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There is a high occurrence of obesity worldwide without many new medications

being approved for its treatment. Therefore, there is an urgent need to introduce new

approaches for treating obesity. Bioactive peptides have been used to treat metabolic

disorders- such as type-2 diabetes and obesity; while also possessing anti-oxidant,

anti-inflammatory, anti-microbial, and anti-viral properties. However, the development of

these peptides has taken backstage due to their size, reduced stability, poor delivery

and bioavailability, fast rate of degradation etc. But with the emergence of newer

techniques for multifunctional peptides, mimetics, peptide analogs, and aptamers, there

is a sudden revival in this therapeutic field. An increased attention is required for

development of the natural peptides from food and marine sources which can mimic

the function of mediators involved in weight management to avoid obesity. Herein,

the search for the structures of anti-obesity peptides was carried out in order to

establish their potential for drug development in future. An extensive search for the

current status of endogenous, food and marine peptides, with reference to novel and

interesting experimental approaches based on peptidomimetics for controlling obesity,

was performed. Apolipoprotein A-I (apoA-I), melanocortin-4 receptor (MC4R)-specific

agonist, GLP-1 dual and triple agonists, neuropeptides and prolactin-releasing peptide

mimetics were specifically examined for their anti-obesity role. Novel peptides, mimetics,

and synthesis interventions are transpiring and might offer safer alternatives for otherwise

scarcely available safe antiobesity drug. A deeper understanding of peptides and their

chemistry through the use of peptide engineering can be useful to overcome the

disadvantages and select best mimetics and analogs for treatment in future.
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INTRODUCTION

Obesity is an abnormal condition which involves accumulation of excessive body fat and increases
the risk of associated health problems. The worldwide prevalence of obesity has almost tripled
since 1975, which is an alarming and dreadful sign of impairment of human health. It increases
the likelihood of diseases like type-2 diabetes, cardiovascular diseases, obstructive sleep apnea,
osteoarthritis and depression (1, 2). Recently, Reilly et al. (3) pointed out at the low sensitivity
of body-mass index (BMI) for classifying obesity and suggests to consider large biases for the
condition. The undesirable side effects of drugs like Orlistat, phentermine/topiramate, lorcaserin,
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bupropion/naltrexone, liraglutide 3.0, phentermine, and
diethylpropion restrict their uses and thus limit the availability
of safe anti-obesity drugs (4).

Endogenous as well as bioactive peptides from other sources
having twenty amino acid residues exhibit anti-obesity property
(5–7). Analogs for novel targets such as amylin, leptin,
GLP-1 MC4R, oxyntomodulin, neuropeptide Y antagonists,
cannabinoid type-1 receptor blockers, MetAP2 inhibitors, lipase
inhibitors and anti-obesity vaccines are currently being studied
and it is predicted that the combined use of two or more classes
of drugs involving various pathways might be beneficial (8). In
Figure 1 the role of major endogenous peptides, which help in
regulating obesity by different pathways and exhibit combined
effect is composed. α- melanocyte stimulating hormone (α-MSH)
is a melanocortin 4 receptor (MC4R) agonist and is stimulated by
leptin. The MC4R likewise initiates brain-derived neurotrophic
factor (BDNF) through tyrosine receptor kinase B (TrkB)
receptors in the ventromedial (VMH) area of the hypothalamus.
BDNF, when administered centrally in db/db mice, decreased
food allowance and expanded vitality consumption, exhibiting
its role in controlling sustenance balance which is possibly
intervened through MC4R (14, 15). α- MSH actuates MC4R
at the paraventricular nucleus, which leads to a suppression
in food intake and an increase in energy expenditure (16).
Leptin increases BDNF production by causing an increase in
the release of α-MSH from the Arcuate nucleus (Arc). It also
acts on MC4R which is expressed by BDNF-producing neurons;
these events demonstrate the involvement of BDNF in the
control of energy expenditure and as a sequential target of
leptin. The secretion of BDNF leads to its interaction with
trkB situated in the paraventricular nucleus (PVN), dorsomedial
hypothalamus (DMH), Arc and ventromedial hypothalamus
(VMH), causing reduced food intake by stimulating the
feedback mechanism. Interestingly, leptin is also responsible for
causing direct activation of phosphoinositide 3-kinase (PI3K)
in pro-opiomelanocortin (POMC) neurons while generating an
inactivation in Agouti-related protein (AgRP) neurons (17).
Neuropeptide Y (NPY)/(AgRP) neurons are inhibited by insulin
and leptin and are activated in negative energy conditions.
NPY/AgRP neurons estrange themelanocortin signaling while γ-
amino butyric acid (GABA) discharged fromNPY/AgRP neurons
inhibit the POMCneurons (18, 19). Ghrelin increases food intake
by actuating NPY/AgRP neurons, which results to express the
ghrelin receptors and consequently adjusts the inhibitory signs
from peptide YY, leptin and insulin (20).

A therapeutic focus on the treatment of obesity includes
development of ghrelin receptor antagonist which can cause
multiple fold increase in appetite stimulation from the gut to
the mind; ghrelin receptor inverse agonists would stop essential
function of the ghrelin receptor, accordingly expanding the
reaction to inhibitory signals to obstruct “between-suppers”
food consumption (21). Reports show that use of recombinant
adiponectin in fat mice enhances fatty acid digestion along
with improvement in the condition of insulin resistance.
Both leptin and adiponectin are adipocytokines from adipose
tissue and are noteworthy insulin-sensitizing hormones (22).
Adiponectin seems to act by enacting and phosphorylating

AMP-activated protein kinase (AMPK), which at that point
actuates and phosphorylates acetyl CoA-carboxylase, an enzyme
downstream of AMPK in adipose tissue (23). MCHR1-deficient
mice are impervious to the orexigenic activities of MCH and
maintains leanness with increased vitality. Administration of
MCH diminishes adrenocorticotropic hormone (ACTH) level,
which controls the production of glucocorticoid. An increase
in glucocorticoid levels are observed in MCH-deficient mice,
demonstrating the importance of MCHR1 in adrenal functions
(24). Orexins perform their actions through the ventral posterior
Arc where actuation of OX2R orexin receptors empowers a
Na+/Ca2+ trade current in GABAergic neurons and accordingly
causing depolarization and enhancing the firing rate in the
cells (25). As GABA works for a powerful upgrade in feeding
behavior, orexins may use this system to control craving. Another
peptide oxyntomodulin reduces appetite and increases body
temperature; it aids weight loss and can be administered for a
longer period. A renewed interest in this peptide has led to a new
and stable self-assembling nanofibril formulation development,
which subsequently releases pharmacologically active peptide,
having anti-obesity and anti-diabetic potential (26).

Protein Data Bank (PDB) was accessed for the type of available
obesity receptors fromHomo sapiens,which yielded 103 results as
listed in Table 1 and the receptors are shown in Figure 2.

Herein the status of natural anti-obesity peptides from
food and marine sources is updated and experimental
mimetic approaches for controlling obesity is discussed in
further sections.

PEPTIDOMIMETIC-BASED THERAPY IN
OBESITY

Bioactive peptides face several challenges affecting their
prolonged use and development, mainly due to their-
chemical instability, hydrolysis, and aggregation, due to
misfolding, short half-life, elimination, less permeability to
cell membrane etc. However, a peptidomimetic approach
by editing the naturally occurring peptides is currently
being used for the development of promising drugs. They
include various types of chemical modifications, L to D form
isomerization, synthetic amino acid substitution, cyclization etc.
(34). Researchers are targeting dipeptidyl peptidase-IV, STAT
signaling, protein-protein interactions, arthritis, cardiovascular
diseases, antimicrobial, immunomodulators with peptides and
petidomimetics (35–41). Due to a limited number of antiobesity
pharmacological drugs, chemists are now looking beyond
traditional peptides and working on multifunctional peptides,
peptide engineering, peptide aptamers, and peptidomimetics
as modern alternatives involving newer design strategies.
Aditpotide, is a peptidomimetic designed for weight loss and
consists of an amino acid sequence of CysLysGlyGlyArgAla
LysAspCysGlyGlyAsp(LysLeuAlaLysLeuAlaLys)2. It reduced
the body weight of the treated animals in the study by Kolonin
et al. (42) and Barnhart et al. (43). In the first study, there
was a rapid reduction in obesity without any adverse effects;
while in the second study a remarkable reduction in white
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FIGURE 1 | Endogenous peptides and peptidomimetics approaches for treating obesity [Adapted from Navab et al. (9), Tschop et al. (10), and Inooka et al. (11); Kim

et al. (12); Tala et al. (13)] (Indications- Green solid arrow-activation, blue solid arrow-suppression, red dashed arrow-antagonism, and red solid arrow-block).

adipose tissue was observed by magnetic resonance imaging
and X-ray absorptiometry. Barnhart et al. (43) showed that at
experimentally determined optimal doses, monkeys from three
different species displayed predictable and reversible changes
in renal proximal tubule function. When engineering a new
“Two-in-one” peptide, Day et al. (44) introduced a cyclic amide
function in the peptide chain to make the complex more stable,
and also locked a huge polyethylene glycol group to prevent
its filtration from the kidney. These prudent modifications in

the peptide exhibited full potency at both the glucagon and
GLP receptor and caused dramatic weight loss in obese mice.
Davalintide (AC2307), an amylinomimetic reduced food intake,
thus decreasing body weight (45). It was also later discovered that
combined administration of davalintide, an amylinomimetic,
and a peptide YY (PYY) is advantageous in treating obesity
(46). ValGlyPhe peptide profile was checked in obese mice and
in type-2 diabetic patients. D’Amato et al. (47) conducted an
experiment in a small group of patients and could conclude
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TABLE 1 | Major receptors studied for anti-obesity activity for various ligands.

Sr. no. Receptor type Studies

reported

1 Peroxisome proliferator-activated receptor gamma 53

2 Leptin receptor 1

3 Nuclear receptor coactivator 1 8

4 Nuclear receptor coactivator 2 3

5 Alpha-ketoglutarate-dependent dioxygenase FTO 16

6 Pancreatic alpha-amylase 10

7 Retinoic acid receptor RXR-alpha 4

8 Sialic acid-binding Ig-like lectin 5 3

9 Peroxisome proliferator-activated receptor gamma

coactivator-1 alpha

1

10 Corticosteroid 11-beta-dehydrogenase isozyme 1 4

that the response of ValGlyPhe peptide was down regulated to
glucose in both euglycemic obese patients and T2D subjects.
Another combination of a synthetic peptide and a GHS-R1a
antagonist compound led to the development of JMV 2959 with
peptidomimetic approach using 1, 2, 4-triazole for designing
ghrelin receptor ligands and investigating it for food intake and
obesity (48). While it is reported that the metabolic instability
can be overcome by development of d-amino acids containing
small cyclic peptides, low oral bioavailability still remains a
serious limitation for their pharmaceutical applications (49).
Peptides and their mimetic approaches are further discussed in
detail.

Apolipoprotein Mimetic Peptides
Apolipoprotein A-I (apoA-I) is highly abundant and one of the
major protein components of high-density lipoprotein (HDL). Its
role of having an inverse relation in the development of obesity
is well-established (50). The relation between HDL/apoA-I and
autophagy has also advanced the knowledge surroudning its anti-
obesity results (51). ApoA-I mimetics are reported to decrease
adiposity. The anti-obesity effect of apoA-I and an apoA-I
mimetic peptide D-4F were studied. The overexpression of apoA-
I and treatment with the mimetic D-4F remarkably reduced
white fat mass and improved insulin sensitivity moderately.
ApoA-I and mimetic D-4F when used for treatment, increased
uncoupling protein mRNA and proteins along with stimulated
phosphorylation of AMP-activated protein kinase (AMPK) in
brown adipocytes (52). Administration of another apo A-
I mimetic peptide L4F in low-density lipoprotein receptor
(LDLR)-null mice also influenced weight gain and total plasma
cholesterol (53). ApoA-I mimetic peptide L-4F improved the
metabolic profile of male ob and female mice. L4F caused a
significant reduction in the visceral fat to whole body weight ratio
in male mice, while causing an opposite effect in female mice; a
small and significant increase in the ratio of visceral fat to body
weight compared with controls, suggesting sexually dimorphic
effects of L-4F (54). 4F peptide (a hydrophobic analog of 18A)
is highly hydrophobic in nature due to increased phenylalanine
substitutions. The increased oxidized lipid association may

FIGURE 2 | 3D structures of obesity receptors from Protein Data Bank

(27–33).

be due to their ATP-binding cassette transporter (ABCA1)-
dependent cellular cholesterol acceptance (55). Apolipoprotein
A-I mimetic peptides, synthesized from D-amino acids, were
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found to be stable in the circulation when administered orally
to LDL receptor-null mice. The lesions reduced without any
change in HDL-cholesterol level. It was partially available in
circulation during the study when given by oral route to reduce
atherosclerosis (9). A peptide vaccine (B4T) (an apolipoprotein
B100 mimotope) has also been developed which prevents obesity
condition induced by high fat diet (HFD) in wild type mice as
well as in liver steatosis (Figure 1). It targeted an epitope present
in ApoB100 leading to weight reduction (56).

Melanocortin-4 Receptor Agonists
Peptide analogs of melanin concentrating hormone (MCH) with
Kb of 0.1–0.2µM and 4.3 nM were reported by Audinot et al.
(57, 58) after the studies were carried out in rats. Bednarek
et al. (59) reported another peptide as a MCH-R1 antagonist
with IC50 value 14 nM and Kb of 0.9 nM. HisPheArgTrp, a
tetrapeptide sequence from α-MSH and analogs were used for
an antiobesity effect, due to their binding to the melanocortin-
4 receptor (MC4R). It showed an increase in the metabolic
stability and intestinal permeability when studies were carried
out with a synthesized library of backbone cyclic peptidomimetic
derivatives. Cepoi et al. (60) tested another peptide mimetic (1, 2,
3R, 4-tetrahydroisoquinoline-3-carboxylic acid) MC4R-specific
agonist and its effect on inhibiting feeding behavior in mice. It
decreased food intake after 4 h of intracerebroventricular (ICV)
injection in mice. Peptide 1 (BL3020-1) was selective toward
MC4R, had better cellular permeability in enterocytes and also
increased intestinal metabolic stability. This peptide reduced
food intake in mice due to the changes in backbone cyclization
(61). Another antagonist ALB-127158(a) reduced food intake in
DIO mice in preclinical testing and its Phase I clinical trials
have been completed (62). Tala et al. (13) designed a library
of 1, 2, 3-triazole bridged peptidomimetics of chimeric AGRP-
melanocortin peptide. Their study concluded that the disulfide

bond can be interchanged with the mono-triazole ring without
affecting their functional ability at the melanocortin receptors.

GLP-1 Dual and Triple Agonists
A glucagon-like peptide 1 (GLP-1) analog named liraglutide
maintained weight loss in obese individuals at a dose of 3 mg/day
(63). It is licensed by the FDA and EMA for the management of
obese patients. In another approach, the synergistic effect of GLP-
1 and CCK pathways were tried with a fusion peptide C2816. It
was constructed with AC3174 (GLP-1R agonist) and AC170222
(CCKR1-selective agonist); C2816 reduced more body weight in
obese mice as compared to the GLP-1R and CCKR1-selective
agonist co-administration at a higher dose (64). Zhou et al. (65)
also synthesized 24 GLP-1/glucagon receptor dual agonists. A
fatty acid laurate maleimide conjugate showed good results in
lowering body weight in obese mice. A triple incretin agonist
GLP-1-GIP-GCG has been described as potent anti-diabetic and
anti-obesity agents (66) (Figure 1).

Neuropeptide
A short peglyated analog of a neuropeptide Neuromedin-U
(Figure 1) facing short half-life led to its PEG20k conjugate
which exhibited a good anti-obesity effect. At a dose of
10 and 30 nmol/kg, it reduced the body weight by 10 and
22%, respectively, in an obese mice model (11). In literature
reports, a gut hormone fragment peptide YY3–36 reduced
the hunger and also the intake of food in normal weight
subjects (67). Catestatin (CST), a natural peptide occurring
in the body also reduced body weight (68). Subsequently, a
Y2R agonist was synthesized, PYY-1119(4-imidazolecarbonyl-
[d Hyp24,Iva25,Pya(4)26,Cha27,36,γMeLeu28,Lys30,Aib31]
ProTyrTyr (23–36) with better pharmacokinetic
properties to alleviate emesis (69). Another study,
in an attempt to extend the half-life, four apelin-
13 analogs, namely, (Lys8GluPAL)apelin-13 amide,

TABLE 2 | Peptidomimetics and synthetic peptides for antiobesity effects.

Mimetic Mechanism of action References

Apolipoprotein A-I mimetic peptides synthesized

from D -amino acids (D4F) Ac-AspTrp

PheLysAlaPheTyrAspLysValAlaGluLysPheLysGluAlaPhe-

NH2

increase in energy expenditure and

up-regulation of UCP1 in brown fat

(9, 52–54)

N-terminally acetylated and C-terminally amidated L

Ac-

AspTrpPheLysAlaPheTyrAspLysValAlaGluLysPheLysGlu

AlaPhe-NH2

decrease in visceral fat increase in adiponectin,

pAMPK, pAKT

(92)

ApoB100-mimetic B4T ([His tag]-[B1-linker]4-T, 147

amino acids)

prevented HFD-induced body weight increases (56)

H-CysLysGlyGlyArgAlaLysAspCysGlyGlyAsp(LysLeu

AlaLysLeuAlaLys)2

kill fat cells, decrease the volume and mass of

the subcutaneous fat

Ablaris/MD Anderson- Phase 1 clinical trial

http://ir.arrowheadpharma.com/static-files/

7b9826c9-9bc7-4497-b7cf-b6ce31b66b9d

BL-3020 (PheDPheArgTrpGly) binds to receptors in the brain that controls

appetite

BioLineRx- Discontinued preclinical trials in

Obesity in Israel; (93)

JMV-2959 (1,2,4-triazole ghrelin receptor

antagonist)

GHS-R1a receptor antagonist Aeterna Zentaris- Removed due to unknown

reasons, although extensive preclinical

research was successful (94)
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TABLE 3 | Peptidomimetics and peptides from food and marine sources for antiobesity effects.

Soy protein isolate-

IleLeuLeu, LeuLeuLeu,

ValHisValVal

Lipolysis of adipose tissue (114)

Black Soybean Peptides supplement-

AsnLeuGlnGlyGluAsnGluGluGluAspSerGlyAlaIleValThrValLys,

ValSerIleIleAspThrAsnSerLeuGluAsnGlnLeuAspGlnMetProArg,

LysGluGlnGlnGlnGluGlnGlnGlnGluGluGlnProLeuGluValArg,

GluGlnGlnGlnGluGlnGlnGlnGluGluGlnProLeuGluValArg,

GlyAsnProAspIleGluHisProGluThrMet,

LeuAspThrSerAsnPheAsnAsnGlnLeuAspGlnThrProArgValPhe,

AsnGlnGluGlnGluPheLeuLysTyrGln,

ArgLeuLeuLeuLeuLeuGlyTrpLeuLeuIleIleValGlyValIleLeuLeuValGlySerThrLys,

LysGluGlnGlnGlnGluGluGlnGlnGluGluGlnProLeuGluValArg,

IleIleAspThrAsnSerLeuGluAsnGlnLeuAspGlnMetProArg,

LeuAspThrSerAsnPheAsnAsnGlnLeuAspGlnAsnProArgValPhe,

GluGlnGlnGlnArgGlnGlnGlnGluGluGlnProLeuGlu, and

ProMetAspTyrTyrSerAspTyrAspAspAsnAlaAspAspTyrPheAspAspAlaAsp

AspSerAspArg

Causes favorable changes in the metabolites.

(unknown mechanism)

(115)

Peptides from purified soybean β-conglycinin-

LysAsnProGlnLeuArg,

GluIleThrProGluLysAsnProGlnLeuArg and

ArgLysGlnGluGluAspGluAspGluGluGlnGlnArgGlu

The soy peptides GluIleThrProGluLysAsnProGlnLeuArg and

ArgLysGlnGluGluAspGluAspGluGluGlnGlnArgGlu reduced the de

novo fatty acid synthesis.

(116)

Peptide derived from flavourzyme-soy protein

isolate hydrolysate-

ValHisValVal

VHVV suppressed TNF-α expression.

It increased Bcl-2 expression in and suppressed Bad expression,

suggesting a cytoprotective effect conferred on skeletal muscles.

Act as antiapoptotic by decreasing the levels of other

Caspase 3 cleaved caspase 9 and cytochrome c in all the doses

tested.

It regulated the levels of PPAR-α which were suppressed in obese

mice.

(79)

Isoflavone-free peptide mixture (BSP) from black soybean-

AsxSerProIleProProGlyValProTyr

The phosphorylation of AMPK was activated but with

phosphorylation inhibition of ACC, indicating its

hypotriglyceridemic effect.

(78)

Enzymatic hydrolysates of β-conglycinin-

ValArgIleArgLeuLeuGlnArgPheAsnLysArgSer

It stimulates CCK release as an exogenous CCK releasing peptide,

which results into suppression of appetite via CCK-A receptors.

(117)

Hydrophilic fractions from soy crude peptide

LysAla

ValLys

SerTyr

Reduces TG synthesis (118)

Soy glycinin peptides-

IleAlaValProGlyGluValAla, IleAlaValProThrGlyValAla, and LeuProTyrPro

Cholesterol-lowering activity by activating the LDLR-SREBP2

pathway and the activation of AMPK and ERK 1/2

(119)

Thunnus. thynnus, T. albacares, T. alalunga, and T. obesus

Beta-enolase, 47.5 kDa

(120)

Black soy peptides-

AsnLeuGlnGlyGluAsnGluGluGluAspSerGlyAlaIleValThrValLys,

ValSerIleIleAspThrAsnSerLeuGluAsnGlnLeuAspGlnMetProArg,

LysGluGlnGlnGlnGluGlnGlnGlnGluGluGlnProLeuGluValArg,

GluGlnGlnGlnGluGlnGlnGlnGluGluGlnProLeuGluValArg,

GlyAsnProAspIleGluHisProGluThrMet,

LeuAspThrSerAsnPheAsnAsnGlnLeuAspGlnThrProArgValPhe,

AsnGlnGluGlnGluPheLeuLysTyrGln,

ArgLeuLeuLeuLeuLeuGlyTrpLeuLeuIleIleValGlyValIleLeuLeuValGlySerThrLys,

LysGluGlnGlnGlnGluGluGlnGlnGluGluGlnProLeuGluValArg,

IleIleAspThrAsnSerLeuGluAsnGlnLeuAspGlnMetProArg,

LeuAspThrSerAsnPheAsnAsnGlnLeuAspGlnAsnProArgValPhe,

GluGlnGlnGlnArgGlnGlnGlnGluGluGlnProLeuGlu and

ProMetAspTyrTyrSerAspTyrAspAspAsnAlaAspAspTyrPheAspAspAlaAsp

AspSerAspArg

(115)

(Continued)
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TABLE 3 | Continued

Desalinated boiled tuna- AspIleValAspLysIleGluIle (121)

Defatted oat meal hydrolysate- PheLeuGlnProAsnLeuAspGluHis,

AspLeuGluLeuGlnAsnAsnValPheProHis and

ThrProAsnAlaGlyValSerGlyAlaAlaAlaGlyAlaGlyAlaGlyGlyLysHis

(122)

Fragment of soybean β-conglycinin (position 53–61)-

ValArgIleArgLeuLeuGlnArgPheAsnLysArgSer

(117)

Soy protein isolate- LysAla, ValLys and SerTyr (118)

Fermented protein hydrolysates from sardinelle (Sardinella

aurita)—peptides in the range of 150–900 Da.

(123)

Indian major carp, rohu (Labeo rohita Ham.)- Rohu leptin is 16283.38 Da (124)

pGlu(Lys8GluPAL)apelin-13 amide, Lys8GluPAL(Tyr13)apelin-
13, and Lys8GluPAL(Val13)apelin-13 were modified. It
prolonged the half-life of native apelin-13 upto more than
24 h (70). A shorter peptide analog of gastrointestinal peptide,
ProTyrTyr3–36, reduced appetite by activating the neuropeptide
Y2 receptor (Y2R) thus controlling obesity and other metabolic
diseases. A 14-amino acid ProTyrTyr analog, Ac-[d-Pro24, Pya
(4)26, Cha27, 36, Aib28, 31, Lys30] ProTyrTyr (23–36) was
administered continuously for a 2-week long study in mice,
which showed high agonist and binding affinity for the Y2R. It
showed a strong antiobesity effect resulting in more than 10%
weight loss (71, 72).

Prolactin-Releasing Peptide Mimetics
Prolactin-releasing peptide (PrRP) analogs have been used for
development of antiobesity agents. In a recent study, PrRP
showed anorectic effects when the N terminus of PrRP was
attached with palmitic acid. Later palmitoylation of PrRP31
improved its bioavailability by using two linkers (γ-glutamic acid
and a modified polyethylene glycol). Two-week treatment with
palmitoylated analogs reduced the body weight in a diet-induced
obese mouse model. It also reduced the liver weight along with
leptin, triglyceride and insulin levels (73).

FOOD PEPTIDES

Soybean peptides have been used in food items extensively for
their body fat-decreasing property. LeuProTyrProArg, a peptide
from soybean glycinin A5A4B3 subunit and ProGlyPro are
reported to have anorectic properties (74, 75). It decreased serum
glycerides and cholesterol without decreasing body proteins in
humans (76). Isolates from soy protein reduce the triglycerides
and mRNA level of fatty acid synthase in adipose tissue in Wistar
rats (77). Novel black soy peptides activated leptin-like signaling
and AMP-activated protein kinase in a study for acute effects of
black soy peptides on food intake and body weight in rats (78).
Recently, Ashokan et al. (79) reported a peptide (ValHisValVal)
from soybean responsible for stimulating lipolysis in apoptotic
skeletal muscles caused by high fat diet. ValHisValVal peptide also
regulated TNF-α expression which was elevated due to a high
fat diet and suppressed apoptosis-related proteins. Soy isolate
hydrolysate decreased fat accumulation and blood lipid profile
by increasing excretion of fat in Sprague-Dawley rats by Aoyama

et al. (80). Protease and pepsin prepared egg white hydrolysates
reduced lipid content in liver and muscle along with total body
fat in rats (81–83). Egg hydrolysate and black soy hydrolysate
effects on diabetes and obesity markers in human individuals
need more focussed study for their mechanism of absorption
and the molecular targets (84, 85). Anti-appetizing peptides
from milk suppress appetite and thus prevent weight gain and
obesity. High-protein diets with whey proteins decrease appetite,
resulting in less fat deposition and an improvement in insulin
sensitivity. Zhang and Beynen (86) reported the effect of whey
protein in the diet on lowering the level of LDL cholesterol, and
increasing the release of cholecystokinin which is also known
as appetite-suppressing hormone. Whey protein was isolated
with peptide fractions κ-casein f, a glycomacropeptide that is
manufactured by Davisco, USA (87). These peptides aid weight
management due to the satiety inducing glycomarcopeptide
and opioid peptides (7). The bioactivity of total whey protein
may be dependent on the sequences of the peptides and its
combination with active whey protein fractions (88). A peptide
ValProPro derived from milk inhibited obesity-induced adipose
tissue inflammation under the cascading effect of angiotensin-
converting enzyme (ACE). Thus, ValProPro has been suggested
as a viable therapeutic choice for obesity-associated adipose tissue
inflammation and insulin resistance (89). Camel milk peptides
displayed novel antidiabetic and anti-obesity peptides (90). A
pentapeptide GluGlnArgProArg from rice bran <5 kDa fraction
showed around 70% adipocyte viability and a protective role
against obesity (91). The antiobesity food peptides with their
mechanism of action are listed in Table 2.

MARINE PEPTIDES

Marine peptides help aid weight maintenance by reducing
the post-prandial blood sugar levels (95, 96). Recently, Fan
et al. (97) reported the anti-obesity properties of Spirulina
platensis-derived peptides which has attracted the focus once
again to marine originated peptides. Chitosan, a polysaccharide
is already known to modulate the level of serum leptin, C-
reactive protein and inhibits the adipocyte differentiation in
obese rats (98, 99). Fucoxanthin, alginates, fucoidans, and
phlorotannins from seaweeds have been covered well and
reviewed for their anti-obesity potential (100). Some marine
peptides resemble gastrin, cholecystokinin and/or stimulate
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their release resulting in appetite control. Small peptides
extracted from shrimp stimulate the release of cholecystokinin
in STC-1 cells (101). Biofunctional peptides and their mining
can be done from fish and shellfish waste components (102).
Seaweed Plocamium telfairiae and Spirulina platensis exhibit the
highest lipogenesis inhibitory effect in 3T3-L1 cells (97, 103).
Four novel peptides AsnAlaLeuLysCysCysHisSerCysProAla,
LeuAsnAsnProSerValCysAspCysAsp-
CysMetMetLysAlaAlaArg, AsnProValTrpLysArgLys, and
CysAlaAsnProHisGluLeuProAsnLys slowed down 3T3-L1
cells proliferation (32.29–60.08%). Intake of cod decreased
the adipose tissue mass and hepatic lipids in mice (104).
AspIleValAspLysIleGluIle peptide from boiled tuna inhibited
CCAAT/enhancer-binding proteins (C/EBPs) and expression
of peroxisome proliferator-activated receptor gamma (PPAR-
γ). It also caused activation of the Wnt/β-catenin pathway,
which inhibited pre-adipocytes differentiation into fat globule
cells (105). In another work, Henda et al. (106) reported
small peptides AlaPro, ValAlaPro, and AlaLysLys, and studied
them for their effect on the viability of adipocytes during
the proliferation period, among many LysTrp and ValTrp
affected the viability during the differentiation stage. Peptides
GlyProLeu and IleTyr decreased the final lipid content, glycerol-
3-phosphate dehydrogenase activity and the mRNA level of
adipocyte markers along with down regulation of two key
regulators of adipogenesis—PPARγ and C/EBPα expression.
Marine collagen peptide (MCPs) reduced the levels of total
triglycerides, total cholesterol, low-density lipoprotein, free-fatty
acids along with fasting blood glucose, fasting blood insulin
and human glycated hemoglobin A1C in Chinese diabetic
patients (107). MCPs in the size range of 2–26 kDa decreased
body weight in animal models (108). Fish collagen peptide
from a water-hydrolyzed fraction decreased the accumulation
of lipid and also decreased expression of C/EBPα, PPARγ, and
adipocyte protein 2 (aP2) genes during the 3T3-L1 preadipocytes
differentiation (109). Oral supplementation of collagen fragments
decreased body fat and weight with an improved cytokine (110).
Recent studies have shown anti-oxidant potential of food
peptides. Hu et al. (111) isolated novel peptides from Pecan
protein hydrolysate and a peptide with amino acid sequence
LeuAlaTyrLeuGlnTyrThrAspPheGluThrArg (mol. wt. <3 kDa)
which exhibited strongest antioxidant activity. This novel
peptide is suggested to be further evaluated for the possibility
of its development as a functional food with pharmaceutical
properties. A smaller molecular weight peptide from carrot
seed protein also showed strong antioxidant activity (112).
Marine functional bioactives and ingredients in bakery and pasta
products are also currently projected for future applications
(113). All other antiobesity marine peptides are listed in Table 3.

CONCLUSION AND FUTURE DIRECTIONS

Peptides have been known for several decades from different
sources with promising activity but very few studies have
been carried out in vivo. Initially they were isolated from live
animals and now they hold a specific therapeutic potential in
the pharmaceutical field. They have been widely tested in new
regimens due to rapid development in molecular biology in vitro
assays. Newer approaches in chemistry are helping to improve
the peptide stability and its pharmaceutical property. Due to
their various limitations, continued study of natural peptides
from bioresources with newer strategies of peptide engineering
and their mimetics is suggested to be explored extensively.
The number of therapeutic peptides and mimetics will increase
substantially if advances in peptide engineering, combined uses
of peptides, dual or triple agonists, aptamers, cell-penetrating,
and multifunctional peptides are utilized to their highest
potential. The current shortcomings faced by peptide drugs can
be addressed by developing a deeper understanding of natural
peptides from food and marine sources. Computational biology
currently is a great support for peptide drug discovery and
omics approaches uses genomics, proteomics, transcriptomics,
and metabolomics as modern age platforms for finding bioactive
peptides with unique structural features. Any novel finding
pertaining to peptides are capable of shifting all the concepts
toward obesity targets, they supported by evidence based studies
and hence hold more promising future to control body weight.
A new peptide, mimetic, and analog can be further taken for a
development of suitable drug delivery system, stable formulation,
with increased half-life to be used as an antiobesity drug. Though
there is an increased interest in peptides and their mimetics, more
efforts are required to meet the criteria to develop them as a
therapeutic drug. Further studies of peptide’s structural scaffold,
their functions and mechanism of action, and other mediators
involved in obesity can help discovery and development of novel
peptides.
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