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The introduction of general-purpose Graphics Processing Units (GPUs) is boosting scientific applications in Bioinformatics,
Systems Biology, and Computational Biology. In these fields, the use of high-performance computing solutions is motivated by
the need of performing large numbers of in silico analysis to study the behavior of biological systems in different conditions,
which necessitate a computing power that usually overtakes the capability of standard desktop computers. In this work we present
coagSODA, a CUDA-powered computational tool that was purposely developed for the analysis of a large mechanistic model
of the blood coagulation cascade (BCC), defined according to both mass-action kinetics and Hill functions. coagSODA allows
the execution of parallel simulations of the dynamics of the BCC by automatically deriving the system of ordinary differential
equations and then exploiting the numerical integration algorithm LSODA. We present the biological results achieved with a
massive exploration of perturbed conditions of the BCC, carried out with one-dimensional and bi-dimensional parameter sweep
analysis, and show that GPU-accelerated parallel simulations of this model can increase the computational performances up to a
181× speedup compared to the corresponding sequential simulations.

1. Introduction

Mathematical modeling and computational analysis of bio-
logical systems nowadays represent an essential methodol-
ogy, complementary to conventional experimental biology,
to achieve an in-depth comprehension of the functioning of
these complex systems [1, 2]. Given a model that describes
the physical or logical interactions between the components
of a biological system, different algorithms can be exploited
to make predictions on the way this system behaves in both
physiological and perturbed conditions. For instance, start-
ing from distinct parameterizations of the model, simulation
algorithms can be used to devise the different emergent
behaviors that the system can present; the massive explo-
ration of high-dimensional parameter spaces allows us to

better understand the system functioning across a wide spec-
trum of natural conditions, as well as to derive statistically
meaningful properties. Indeed, standard investigations of
biological systems usually rely on computational methods
that require the execution of a large number of simulations,
such as parameter sweep analysis [3], sensitivity analysis [4],
structure and parameter identifiability [5], parameter estima-
tion [6–8], and reverse engineering of model topologies [9–
13].

In this context, the use of general-purpose Graphics
Processing Units (GPUs) has recently boosted many applica-
tions in scientific computing, where CPUs have traditionally
been the standard workhorses. As a matter of fact, when
several batches of simulations need to be executed, the neces-
sary computing power can rapidly overtake the capabilities
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of standard desktop computers, therefore requiring high-
performance computing solutions. After the introduction
of general-purpose GPUs and of Compute Unified Device
Architecture (CUDA, Nvidia’s GPU programming language),
the adoption of these graphics engines largely increased
in research fields as Bioinformatics, Systems Biology, and
Computational Biology (see an overview in [14–16]). Anyway,
despite the remarkable advantages concerning the computa-
tional speedup, computing with GPUs usually requires the
development and the implementation of ad hoc algorithms,
since GPU-based programming substantially differs from
CPU-based computing; as a consequence, scientific appli-
cations of GPUs might undergo the risk of remaining a
niche for few specialists. To avoid such limitations, several
packages and software tools have recently been released
(see, e.g., [16–18]), so that also users with no knowledge
of GPUs hardware and programming can access the high-
performance computing power of graphics engines.

To investigate the dynamics of biological systems, either
deterministic or stochastic approaches can be exploited [19],
which are based on numerical integration (e.g., Euler’s or
Runge-Kutta methods [20]) or on Markov processes (e.g.,
Gillespie’s algorithm [21]), respectively. To date, the most effi-
cient algorithms to integrate a system of ordinary differential
equations (ODEs), or to perform stochastic simulations of
reaction-basedmodels, are LSODA [22] and tau-leaping [23],
respectively. In [24–26] we previously presented cupSODA
and cuTauLeaping, the GPU-powered implementation of
LSODA and tauleaping, respectively. cupSODA allows to
run parallel deterministic simulations of a given mass-action
based system of biochemical reactions, using the LSODA
algorithm; cuTauLeaping represents a novel restructuring of
the tau-leaping workflow that fits the GPU architecture and
avoids any inefficiency drawback for coarse-grain massive
parallel stochastic simulations.

In this work we introduce coagSODA, an extension of
cupSODA that was specifically designed for the analysis of
a model of the blood coagulation cascade (BCC). Blood is the
subject of an intense scientific research, thanks to its key role
inmaking diagnosis of numerous diseases [27]. Humans have
evolved a complex hemostatic system that is able to maintain
blood in a fluid state and allow the circulation through an
intricate network of vessels; in particular, the presence of
several fine-tuned feedback mechanisms in the BCC allows
keeping all blood components within appropriate concen-
tration ranges. The BCC consists in a complex network of
cellular reactions which, under physiological conditions in
vivo, are inhibited by the presence of intact endothelium [28].
Anyway, in response to any vascular injury, the hemostatic
system is able to stop the blood leakage by rapidly sealing the
defects in the vessels’ wall [29].

In order to investigate the variations in blood coagu-
lation components among individuals and to understand
the corresponding response of the system to perturbed
conditions, we consider here a computational perspective
to study the BCC; we analyze the alterations (prolongation
or reduction) of the time required to form the clot (i.e.,
the clotting time) by exploiting a reduced version of the
mathematical model defined in [30]. This model describes

the intrinsic, extrinsic, and common pathways of the BCC
and, more importantly, it accounts for platelets activation,
as well as the presence of several inhibitors (e.g., the Tissue
Factor Pathway Inhibitor, antithrombin III, and C1-inhibitor)
[31].

Numerous mathematical models of blood coagulation
were developed in the last years, as they represent a useful tool
for systematic studies of the intricate network of the coagu-
lation cascade and allow obtaining a suitable reconstruction
of empirical observations (see, e.g., [32–34]). The earliest
models considered only simple steps of the whole BCC, such
as the conversion of the clot fibrin by thrombin [35]; lately,
Hockin et al. [36] developed a comprehensive ODE-based
model of the extrinsic blood coagulation system. This model
was then considered as reference by several research groups
to investigate the thrombotic risk in healthy and ill popula-
tions [37, 38], or to understand other complex biochemical
processes: for instance, in [39] the roles of protein C, protein
S, and phospholipid surface actions were considered, while
in [40] the influence of trace amounts of key coagulation
proteases on thrombin generation was investigated. Recently,
other works modeling the blood clotting process in a com-
prehensive manner have been published; besides the already
mentioned model developed by Chatterjee et al. [30], we
mention the model defined by Wajima et al. [32], which
simulates the intrinsic, extrinsic, and common pathways, the
vitamin K cycle, the therapy with the anticoagulant drugs
warfarin and heparin, and the laboratory tests PT and aPTT,
as well as the Taipan snake bite, which causes coagulopathy.

coagSODA, the GPU-accelerated simulator that we
present and exploit in this work for the analysis of the BCC
model, is a user-friendly and efficient tool that circumvents
the need of manually defining the system of ODEs that
describe the blood coagulation network. More precisely,
coagSODA is able to automatically derive the system of
(mass-action and Hill function-based) ODEs and then per-
form their numerical integration starting from the given set of
96 biochemical reactions, which fully describe the molecular
interactions between all the species involved in the BCC
in vivo. We show that coagSODA allows us to efficiently
execute a large number of parallel deterministic simulations
of the BCC at a considerable reduced computational cost
with respect to CPUs. In particular, we exploit coagSODA
to carry out one-dimensional and bi-dimensional parameter
sweep analysis of the BCC, to the purpose of investigating
the prolongation and the reduction of the clotting time in
response to perturbed values of some reaction constants and
of the initial concentration of somemolecular species, chosen
according to their meaning within the whole pathway.

The paper is structured as follows. In Section 2 we fully
describe the mechanistic model of the BCC used in this
work and present the simulation method at the basis of
cupSODA tool to introduce the coagSODA simulator. In
Section 3 we present the results obtained from the parameter
sweep analysis of the BCC model, as well as a comparison of
the computational performance of coagSODAwith respect to
aCPU-based implementation of LSODA. Finally, in Section 4
we conclude the paper with a discussion of the presented
work and future research directions.
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2. Materials and Methods

2.1. A Mechanistic Model of the Blood Coagulation Cascade.
Blood is an essential component in human life, whose
primary functions are to feed cells by delivering a multitude
of nutrients, such as oxygen, and to carry away the cellular
wastes, such as carbon dioxide. Specialized cells and fluids
in blood perform many physiological functions and can be
isolated and analyzed through specific laboratory tests, giving
the opportunity to settle a person’s health condition. All
blood components are kept within appropriate concentration
ranges by means of fine-tuned regulatory mechanisms, ruled
by several feedback controls; the constancy of blood com-
position is maintained thanks to the circulation through an
intricate network of vessels. In particular, humans evolved a
complex hemostatic system that, under physiological condi-
tions, maintains blood in a fluid state; however, in response
to any vascular injury, this system is able to rapidly react and
seal the defects in the vessels’ wall in order to stop the blood
leakage [29]. Indeed, the circulatory system is self-sealing;
otherwise, a continuous blood flow from even the smallest
wound would become a threat for the individual’s life.

To allow blood coagulation, in humans there exist 13
blood clotting proteins, called coagulation factors, which are
usually designated by Roman numerals I through XIII. As
a consequence of a vascular injury, platelets become active
and the Tissue Factor (TF, also called factor III) is exposed
in the subendothelial tissue, starting the blood coagulation
cascade (BCC). The ultimate goal of the BCC is to convert
prothrombin (factor II) into thrombin (factor IIa—i.e., the
active factor II), the enzyme that catalyzes the formation of
a clot. Traditionally, the BCC is divided into the extrinsic and
intrinsic pathways, both leading to the activation of factor X
[41]. The last part of the cascade, downstream of this factor,
is called the common pathway and leads to the formation
of fibrin monomers, whose polymers finally constitute the
backbone of the clot.

Excluding thrombin, all the enzymes involved in blood
clotting are characterized by a low activity, which increases
upon binding to a specific protein cofactor (e.g., factors V
and VIII) or to appropriate phospholipid surfaces (e.g., the
plasmamembranes of active platelets) [41]. Even calcium ions
have a central role in coagulation, since they are essential
to start and enhance numerous reactions; without calcium
ions the blood coagulation cannot occur [42]. In the BCC
pathways, the activity of the various active proteases is limited
by several inhibitory factors, which allow regulating the
whole cascade. When the hemostatic system is unregulated,
thrombosis (i.e., the formation of a blood clot obstructing the
blood flow in vessels) may occur due to impairment in the
inhibitory pathway, or because the functioning of the natural
anticoagulant processes is overwhelmed by the strength of the
hemostatic stimulus [29].

The BCC model we consider in this work is a slightly
reduced version of the “Platelet-Plasma” deterministic model
defined in [30], built upon a previous model [36], which
describes all parts of blood coagulation: the platelets
activation and aggregation; the extrinsic, intrinsic and
common pathways (with the exception of factor XIII);

the action of several inhibitory molecules (Tissue Fac-
tor Pathway Inhibitor, antithrombin III, C1-inhibitor, 𝛼1-
antitrypsin, and 𝛼2-antiplasmin). In addition, to simulate the
coagulation process in vitro, Chatterjee et al. also modeled
the action of corn trypsin inhibitor (CTI), which inhibits the
activation of the so-called contact system, as well as the action
of the fluorogenic substrate Boc-VPR-MCA widely used in
laboratories for thrombin titration [30]. The role of calcium
was not explicitly included in the model but considered as
a nonlimiting factor, as in living organisms this ion very
rarely drops to such low levels able to alter the kinetics of the
formation of the fibrin clot [43].

Since the aim of this work is the investigation of blood
coagulation in vivo, we exclude a small set of reactions given
in [30] that have no effect on the clotting time. To be more
precise, we do not consider the reactions occurring in vitro
(namely, entries 28 and 35 in Table 1 in [30]), as well as
the reactions downstream the fibrinogen conversion, that is,
the interactions between the fibrin polymers, thrombin, and
antithrombin III (namely, entries 55, 56, and 57 in Table 1 in
[30]).

For the sake of completeness, we describe in Table 1 the
BCC model considered in this work, overall consisting in 96
reactions among 71 molecular species. A graphical sketch of
themainmolecular interactions among the BCC components
is given in Figure 1.

The model can be partitioned into four functional mod-
ules.

(1) Thefirstmodule corresponds to the extrinsic pathway,
which consists in

(i) the formation of a complex between Tissue
Factor and factor VII (modeled by reactions
𝑟
1
, . . . , 𝑟

4
);

(ii) the activation of factor VII by the complex
between Tissue Factor and factor VIIa (reaction
𝑟
5
);

(iii) the activation of factor IX by the complex
between Tissue Factor and factor VIIa (reac-
tions 𝑟

13
, 𝑟
14
, 𝑟
15
) and by factor VIIa (reactions

𝑟
78
, 𝑟
79
, 𝑟
80
);

(iv) the activation of factor X by the complex
between Tissue Factor and factor VIIa
(𝑟
8
, . . . , 𝑟

12
) and by factor VIIa (𝑟

81
, 𝑟
82
, 𝑟
83
).

(2) The second module corresponds to the intrinsic path-
way, which consists in

(i) the formation of a complex between factor VIIIa
and factor IXa (modeled by reactions 𝑟

18
and

𝑟
19
);

(ii) the activation of factor X by the complex
between factor VIIIa and factor IXa (reactions
𝑟
20
, 𝑟
21
, 𝑟
22
) and by factor IXa (reactions 𝑟

72
, 𝑟
73
,

𝑟
74
);

(iii) the activation of factor XII by factor XII itself
(reaction 𝑟

44
), by factor XIIa (reactions 𝑟

45
, 𝑟
46
,

𝑟
47
), and by kallikrein (reactions 𝑟

51
, 𝑟
52
, 𝑟
53
);
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Table 1: Reaction-based model of the blood coagulation cascade (reduced version of the “Platelet-Plasma” model described in [30]). The
model consists in 96 reactions among 71 molecular species. With the exception of reaction 𝑟

44
(see Section 3.1), the values of all reaction

constants were taken from [30].

𝑛 Reactants Products Constant (𝑘)
𝑟
1

TF + fVII TF-fVII 3.20 ⋅ 10
6M−1 s−1

𝑟
2

TF-fVII TF + fVII 3.10 ⋅ 10
−2 s−1

𝑟
3

TF + fVIIa TF-fVIIa 2.30 ⋅ 10
7M−1 s−1

𝑟
4

TF-fVIIa TF + fVIIa 3.10 ⋅ 10
−5 s−1

𝑟
5

TF-fVIIa + fVII TF-fVIIa + fVIIa 4.40 ⋅ 10
5M−1 s−1

𝑟
6

fXa + fVII fXa + fVIIa 1.30 ⋅ 10
7M−1 s−1

𝑟
7

fIIa + fVII fIIa + fVIIa 2.30 ⋅ 10
4M−1 s−1

𝑟
8

TF-fVIIa + fX TF-fVIIa-fX 2.50 ⋅ 10
7M−1 s−1

𝑟
9

TF-fVIIa-fX TF-fVIIa + fX 1.05 ⋅ 10
−2 s−1

𝑟
10

TF-fVIIa-fX TF-fVIIa-fXa 6.00 s−1

𝑟
11

TF-fVIIa-fXa TF-fVIIa + fXa 19.00 s−1

𝑟
12

TF-fVIIa + fXa TF-fVIIa-fXa 2.20 ⋅ 10
7M−1 s−1

𝑟
13

TF-fVIIa + fIX TF-fVIIa-fIX 1.00 ⋅ 10
7M−1 s−1

𝑟
14

TF-fVIIa-fIX TF-fVIIa + fIX 2.40 s−1

𝑟
15

TF-fVIIa-fIX TF-fVIIa + fIXa 1.80 s−1

𝑟
16

fII + fXa fIIa + fXa 7.50 ⋅ 10
3M−1 s−1

𝑟
17

fIIa + fVIII fIIa + fVIIIa 2.00 ⋅ 10
7M−1 s−1

𝑟
18

fVIIIa + fIXa fIXa-fVIIIa 1.00 ⋅ 10
7M−1 s−1

𝑟
19

fIXa-fVIIIa fVIIIa + fIXa 1.00 ⋅ 10
−4 s−1

𝑟
20

fIXa-fVIIIa + fX fIXa-fVIIIa-fX 1.00 ⋅ 10
8M−1 s−1

𝑟
21

fIXa-fVIIIa-fX fIXa-fVIIIa + fX 1.00 ⋅ 10
−5 s−1

𝑟
22

fIXa-fVIIIa-fX fIXa-fVIIIa + fXa 8.20 s−1

𝑟
23

fVIIIa fVIIIa1-L + fVIIIa2 6.00 ⋅ 10
−5 s−1

𝑟
24

fVIIIa1-L + fVIIIa2 fVIIIa 2.20 ⋅ 10
4 M−1 s−1

𝑟
25

fIXa-fVIIIa-fX fVIIIa1-L + fVIIIa2 + fX + fIXa 1.00 ⋅ 10
−3 s−1

𝑟
26

fIXa-fVIIIa fVIIIa1-L + fVIIIa2 + fIXa 1.00 ⋅ 10
−3 s−1

𝑟
27

fIIa + fV fIIa + fVa 2.00 ⋅ 10
7M−1 s−1

𝑟
28

fXa + fVa fXa-fVa 4.00 ⋅ 10
8M−1 s−1

𝑟
29

fXa-fVa fXa + fVa 0.2 s−1

𝑟
30

fXa-fVa + fII fXa-fVa-fII 1.00 ⋅ 10
8M−1 s−1

𝑟
31

fXa-fVa-fII fXa-fVa + fII 103.00 s−1

𝑟
32

fXa-fVa-fII fXa-fVa + fmIIa 63.50 s−1

𝑟
33

fXa-fVa + fmIIa fXa-fVa + fIIa 1.50 ⋅ 10
7M−1 s−1

𝑟
34

fXa + TFPI fXa-TFPI 9.00 ⋅ 10
5M−1 s−1

𝑟
35

fXa-TFPI fXa + TFPI 3.60 ⋅ 10
−4 s−1

𝑟
36

TF-fVIIa-fXa + TFPI TF-fVIIa-fXa-TFPI 3.20 ⋅ 10
8 M−1 s−1

𝑟
37

TF-fVIIa-fXa-TFPI TF-fVIIa-fXa + TFPI 1.10 ⋅ 10
−2 s−1

𝑟
38

TF-fVIIa + fXa-TFPI TF-fVIIa-fXa-TFPI 5.00 ⋅ 10
7M−1 s−1

𝑟
39

fXa + ATIII fXa-ATIII 1.50 ⋅ 10
3M−1 s−1

𝑟
40

fmIIa + ATIII fmIIa-ATIII 7.10 ⋅ 10
3M−1 s−1

𝑟
41

fIXa + ATIII fIXa-ATIII 4.90 ⋅ 10
2M−1 s−1

𝑟
42

fIIa + ATIII fIIa-ATIII 7.10 ⋅ 10
3M−1 s−1

𝑟
43

TF-fVIIa + ATIII TF-fVIIa-ATIII 2.30 ⋅ 10
2M−1 s−1

𝑟
44

fXII fXIIa 5.00 ⋅ 10
−4 s−1

𝑟
45

fXIIa + fXII fXIIa-fXII 1.00 ⋅ 10
8M−1 s−1

𝑟
46

fXIIa-fXII fXIIa + fXII 750.00 s−1

𝑟
47

fXIIa-fXII fXIIa + fXIIa 3.30 ⋅ 10
−2 s−1

𝑟
48

fXIIa + PKal fXIIa-PKal 1.00 ⋅ 10
8M−1 s−1

𝑟
49

fXIIa-PKal fXIIa + PKal 3.60 ⋅ 10
3 s−1
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Table 1: Continued.

𝑛 Reactants Products Constant (𝑘)
𝑟
50

fXIIa-PKal fXIIa + Kal 40.00 s−1

𝑟
51

fXII + Kal fXII-Kal 1.00 ⋅ 10
8M−1 s−1

𝑟
52

fXII-Kal fXII + Kal 45.30 s−1

𝑟
53

fXII-Kal fXIIa + Kal 5.70 s−1

𝑟
54

PKal + Kal Kal + Kal 2.70 ⋅ 10
4M−1 s−1

𝑟
55

Kal Kal
𝑖

1.10 ⋅ 10
−2 s−1

𝑟
56

fXIIa + C1inh fXIIa-C1inh 3.60 ⋅ 10
3M−1 s−1

𝑟
57

fXIIa + ATIII fXIIa-ATIII 21.60M−1 s−1

𝑟
58

fXI + fIIa fXI-fIIa 1.00 ⋅ 10
8M−1 s−1

𝑟
59

fXI-fIIa fXI + fIIa 5.00 s−1

𝑟
60

fXI-fIIa fXIa + fIIa 1.30 ⋅ 10
−4 s−1

𝑟
61

fXIIa + fXI fXIIa-fXI 1.00 ⋅ 10
8M−1 s−1

𝑟
62

fXIIa-fXI fXIIa + fXI 200 s−1

𝑟
63

fXIIa-fXI fXIIa + fXIa 5.70 ⋅ 10
−4 s−1

𝑟
64

fXIa + fXI fXIa + fXIa 3.19 ⋅ 10
6M−1 s−1

𝑟
65

fXIa + ATIII fXIa-ATIII 3.20 ⋅ 10
2M−1 s−1

𝑟
66

fXIa + C1inh fXIa-C1inh 1.80 ⋅ 10
3M−1 s−1

𝑟
67

fXIa + A1AT fXIa-A1AT 1.00 ⋅ 10
2M−1 s−1

𝑟
68

fXIa + A2AP fXIa-A2AP 4.3 ⋅ 10
3M−1 s−1

𝑟
69

fXIa + fIX fXIa-fIX 1.00 ⋅ 10
8M−1 s−1

𝑟
70

fXIa-fIX fXIa + fIX 41.00 s−1

𝑟
71

fXIa-fIX fXIa + fIXa 7.70 s−1

𝑟
72

fIXa + fX fIXa-fX 1.00 ⋅ 10
8M−1 s−1

𝑟
73

fIXa-fX fIXa + fX 0.64 s−1

𝑟
74

fIXa-fX fIXa + fXa 7.00 ⋅ 10
−4 s−1

𝑟
75

fXa + fVIII fXa-fVIII 1.00 ⋅ 10
8M−1 s−1

𝑟
76

fXa-fVIII fXa + fVIII 2.10 s−1

𝑟
77

fXa-fVIII fXa + fVIIIa 0.023 s−1

𝑟
78

fVIIa + fIX fVIIa-fIX 1.00 ⋅ 10
8M−1 s−1

𝑟
79

fVIIa-fIX fVIIa + fIX 0.90 s−1

𝑟
80

fVIIa-fIX fVIIa + fIXa 3.60 ⋅ 10
−5 s−1

𝑟
81

fVIIa + fX fVIIa-fX 1.00 ⋅ 10
8M−1 s−1

𝑟
82

fVIIa-fX fVIIa + fX 210.00 s−1

𝑟
83

fVIIa-fX fVIIa + fXa 1.60 ⋅ 10
−6 s−1

𝑟
84

Fbg + fIIa Fbg-fIIa 1.00 ⋅ 10
8M−1 s−1

𝑟
85

Fbg-fIIa Fbg + fIIa 636.00 s−1

𝑟
86

Fbg-fIIa Fbn1 + fIIa + FPA 84.00 s−1

𝑟
87

Fbn1 + fIIa Fbn1-fIIa 1.00 ⋅ 10
8M−1 s−1

𝑟
88

Fbn1-fIIa Fbn1 + fIIa 742.60 s−1

𝑟
89

Fbn1-fIIa Fbn2 + fIIa + FPB 7.40 s−1

𝑟
90

Fbn1 + Fbn1 (Fbn1)2 1.00 ⋅ 10
6M−1 s−1

𝑟
91

(Fbn1)2 2Fbn1 6.40 ⋅ 10
−2 s−1

𝑟
92

(Fbn1)2 + fIIa (Fbn1)2-fIIa 1.00 ⋅ 10
8M−1 s−1

𝑟
93

(Fbn1)2-fIIa (Fbn1)2 + fIIa 701.00 s−1

𝑟
94

(Fbn1)2-fIIa (Fbn2)2 + fIIa + FPB 49.00 s−1

𝑟
95

Fbn2 + fIIa Fbn2-fIIa 1.00 ⋅ 10
8M−1 s−1

𝑟
96

Fbn2-fIIa Fbn2 + fIIa 1.00 ⋅ 10
3 s−1
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fXIITF-fVII

TF
fVIIa

fVII

TF-fVIIa

Fbg

FPA

Fbn1

FPB

Fbn2

Fbn1

(Fbn1)2

(Fbn2)2 FPB

fXa

fIIa

TF-fVIIa-fXa

fIX

fIXa

fX

fmIIa

fII

PKal

Kali
fXI

fXIa

fIX

fIXa

fVIII

fVIIIa

fIXa-fVIIIa

fVIIIa1 -L

fVIIIa2

fVIIIa2
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Figure 1: Graphical representation of the blood coagulation cascade model considered in this work. Legend. Blue box: coagulation factor; red
box: inhibitor and related complexes. Black arrow: complex formation; green arrow: catalytic activation; violet arrow: activation; red arrow:
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(iv) the activation of prekallikrein by factor XIIa
(reactions 𝑟

48
, 𝑟
49
, 𝑟
50
) and by kallikrein (reac-

tion 𝑟
54
);

(v) the activation of factor XI by factor XIIa (reac-
tions 𝑟

61
, 𝑟
62
, 𝑟
63
) and by factor XIa (reaction

𝑟
64
);

(vi) the activation of factor IX by factor XIa (reac-
tions 𝑟

69
, 𝑟
70
, 𝑟
71
);

(vii) the dissociation of free factor VIIIa (reactions
𝑟
23
and 𝑟
24
);

(viii) the dissociation of factor VIIIa in complex with
other factors (reactions 𝑟

25
and 𝑟
26
).

(3) The third module corresponds to the common path-
way, which consists in

(i) the activation of factor II by factor Xa (modeled
by reaction 𝑟

16
) and by the complex between

factor Xa and factor Va, through the formation
of the intermediate meizothrombin (reactions
𝑟
30
, . . . , 𝑟

33
);

(ii) the activation of factor VII by factor Xa (reac-
tion 𝑟
6
) and by factor IIa (reaction 𝑟

7
);

(iii) the activation of factor VIII by factor Xa (reac-
tions 𝑟

75
, 𝑟
76
, 𝑟
77
) and by factor IIa (reaction 𝑟

17
);

(iv) the formation of a complex between factor Xa
and factor Va (reactions 𝑟

28
and 𝑟
29
);

(v) the activation of fibrinogen by factor IIa (reac-
tions 𝑟

84
, . . . , 𝑟

96
);

(vi) the activation of factor V by factor IIa (reaction
𝑟
27
);

(vii) the activation of factor XI by factor IIa (reac-
tions 𝑟

58
, 𝑟
59
, 𝑟
60
).

(4) The fourth module describes the inhibition of coagu-
lation, carried out through the main inhibitors of the
BCC (antithrombin, Tissue Factor Pathway Inhibitor,
C1-inihibitor, 𝛼1-antitrypsin, and 𝛼2-antiplasmin).
These are tight binding inhibitors belonging to the
serpin superfamily, which form irreversible com-
plexes. This module consists in

(i) the inhibition of factor Xa by Tissue Factor
Pathway Inhibitor (modeled by reactions 𝑟

34
and

𝑟
35
);

(ii) the inhibition of the complex between Tissue
Factor, factor VIIa, and factor Xa by Tissue
Factor Pathway Inhibitor (reactions 𝑟

36
, 𝑟
37
, 𝑟
38
);

(iii) the inhibition of factor IIa by antithrombin
(reactions 𝑟

40
and 𝑟
42
);

(iv) the inhibition of factor Xa by antithrombin
(reaction 𝑟

39
);

(v) the inhibition of factor IXa by antithrombin
(reaction 𝑟

41
);

(vi) the inhibition of factor XIa by antithrombin
(reaction 𝑟

65
) and by C1-inhibitor (reaction 𝑟

66
);

Table 2: Initial concentrations of molecular species in the blood
coagulation cascade model (values taken from [30]).

Species Symbol Concentration (M)
𝛼1-Antitrypsin A1AT 4.50 ⋅ 10

−5

𝛼2-Antiplasmin A2AP 1.00 ⋅ 10
−6

Antithrombin III ATIII 3.40 ⋅ 10
−6

C1-inhibitor C1inh 2.50 ⋅ 10
−6

Fibrinogen Fbg 9.00 ⋅ 10
−6

Factor II fII 1.40 ⋅ 10
−6

Factor V fV 2.00 ⋅ 10
−8

Factor VII fVII 1.00 ⋅ 10
−8

Active factor VII fVIIa 1.00 ⋅ 10
−10

Factor VIII fVIII 7.00 ⋅ 10
−10

Factor IX fIX 9.00 ⋅ 10
−8

Factor X fX 1.6 ⋅ 10
−7

Factor XI fXI 3.10 ⋅ 10
−8

Factor XII fXII 3.40 ⋅ 10
−7

Prekallikrein Pkal 4.50 ⋅ 10
−7

Tissue Factor TF 5.00 ⋅ 10
−12

Tissue Factor Pathway Inhibitor TFPI 2.50 ⋅ 10
−9

(vii) the inhibition of factor XIIa by C1-inhibitor
(reaction 𝑟

56
), by antithrombin (reaction 𝑟

57
),

by 𝛼1-antitrypsin (reaction 𝑟
67
), and by 𝛼2-

antiplasmin (reaction 𝑟
68
);

(viii) the inhibition of the complex between Tissue
Factor and factor VIIa by antithrombin (reac-
tion 𝑟
43
);

(ix) the inhibition of kallikrein (reaction 𝑟
55
).

The values of the initial concentrations of the molecular
species occurring in the BCC model are given in Table 2.
According to [30], the concentrations of complexes and active
factors were set to 0, except for the active factor VII, which is
physiologically present in the blood circulation, even in the
absence of damage, in a concentration that is approximately
equal to 1% of the corresponding inactive factor [42].

The system of ordinary differential equations (ODEs),
needed to carry out the simulations and the parameter
sweep analysis presented in Section 3, was derived from
the reactions given in Table 1 according to the mass-action
law, with the exception of 14 reactions belonging to the set
𝑆
𝜀
= {𝑟
19
, 𝑟
21
, 𝑟
23
, 𝑟
29
, 𝑟
31
, 𝑟
35
, 𝑟
46
, 𝑟
49
, 𝑟
52
, 𝑟
62
, 𝑟
70
, 𝑟
73
, 𝑟
76
, 𝑟
82
}.

The mass-action law is the fundamental empirical law that
governs biochemical reaction rates which states that, in a
dilute solution, the rate of an elementary reaction is propor-
tional to the product of the concentration of its reactants
raised to the power of the corresponding stoichiometric
coefficient [44]. The reactions in 𝑆

𝜀
are instead influenced by

a specifically defined variable 𝜀, depending on aHill function,
fit against experimental data which quantify the platelet
activation status, which is used to model the physiological
levels of thrombin concentration as a function of platelet
activation, as thoroughly described in [30]. More precisely,
the value of 𝜀 influences the formation of some complexes
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Figure 2: Dynamics of thrombin (factor IIa) in physiological condition.

occurring on the platelets’ surface, by modifying the activity
of reactions of the form

𝐴 + 𝐵

𝑘
1



𝑘
2

𝐴𝐵. (1)

Namely, 𝜀 intervenes with the dissociation constant of these
reactions, so that the corresponding standard ODEs are
changed to yield new equations of the form

𝑑 [𝐴𝐵]

𝑑𝑡

= 𝑘
1
⋅ [𝐴] ⋅ [𝐵] −

𝑘
2
⋅ [𝐴] ⋅ [𝐵]

𝜀

. (2)

The value of 𝜀 in (2) depends on the following Hill
functionH, which quantifies the state of platelets activation
according to the thrombin concentration (here denoted as
[fIIa]), that is, the factor catalyzing the formation of the fibrin
clot:

H ([fIIa∗ (𝑡)]) =
[fIIa∗ (𝑡)]1.6123

[fIIa∗ (𝑡)]1.6123 + (2.4279 ⋅ 10−9)1.6123
,

(3)

where [fIIa∗(𝑡)] = max
𝑡

∈[0,𝑡]
{[fIIa(𝑡)]}, for a chosen time

interval [0, 𝑡] of simulation.
The value [fIIa∗(𝑡)] represents the maximum transient

thrombin concentration and is needed to simulate the fact
that, in physiological conditions, the thrombin concentration
starts decreasing after rising to a peak (Figure 2). So doing,
[fIIa∗(𝑡)] never decreases once it reaches its maximum
magnitude; [fIIa∗(𝑡)] is equivalent to [fIIa(𝑡)] until the con-
centration of factor IIa reaches the peak, while thereafter it
remains constant at that value, which is the maximum in the
considered time interval [0, 𝑡]. FunctionH allows simulating
the physiological condition, whereby platelets remain active
also when the thrombin concentration decreases.

For a given concentration of factor IIa, the maximum
platelets activation state 𝜀max is defined as

𝜀max = 𝜀max
0

+ (1 − 𝜀max
0

) ⋅H ([fIIa∗ (𝑡)]) , (4)

where 𝜀max
0

defines the basal activation state of the platelets
at simulation time 𝑡 = 0. The value 𝜀max

0

is initially set to 0.01,
assuming a basal 1% binding strength of coagulation factors
to the resting platelets’ surface. When the full activation
of platelets is reached, 𝜀max is equal to 1 and the complex
dissociation constants are minimized (see [30] for more
details).

2.2. CUDA Architecture and the coagSODA Simulator. Intro-
duced by Nvidia in 2006, Compute Unified Device Architec-
ture (CUDA) is a parallel computing platform and program-
ming model that provides programmers with a framework
to exploit GPUs in general-purpose computational tasks
(GPGPU computing). GPGPU computing is a low-cost and
energy-wise alternative to the traditional high-performance
computing infrastructures (e.g., clusters of machines), which
gives access to the tera-scale computing on common work-
stations of mid-range price. However, due to the innovative
architecture and the intrinsic limitations of GPUs, a direct
porting of sequential code on the GPU is most of the times
unfeasible, therefore making it challenging to fully exploit its
computational power and massive parallelism [45].

CUDA combines the single instruction multiple data
(SIMD) architecture with multithreading, which automat-
ically handles the conditional divergence between threads.
The drawback of such flexibility is that any divergence of
the execution flow between threads causes a serialization of
the execution, which affects the overall performances. Under
CUDA’s naming conventions, the programmer implements
the kernel, that is, a C/C++ function, which is loaded from
the host (the CPU) to the devices (one or more GPUs)
and replicated in many copies named threads. Threads can
be organized in three-dimensional structures named blocks
which, in turn, are contained in three-dimensional grids
(a schematic description is given in Figure 3, left side).
Whenever the host runs a kernel, the GPU creates the
corresponding grid and automatically schedules each block
on one free streaming multiprocessor available on the GPU,
allowing a transparent scaling of performances on different
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Figure 3: Schematic description of CUDA’s architecture, in terms of threads and memory hierarchy. Left Side. Threads organization: a single
kernel is launched from the host (the CPU) and is executed in multiple threads on the device (the GPU). Threads can be organized in three-
dimensional structures named blocks which can be, in turn, organized in three-dimensional grids. The dimensions of blocks and grids are
explicitly defined by the programmer. Right Side. Memory hierarchy: threads can access data from many different memories with different
scopes. Registers and local memories are private for each thread. Shared memory lets threads belonging to the same block communicate and
has low access latency. All threads can access the global memory, which suffers high latencies, but it is cached since the introduction of the
Fermi architecture. Texture and constant memory can be read from any thread and are equipped with a cache as well; in this work we exploit
the constant memory. Figures are taken from Nvidia’s CUDA programming guide [60].

devices. Threads within a block are executed in groups of 32
threads named warps.

The GPU is equipped with different kinds of memory.
In this work, we exploit the global memory (accessible from
all threads), the shared memory (accessible from threads
of the same block), the local memory (registers and arrays,
accessible from owner thread), and the constant memory
(cached and not modifiable). A schematic representation of
this memory hierarchy is shown in Figure 3, right side. To
achieve the best performances, the sharedmemory should be
exploited as much as possible; however, it is very limited (i.e.,
49152 bytes for each multiprocessor, since the introduction
of the Fermi architecture) and it introduces restrictions on
the blocks’ size. On the other hand, the global memory is
very large (thousands ofMBs) but suffers from high latencies.
A solution to this problem was implemented on the Fermi
architecture, where the global memory is equipped with a
L2 cache. This architecture also introduced the possibility to
balance 64KB of fast on-chip memory between the shared
memory and L1 cache using two possible configurations,
48KB for the shared memory and 16KB for L1 cache, or
16 KB for the shared memory and 48 for L1 cache.The Kepler
architecture, used in this paper, allows a third and perfectly

balanced configuration, where shared memory and L1 cache
obtain the same amount of memory (32KB). See Figure 4 for
a schematization of the memory architecture.

The systematic analysis of models of biological systems
often consists in the execution of large batches of simulations.
One of the standard analyses that can be executed on such
kind of models regards an intensive search within the param-
eters space, which requires large numbers of independent
simulations. In order to reduce the computational burden,
we previously implemented on the CUDA architecture one
of the most efficient numerical integration algorithms for
ODEs, LSODA, that is able to automatically recognize stiff
and nonstiff systems and to dynamically select between the
most appropriate integration procedure (i.e., Adams method
in the absence of stiffness and the Backward Differentiation
Formulae otherwise) [22]. This GPU-powered tool is called
cupSODA [24, 25] and exploits CUDA’s massive parallelism
to execute different and independent simulations in each
thread, thus reducing the computational time required by a
standard CPU counterpart of LSODA.

Besides being very efficient for the simulation of many
independent simulations, cupSODA is also user-friendly.
LSODA was originally designed to solve ODEs systems
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Figure 4: Schematic description of memory hierarchies in Fermi and Kepler architectures. GPUs relying on these architectures are equipped
with a two-level data cache and a read-only data cache. Shared memory and L1 cache share the same on-chip 64KB memory banks; the
amount of memory can be reconfigured by the user, according to the specific needs of the application. Figure taken from Nvidia’s Kepler
GK110 whitepaper [57].

written in the canonical form, but the user is supposed to
specify the system of ODEs by implementing a custom C
function that is passed to the algorithm;moreover, in order to
speed up the computation when dealing with stiff systems, in
LSODA the Jacobianmatrix associatedwith theODEs system
must be implemented as a custom C function as well. On the
contrary, cupSODA was conceived as a black-box simulator
that can be easily used without any programming skills.
cupSODA consists in a tool to automatically convert a generic
mechanistic reaction-based model of a biological system into
the corresponding set of ODEs, to comply with the mass-
action kinetics [46], and to directly encode the obtained
system, along with the corresponding Jacobian matrix, as C
arrays.

This fully automaticmethodology can be exploited for the
simulation of models whose chemical kinetics is based on the
mass-action law. The BCC model described in Section 2.1,
though, includes a set 𝑆

𝜀
of reactions that do not follow

the mass-action kinetics [30]; the platelets activity is not
explicitly modeled by biochemical reactions, but it is realized
by modulating the rate of the dissociation of the complexes
formed on a platelet’s surface by means of the variable
𝜀, which is calculated with a special equation during the
integration steps. For this reason, cupSODA was used as
a starting point for the development of a new tool able
to compute at run-time the specific kinetics of this set of
reactions.

This new CUDA-powered simulation tool, named coag-
SODA, is specifically tailored for the simulation of the BCC

model developed in [30]. In particular, coagSODA realizes
the run-time calculation of the 𝜀 value required to correctly
simulate the activity of platelets, which is determined accord-
ing to the equations described in Section 2.1. The platelets
activation state 𝜀 is calculated at each time instant by solving
the following differential equation:

𝑑𝜀

𝑑𝑡

= 𝑘 (𝜀max − 𝜀) , (5)

where the constant 𝑘 is inversely proportional to the time
scale of platelets activation and is set to 0.005. This is
consistent with the fact that platelets do not instantly achieve
their maximum attainable activation state (𝜀max), but they
reach it on a physiologically relevant timescale [30].

Dealing with the 14 reactions in the set 𝑆
𝜀
that are

influenced by the Hill functionH (see Section 2.1), the value
of [fIIa∗(𝑡)]must be stored on the GPU because, during each
integration step, coagSODA recalculates (4) which exploits
the value [fIIa∗(𝑡)] to determine a new 𝜀 value. Since CUDA’s
architecture does not offer static variables, the information
for each thread has to be memorized in the global memory.
The accesses to the global memory and the computational
costs due to these additional calculations slow down the
integration process, with respect to the integration of ODEs
performed according to strictly mass-action based kinetics
(as in the cupSODA simulator). Nevertheless, in Section 3.3
we show that our parallel implementation largely outper-
forms a sequential counterpart of the LSODA algorithm.
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Figure 5: Dynamics of fibrinogen in physiological condition. The clotting time is defined as the time necessary to convert the 70% of the
fibrinogen into fibrin.

As in the case of cupSODA [24, 25], coagSODA exploits
the shared memory to improve performances by storing the
current state and time of the simulations in these low-latency
memory banks. Despite the improvement of performances
ensured by this solution, it strongly affects the occupancy
of GPU’s multiprocessors and therefore it represents the
limiting factor for the number of blocks that can be executed
simultaneously; as a matter of fact, coagSODA is limited to
2 blocks per streaming multiprocessor on GPUs based on
the Fermi architecture, with a reduced exploitation of the
GPU with respect to the theoretical 8 blocks allowed by this
architecture.

3. Results and Discussion

In this section we discuss the results of the parameter sweep
analysis (PSA) carried out on the BCC model, to the aim
of investigating either the prolongation or the reduction of
the clotting time in response to perturbed values of some
reaction constants and of the initial concentration of some
molecular species, chosen according to their meaning within
the whole pathway. PSA was performed by generating a
set of different initial conditions, corresponding to different
parameterizations of the model, and then automatically
executing the deterministic simulations with coagSODA.The
use ofGPU technology is fundamental in this type of analysis,
especially for large biological systems as the BCC is, because
it drastically reduces the computational time.

The sweep analysis for single parameters (PSA-1D) was
performed considering a logarithmic sampling of numerical
values of each parameter under investigation (reaction con-
stant or initial molecular concentration) within a specified
range with respect to its physiological reference value. The
sweep analysis over pairs of parameters (PSA-2D) was per-
formed by simultaneously varying the values of two param-
eters within a specified range, considering a logarithmic
sampling on the resulting lattice. The logarithmic sampling
allows uniformly spanning different orders of magnitude of
the parameters value using a reduced and fine-grained set

of samples, therefore efficiently analyzing the response of the
system in a broad range of conditions.

To determine the response of the BCC to perturbed con-
ditions, we chose the clotting time (CT) as output of the PSA.
The CT is defined as the time necessary to convert the 70%
of the fibrinogen into fibrin (see Figure 5), conventionally
assumed to correspond to the time required to form the clot
[47], and it is generally used in laboratory tests formonitoring
the therapywith anticoagulant drugs. According to themodel
defined in [30], the reference value of CT is around 300
seconds in physiological conditions. We investigate here
the response of the BCC by evaluating the CT in various
conditions, corresponding to different values of the reaction
constants, varying over six orders of magnitude with respect
to their physiological values (i.e., three below and three above
the reference values, if not otherwise specified), as well as
to different values of the initial molecular concentrations,
and varying over twelve orders of magnitude with respect to
their physiological values (i.e., six below and six above the
reference values, if not otherwise specified).

The total number of parallel simulations executed to
carry out these analyses was 100 for PSA-1D over reaction
constants, 200 for PSA-1D over initial concentrations, and
1600 for PSA-2D.

Finally, we present the comparison of the performance
of the CPU and GPU to run an increasing number of
simulations of the BCC model, to prove the efficiency of
coagSODA.

3.1. PSA-1D of the BCC Model

3.1.1. Reaction 𝑟
44
. Thefirst PSA was performed to determine

the value of the kinetic constant for the autoactivation of
factor XII (reaction 𝑟

44
in Table 1), which corresponds to an

upstream process in the intrinsic pathway. This analysis was
motivated by two considerations. Firstly, by using the full
parameterization given in [30], the action of the intrinsic
pathway turns out to be fundamental for the BCC in vivo,
which is in contrast to experimental observations which
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indicate that the extrinsic pathway is the main responsible
of clot formation. Secondly, in [30] all constants values have
a reference to experimental measurements, except for the
constant of this reaction (which corresponds to entry 29 in
Table 1 in [30]).

Figure 6 shows the results of this PSA-1D, where 𝑘
44
was

varied over six orders of magnitude, considering the value
given in [30] as the upper limit of the sweep interval. We can
observe that, by decreasing the value of 𝑘

44
with respect to

the value considered in [30], the CT increases with respect to
its reference value; however, for values of this constant lower
than 1.00 ⋅ 10−6 s−1 the CT remains unaltered, and this can
be intuitively explained by the fact that in this situation the
fibrinogen is mainly activated by the extrinsic pathway.

Consequently, we assigned the value 7.00 ⋅ 10−6 s−1 to
𝑘
44
, achieving a CT that is comparable to the experimental

observations of the BCC in vivo. This new value was used in
all PSA discussed in what follows.

3.1.2. Reactions 𝑟
27

and 𝑟
58
. In the next PSA we investigated

the effect of the perturbation of the kinetics of two pivotal

reactions of the BCC model. Reaction 𝑟
27
, which describes

the catalytic activation of factor V by factor IIa, was chosen
because it represents the main positive feedback within the
common pathway; reaction 𝑟

58
, which is involved in the

activation of factor XI by binding to factor IIa, was chosen
because it represents the main positive feedback in the
intrinsic pathway (Figure 1). Moreover, preliminary PSA over
all reaction constants of the BCC model given in Table 1
evidenced that these two reactions are among the most
relevant steps of the coagulation network.

The PSA-1D over 𝑘
27
(Figure 7) shows that the CT is very

sensitive to the perturbation of the rate of this reaction, when
the reference value of its constant (i.e., 𝑘

27
= 2 ⋅ 10

7M−1 s−1)
is either increased or decreased; in particular, when 𝑘

27
is

very low, a plateau in CT is reached since the strength of
the positive feedback exerted by factor IIa is largely reduced,
a condition where the contribution of the amplification of
the hemostatic stimulus (due by the common pathway) to
the formation of the clot is basically not effective. On the
other side, the PSA-1D over 𝑘

58
(Figure 8) shows that, while

a decrease of the constant with respect to its reference value
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(i.e., 𝑘
58
= 1 ⋅ 10

8M−1 s−1) does not have any substantial
effect, an increase of its value leads to a progressive increase
in the CT. This increase is due to the fact that factor IIa is
sequestered in the formation of a complex with factor XI, and
hence it is no longer available as a free component in blood
to participate in other reactions, especially those reactions
of the extrinsic pathway which principally lead to the clot
formation in vivo. This behavior highlights that the intrinsic
pathway has a secondary role in blood coagulation in vivo,
compared with the extrinsic pathway, as also evidenced by
various experimental observations [48].

3.1.3. Factors VIII, IX, and II. The next set of PSA-1D was
realized by varying the initial concentrations of factors VIII,
IX, and II. These factors were selected since both an excess

and a deficiency of their concentrations lead to diseases
related to blood clotting.

The PSA-1D over factor VIII (Figure 9) shows that
increasing the initial concentration of this factor results
in decreasing the CT, suggesting the possible presence of
hypercoagulable states in these perturbed conditions. As a
matter of fact, high levels of factor VIII cause an increased
risk of deep vein thrombosis and pulmonary embolism
[49]. On the other hand, individuals with less than 1%
of the average concentration of factor VIII show a severe
haemophilia A, characterized by higher CT (Figure 9), and
require infusions of plasma containing the deficient factor;
otherwise, frequent spontaneous bleeding would occur [50].
When the concentration of this factor is between 5% and 30%
of the average concentration, individuals still risk bleeding in
case of trauma [50].



14 BioMed Research International

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

Cl
ot

tin
g 

tim
e (

s)

Factor IX (M)

1
e−

1
4

1
e−

1
2

1
e−

1
0

1
e−

8

1
e−

6

1
e−

4

1
e−

2

1
e
0

Figure 10: Clotting time at different initial concentrations of factor IX.The reference value is 9.00⋅10−8M; the sweep range is [9.00⋅10−14, 9.00⋅
10
−2
].

 0

 100

 200

 300

 400

 500

 600

 700

Cl
ot

tin
g 

tim
e (

s)

Factor II (M)

1
e−

1
2

1
e−

1
0

1
e−

8

1
e−

6

1
e−

4

1
e−

2

1
e0

1
e2

Figure 11: Clotting time at different initial concentrations of thrombin.The reference value is 1.40⋅10−6M; the sweep range is [1.40⋅10−12, 1.40⋅
10
0
].

The PSA-1D over factor IX (Figure 10) shows only a
slight decrease of the CT as the initial concentration of
fIX increases; this is in contrast to recent studies that
demonstrated how the excess of factor IX leads to an
increased risk of deep vein thrombosis [51]. This result can
be explained by considering that (i) a high concentration
of factor IX is not sufficient to bring about coagulation
problems, though when the concentration of other factors
is above the average value (yet not at pathological levels),
prothrombotic states can be observed; (ii) in this model we
consider average values as initial concentrations of factors;
however, individuals are characterized by different (balanced)
combinations of procoagulant and anticoagulant factor levels
that altogether contribute to define a unique coagulation
phenotype that reflects the developmental, environmental,
genetic, nutritional, and pharmacological influences of each
individual [52]. On the contrary, the lack of factor IX causes

haemophilia B, characterized by higher CT with respect to
the reference value (Figure 10).

Furthermore, by comparing the PSA-1D of factors VIII
and IX (Figures 9 and 10) it is clear that haemophilia A is
more serious than haemophilia B, since the CT achieved in
conditions of factor VIII deficiency is higher than the CT
obtained in the case of factor IX deficiency.

In both PSA-1D over factors VIII and IX we observed,
after the initial decrease of the CT, an unexpected increase
of the CT as the factor concentration increases.This counter-
intuitive behavior arises at very high concentrations of these
factors (with respect to the average physiological levels) and,
to the best of our knowledge, it was never observed in vivo.
Nonetheless, it would be interesting to verify, by means of ad
hoc laboratory experiments, if the model correctly describes
the behavior of the BCC even in these conditions or, on the
contrary, it is not predictive in these extreme situations.
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The PSA-1D over factor II (Figure 11) shows a dramatic
decrease of the CT as the initial concentration of this factor
increases (with respect to the average physiological level).
This behavior resembles the effects of hypercoagulability (or
thrombophilia), a disease caused by mutation G20210A in
the prothrombin gene [53] that causes an increase of the
prothrombin level (factor II) in the blood flow, resulting in
an excessive formation of the active form of this factor, thus
heightening venous thrombosis risks [54]. Hypercoagulabil-
ity is usually treated with warfarin therapy, or with other
anticoagulants with a similar effect. These drugs decrease the
capacity of coagulation factors to become active, preventing
the formation of unwanted thrombi.

On the other hand, when the initial concentration of
factor II is low, we achieved the effects of prothrombin
deficiency, a rare autosomal recessive disease that causes a
tendency to severe bleeding [29, 55]. As shown in Figure 11, a
concentration equal to 10%of the physiological value of factor
II (i.e., 1.4 ⋅ 10−6 M) leads to clotting effects similar to severe
haemophilia A.

3.2. PSA-2D of the BCCModel. We present here the results of
the PSA-2D on the BCCmodel, where couples of parameters
were varied to analyze the possible effects arising from the
combined perturbation of their values.

3.2.1. Reactions 𝑟
27

and 𝑟
58
. Figure 12 shows the effect of

the simultaneous variation of constants 𝑘
27

and 𝑘
58

(over
the same sweep ranges considered in the two PSA-1D,
Section 3.1). This result remarks that reaction 𝑟

27
, involved

in the common pathway, has a stronger influence on the
BCC, and that there is a synergic interplay between these
two reactions. In particular, when the value of 𝑘

27
is low and

the value of 𝑘
58

is high, the CT is higher than the values
achieved when only a single constant is changed, because in
this condition both the intrinsic and the common pathways
are simultaneously inhibited.

3.2.2. Factor VIII, Factor IX, and Tissue Factor. In the last two
PSA-2Dwe varied the initial concentration of factor VIII and
Tissue Factor and the initial concentration of factor IX and
Tissue Factor, respectively.

The initial concentrations of factors VIII and IX were var-
ied over four orders of magnitude, using their physiological
values as upper limit for the sweep ranges; the concentration
of Tissue Factor was varied over four orders of magnitude,
two above and two below its reference value (see Table 2).
The rationale behind this choice is to observe how the BCC
model, in conditions corresponding to different states of
haemophilia (obtained by decreasing the concentrations of
factors VIII and IX), behaves with different initial concentra-
tions of the Tissue Factor, which is the upstream factor of the
extrinsic pathway, that is, the most important element of the
BCC.

The results of these PSA-2D show that, with respect to
the condition of haemophilia B, in the case of haemophilia
A the amount of Tissue Factor (below its reference value)
has a negligible influence on the CT, as indicated by the

presence of a plateau in Figure 13; on the contrary, concerning
haemophilia B, a deficiency of Tissue Factor leads to an
increase of the CT, especially when factor IX is present in low
concentrations (Figure 14).

The different results achieved in the two PSA-2D are due
to the presence, in the BCC model, of a direct interaction
betweenTissue Factor and factor IX bymeans of theTF-fVIIa
complex (see reactions 𝑟

13
, . . . , 𝑟

15
in Table 1). Indeed, the lack

of Tissue Factor directly affects the concentration of active
factor IX, which results in a strong alteration of the CT with
respect to physiological conditions.

3.3. CPU versus GPU Performance Comparison. In order
to show the relevant speedup achieved by coagSODA, we
present here the comparison of the computational effort
required by GPU and CPU for the simulation of the BCC
model. The performances of our GPU simulator were com-
pared with those obtained using the LSODA algorithm
implemented in the software COPASI [56], executing on
the CPU the same set of simulations that were run on the
GPU. COPASI is single-threaded and does not exploit the
physical and logical cores of the CPU; therefore, it represents
a good benchmark as a single-node CPU-bound simulator of
biological systems.

In all simulations, executed on both GPU and CPU, we
stored 100 samples, uniformly distributed in the time interval
considered for each simulation, that is, [0, 700] seconds, of the
dynamics of all chemical species involved in the BCCmodel.
The settings for the LSODA algorithm were the following:
relative error 1 ⋅ 10−7, absolute error 1 ⋅ 10−13, and maximum
number of internal steps set to 20000.

3.3.1. Benchmark Details. The GPU used for the simulations
is a Nvidia Tesla K20c, equipped with 2496 cores organized in
13 streamingmultiprocessors, GPU clock 706MHz, and 5GB
ofDDR5RAM. In all tests, coagSODAwas compiled and exe-
cuted with version 5.5 of CUDA libraries. Even though this
GPU has compute capability 3.5 and is based on the GK110
Kepler architecture, currently coagSODA does not exploit
any of the new features (e.g., Dynamic Parallelism, Hyper-Q,
Remote DMA) with the exception of the new ISA encoding,
which allows threads to exploit an increased number of
registers (255 instead of 63), reducing register spilling into
global memory and increasing performances [57]. Moreover,
as described in Section 2.2, the Kepler architecture offers the
possibility to reconfigure the 64KB on-chip cache, balancing
between L1 cache and shared memory. Since coagSODA
exploits the shared memory to reduce the latencies during
the access to the concentration values of the BCC model, we
opted for the following configuration: 48KB for the shared
memory, 16 KB for the L1 cache.

The performance of the GPU was compared against a
personal computer equippedwith a dual-core CPU Intel Core
i5, frequency 2.3 GHz, 4GB of DDR3 RAM, running the
operating systemMacOSXLion 10.7.5.The software used as a
coagSODA-equivalent single-threaded CPU implementation
is COPASI version 4.8 (build 35).
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A direct comparison of the performances between these
two different architectures and implementations is not an
easy task, since CPUs are optimized for single-thread exe-
cution and exploit a large number of optimizations (e.g.,
higher clock frequency, instruction caching, pipelining, out
of order execution, and branch prediction), whereas GPUs
are optimized for graphics processing and parallel exe-
cution of identical code, relying only on multilevel data
caching. For this reason, in this paper we propose an
empirical comparison of the performances based on the
running times of identical batches of simulations of the BCC
model.

3.3.2. Benchmark Results. In Figure 15 we show the compar-
ison of the running times required to run several batches
of simulations, executed to carry out the PSA-1D over the
reaction constant 𝑘

27
. The choice of comparing the perfor-

mances of the GPU and CPU implementations by executing
batches of simulations that are related to a PSA, instead of
running 𝑛 independent but identical simulations (i.e., all
characterized by the same parameterization of the model),
is due to the fact that these results represent a more realistic
scenario in the computational analysis of biological systems,
whereby it is useful to investigate large search spaces of
parameters, corresponding to different perturbed conditions
of themodel [26].Moreover, for the evaluation of the running

time, the execution of a batch of 𝑛 identical deterministic
simulations would be futile. The figure clearly shows that
coagSODA always performs better than the CPU counter-
part. In particular, while the CPU performance increases
linearly with the number of simulations, the running times
are strongly reduced on the GPU; in this case, the overall
running time roughly corresponds to the time required for
the execution of the slowest simulations. This is due to the
fact that different parameterizations may require different
time steps for LSODA to converge, and the execution of
a block terminates as long as all the threads it contains
terminate. In turn, the execution of a kernel terminates when
all blocks terminate; for this reason, a single simulation,
whose dynamics requires more steps than the others, may
affect the overall running time.

In Table 3 we report the running times of all batches
of simulations, along with the speedup achieved on the
GPU. In particular, these results highlight that the advantage
of exploiting the GPUs for the simulation of the BCC
model becomes more evident as the number of simula-
tions increases, with a 181× speedup when a PSA with
10000 different parameterizations is executed. Therefore, the
GPU accelerated analysis of the BCC model with coag-
SODA represents a novel, relevant computational means to
investigate the behavior of this complex biological system
under nonphysiological conditions and could be exploited



BioMed Research International 17

 0

 200

 400

 600

Tissue factor (M) Factor IX
 (M

)

Cl
ot

tin
g 

tim
e (

s)

 0

 100

 200

 300

 400

 500

 600

 700

1e−12

1e−10

1e−8

1e−13
1e−11

1e−9

Figure 14: Clotting time at different initial concentrations of Tissue Factor and factor IX.The sweep ranges are [5.00 ⋅ 10−14, 5.00 ⋅ 10−10] and
[9.00 ⋅ 10

−12
, 9.00 ⋅ 10

−8
], respectively.

5 10 50 100 500 1000 5000 10000

Ru
nn

in
g 

tim
e (

s)

Number of simulations

CPU
GPU

1e2

1e3

1e4

1e5

1e6

1e7

Figure 15: Comparison of the computational time required to execute an increasing number of simulations of the BCCmodel on CPU (Intel
Core i5, 2.3 GHz) and GPU (Nvidia Tesla K20c, GPU clock 706MHz). The computational time is expressed in seconds. The time values
related to 1000, 5000, and 10000 simulations on the CPU were estimated by regression (see also Table 3).

Table 3: CPU versus GPU performance comparison.

Number of
simulations CPU time (sec) GPU time (sec) Speedup

5 380.8 127.8 2.98×
10 1060.4 232.9 4.56×
50 5170.4 805.8 6.42×
100 11652.8 1097.7 10.61×
500 53605.8 1739.4 30.81×
1000 107358.2∗ 1998.2 53.73×
5000 536350.7∗ 3096.0 173.2×
10000 1072497.5∗ 5895.1 181.9×
∗Values estimated by regression.

to efficiently determine the response of the BCC to different
therapeutical drugs.

4. Conclusions

Thanks to their high-performance computing capabilities
and the very low costs, GPUs nowadays represent a suitable

technology for the development and the application of par-
allel computational methods for in silico analysis of complex
biological systems. However, the implementation of efficient
computational tools able to fully exploit the large potentiality
of GPUs is still challenging, since good programming skills
are required to implement GPU-based algorithmic methods,
and to handle specific features as an optimal usage ofmemory
or the communication bandwidth between GPU and CPU.
Moreover, algorithms cannot be directly ported on the GPU
because of the limited programming capabilities allowed by
GPUkernels; as amatter of fact, they need to be redesigned to
meet the requirements of the underlying SIMD architecture.

In this work we presented coagSODA, a GPU-powered
simulator specifically developed to carry out fast parallel
simulations of the BCC model. coagSODA was designed to
offer a black-box solution usable by any final user in an
easy way. It relies on cupSODA [24], a numerical integrator
for ODEs that we previously implemented for the GPU
architecture, based on the LSODA algorithm and capable
of automatically translating a reaction-based model into a
set of coupled ODEs. In addition to mass-action kinet-
ics, coagSODA implements specific functions to compute
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the kinetics of Hill function based reactions, such as those
involved in the platelets activity of the BCC model. coag-
SODA exploits the massive parallel capabilities of modern
GPUs, and our results demonstrated that it can achieve a
relevant reduction of the computational time required to
executemany concurrent and independent simulations of the
BCC dynamics. The mutual independence of the simulations
allows fully exploiting the underlying SIMD architecture;
moreover, coagSODA benefits from an additional speedup,
thanks to our choice of storing the state of the system
into the low-latency shared memory (a solution that was
already implemented in cupSODA). Since the BCC model
is large (96 reactions, 71 chemical species), a large amount
of shared memory was assigned to each thread, strongly
reducing the theoretical occupancy of the GPU, that is, the
ratio of active warps with respect to the maximum number
of warps supported by each streaming multiprocessor of the
GPU. However, the results of the analysis presented in this
work, performed on the BCC model, show that coagSODA
achieves a relevant boost with respect to a reference CPU
implementation. For instance, in the case of 10000 simula-
tions, we achieved a noticeable 181× speedup. Interestingly,
the performances of coagSODA are better than COPASI even
for small batches of simulations. These results indicate that,
for biological models consisting in many reactions and many
species, our GPU implementation of LSODA becomes more
profitable than the CPU counterpart as the number of con-
current simulations increases, making it suitable especially
when performing demanding computational analysis such
as, for example, parameter sweep, parameter estimation, or
sensitivity analysis.

As a test case, in this paper we presented several parame-
ter sweep analyses over reaction constants and initial concen-
trations of factors involved in the BCC model. Other com-
putational analyses on mathematical models of this pathway
were previously presented. For instance, in [58], a parameter
estimation of the reaction constants of different models
involving the activation of factor X, factor V, prothrombin,
and the inactivation of factors was performed. The aim of
this analysis was to discriminate between different models
to unravel the mechanisms on the basis of the BCC. Similar
analyses were executed on a model describing thrombin
generation in plasma, since the reaction mechanism, the
reaction constants, and initial concentrations were unknown
[59]. In [34], a sensitivity analysis of a model consisting of
44 species over 34 chemical species was presented; reaction
constants were varied between 10% and 1000% of their
reference value, to the aim of identifying the most influential
factors of the BCC.

All these analyses were performed bymeans of sequential
simulations of the models under investigation; therefore,
in general, only small batches of simulations could be run
(for instance, in [34] only 836 simulations were executed to
execute the sensitivity analysis of the model). On the other
hand, in this paper we presented the results of different PSA,
efficiently executed bymeans of coagSODA, overall providing
useful information regarding unknownparameters and inter-
esting insights into the functioning of the BCC. A thorough
sensitivity analysis of the whole BCC model, consisting in

around 5 ⋅ 105 simulations, is currently in progress on GPUs
by our group, exploiting the great computational efficiency of
coagSODA.

The results of our computational analyses should be
now validated by means of specifically designed laboratory
experiments. In particular, we identified a plausible value
for the constant of the reaction describing the autoactivation
of factor XII (since no reference values can be found in
literature); moreover, the results of the PSA over factor IX
suggest that a deficiency of this factor is not enough to cause
severe bleeding disorders as haemophilia B, but an alteration
of other factors seems to be necessary for the occurrence of
such condition (e.g., the lack of Tissue Factor, as suggested
by the PSA-2D over Tissue Factor and factor IX). Finally,
the PSA over factors VIII and IX showed, in a situation
characterized by very high concentrations of these factors,
a counterintuitive behavior in which the clotting time is
increased with respect to the value obtained in physiological
conditions. Indeed, it would be interesting to design ad hoc
laboratory experiments to verify if the BCCmodel is actually
predictive in such extreme situations.

The coagSODA software and the SBML version of the
BCC model used in this work are available from the authors
upon request.
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