unit sphere [13,90,91], as shown in Figure 1. We used a

statistically uniform distribution of ~ppi to match the above-cited

electrophysiological findings. Cosine-tuned neurons that encode

movement direction in intrinsic, effector-centered coordinates

have been observed in pre-motor cortex of the monkey

[8,38,39,40] and theoretically, cosine tuning is optimal for motor

control in 3D [4,64]. To compute the behavioral read-out weights,

we assumed cosine tuning for each POU i, such that

ai~a0za1
: cos hið Þ ð7Þ

where a0 = 0.5 is the baseline firing rate and a1~ ~MM
�� ��. 2:Amaxð Þ

is the cosine scaling parameter that scaled the unit activity to

the size of the required movement ~MM, whereas the angle

hi~ cos{1 ~ppi
: ~MM
.

~MM
�� ��� 	

coded for movement direction

[92,93]. The maximum movement amplitude was Amax = 2m

(maximum possible movement in the data set: 175cm), resulting in

ai M [0,1]. Note that we did not train the network to reproduce the

theoretical activations specified in Eq. 7; however, indirectly the

read-out of POUs (see below) might have enforced cosine tuning,

as previously shown [13].

The assumption of cosine tuning in for POUs (layer 3) allowed

us to explicitly compute the optimal read-out weights wij between

layers 3 and 4 using an optimal linear estimator, OLE [94], such

that

wij~
X

k

Q{1
ik Lkj ð8Þ

In Eq. 8, j stands for the vector component, i.e. X, Y or Z. For

full cosine tuning (Eq. 7), the center of mass matrix Lkj and the

cross-correlation matrix Qik can be calculated as [13]:

Lkj~
4p:a1

15
~ppkj ð9Þ

Qik~s2
kdikz

4p:a2
0

3
{

4p:a2
1

15
: ~ppi

:~ppkð Þ ð10Þ

The cross-correlation matrix Qik contains an estimate of the

expected neural noise (sk arbitrarily set to 0.01) and a dot product

that specifies the interaction between two tuning curves. We chose

the expected neural noise and number of POU units based on the

theoretical read-out precision, which was an average read-out

error ,2cm [13]. Again, once the read-out weights were

computed, they were held constant during the training process

of the network. Also, we did not constrain the activation of the

POUs in any way. Finally, the choice of a uniform distribution of

POU preferred directions did not affect or constrain the read-out

process, since OLE works with arbitrary distributions.

Training method and training set
To train our network, we used a training set computed from an

exact geometrical model of the 3D eye-head-shoulder-hand

linkage [1]. This model computed 3D binocular eye positions

that obeyed binocular Listing’s law [95,96,97,98], which con-

strains the 3 degrees of freedom (dof) of each eye’s rotation to 2

effective dof. This binocular version of Listing’s law is modulated

by the static vestibulo-ocular reflex, i.e. VOR induces ocular

counter-roll for head roll and a tilt of Listing’s plane with head

pitch [99,100]. It was important to include binocular Listing’s law

including the VOR modulations because this results in different

retinal disparity pattern depending on eye-head orientations [46]

that need to be interpreted correctly to compute reach depth.

For the training set, eye and head orientations were approx-

imately uniformly distributed and fixation distance varied between

25cm and 5m so that vergence was approximately uniformly

distributed. Hand and target positions were randomly chosen with

reach space (not more than 85cm from the right shoulder) and in a

way that neither exceeded 70deg visual eccentricity. We then

computed the projections of hand and target positions onto each

eye (used to compute retinal disparity) and onto a hypothetical

cyclopean eye (this was the retinal position input) and also

calculated the 3D reach plan in effector-centered coordinates.

We trained a 200 hidden layer unit (HLU – 2nd layer) network

using 125 population output units (POU – 3rd layer). We also

trained various other networks with different number of HLUs (9,

16, 25, 36, 49, 64, 81 and 100 HLUs) yielding qualitatively the

same results and we therefore only concentrated on the largest

network, i.e. 200 HLU network. The neural network was

implemented in Matlab R2007a (Mathworks Inc, Natick, MA)

using the neural network toolbox and customized functions. Batch

training was performed through a pseudo-Newton method with

preconditioned conjugate gradient descent [101,102,103] using

250,000 training points and was stopped arbitrarily at 10,000

iterations.

Network analysis
To quantify whether the network used the extraretinal signals

for the 3D visuomotor transformation, we computed a 3D

compensation index as the regression slope between the predicted

and observed 3D compensation. The predicted (observed) 3D

compensation was the difference between the ideal (actual)
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movement vector and the movement vector that would have

resulted if all extra-retinal signals were ignored [1,13]. We also

computed sensitivity vectors, which are determined by the network

weights and indicate in which direction a particular network input

modulates a given unit most strongly. For example, the vergence

sensitivity vector of a HLU was determined by the projection

strength (weight) between the vergence input and the HLU. For a

given POU, the vergence input weights were multiplied by the in-

between layer weights connecting to the POU (dot product),

resulting in a scalar vergence sensitivity vector.

Receptive field (or disparity tuning) shift indices in Figures 4, 5,

8, 9 and 11 were computed as the regression slope between the

centre-of-mass and the variable under investigation, such as

previously done [13]. For example, for vergence-related RF shifts

(Figure 4), we computed the centre-of-mass (in angular position,

i.e. degrees) of the visual receptive field of a unit for different

vergence angles. Systematically changing the vergence angle in 1

deg steps resulted in a series of RF positions that we then regressed

against the corresponding vergence angles. The slope of this

regression is then the vergence-related RF shift gain. We

proceeded in equivalent ways for the other analyses.

Gain modulation indices in Figure 6 were computed similarly to

Bhattacharyya et al. [26]. We determined each network unit’s

activation for every combination of vergence, hand and target

depth using 4 different vergence angles and 5 different hand/

target depths, all within reach. We then computed the gain

modulation index as: gain~
max (a){ min (a)

max (a)z min (a)
, where a was for

example the activity of a unit across all vergence angles (in case of

the vergence gain modulation). We calculated this gain for all

combinations of unrelated parameters (e.g. hand/target depth in

case of vergence gain modulation) and then averaged the result to

obtain one single gain value for each unit and each modulation

dimension. We chose an arbitrary threshold of 0.2 to determine

whether a unit was gain modulated or not; this threshold is

qualitatively similar to ones used in electrophysiological studies

[26].
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